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The cosmic microwave background (CMB) CMB, its discovery and thermal nature

Discovery of the CMB1

The horn antenna used by Penzias and Wilson (on the left) and the CMB as observed by
them (on the right). Anisotropies observed by COBE

1In this context, see, for instance, S. G. Brush, Sci. Am. 267, 62 (1992).
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The cosmic microwave background (CMB) CMB, its discovery and thermal nature

Spectrum of radiation in the universe

The spectral energy density of the cosmological background radiation has been plotted
as a function of wavelength2. Note that the CMB contributes the most to the overall back-
ground radiation.

2Figure from D. Scott, arXiv:astro-ph/9912038.
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The cosmic microwave background (CMB) CMB, its discovery and thermal nature

Thermal nature of the CMB

The spectrum of the CMB as measured by the COBE satellite3. It is a perfect Planck
spectrum (corresponding to a temperature of 2.725◦ K) which is unlikely to be bettered in
the laboratory. The error bars have been amplified 400 times so that they are visible!

3Image from http://www.astro.ucla.edu/˜wright/cosmo_01.htm.
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The cosmic microwave background (CMB) The hot big bang model and the origin of CMB

The big bang model seems popular!

The current view of the universe, encapsulated in the hot big bang model, seems popular.
The above image is a screen grab from the theme song of the recent American sitcom
‘The Big Bang Theory’4!

4See http://www.cbs.com/shows/big_bang_theory/.
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The cosmic microwave background (CMB) The hot big bang model and the origin of CMB

Decoupling of matter and radiation5

Matter and radiation cease to interact at a temperature of about T ' 3000◦ K, which
corresponds to a redshift of about z ' 1000.

5Image from W. H. Kinney, arXiv:astro-ph/0301448v2.
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The cosmic microwave background (CMB) Anisotropies in the CMB

Projecting the last scattering surface

The temperature of the CMB on the last scattering surface can be projected on to a plane
as the surface of the Earth is often projected6.

6Image from http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/planckcmb.html.
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The cosmic microwave background (CMB) Anisotropies in the CMB

Anisotropies in the CMB, as observed by COBE

The fluctuations in the temperature of the CMB as seen by the COBE satellite7. The CMB
turns out to be isotropic to one part in 105. The smooth CMB

7Image from http://aether.lbl.gov/www/projects/cobe/COBE_Home/DMR_Images.html.
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The cosmic microwave background (CMB) Anisotropies in the CMB

CMB anisotropies as seen by WMAP and Planck

Left: All-sky map of the anisotropies in the CMB created from nine years of Wilkinson
Microwave Anisotropy Probe (WMAP) data8.
Right: CMB intensity map derived from the joint analysis of Planck, WMAP, and 408 MHz
observations9. The above images show temperature variations (as color differences) of
the order of 200◦ µK. These temperature fluctuations represent the seeds of all the struc-
ture around us today.

8Image from http://wmap.gsfc.nasa.gov/media/121238/index.html.
9Planck Collaboration (R. Adam et al.), Astron. Astrophys. 594, A1 (2016).
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The need for inflation Horizon problem in the hot big bang model

The horizon problem

The radiation from the CMB arriving at us from regions separated by more than the Hubble
radius at the last scattering surface, which subtends an angle of about 1◦ today, could
not have interacted before decoupling.
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The need for inflation Resolution of the horizon problem through inflation

The resolution of the horizon problem in the inflationary scenario

Another illustration of the horizon problem (on the left), and an illustration of its resolu-
tion (on the right) through an early and sufficiently long epoch of inflation10.

10Images from W. Kinney, astro-ph/0301448.
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The need for inflation Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius
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The physical wavelength λP ∝ a (in blue) and the Hubble radius dH = H−1 (in red) in the
inflationary scenario11. The scale factor is expressed in terms of e-folds N as a(N) ∝ eN .

11See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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The need for inflation Resolution of the horizon problem through inflation

The time and duration of inflation

Inflation – a brief period of accelerated expansion – is expected to have taken place during
the very stages of the universe12.

12Image from P. J. Steinhardt, Sci. Am. 304, 18 (2011).
L. Sriramkumar (IIT Madras, Chennai) Decoding the mysteries of the early universe February 28, 2023 16 / 50



The need for inflation Achieving inflation with scalar fields

Driving inflation with scalar fields

Inflation can be achieved with scalar fields encountered in high energy physics13.
13Image from P. J. Steinhardt, Sci. Am. 304, 34 (2011).
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The need for inflation Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation14. Often, these
potentials are classified as small field, large field and hybrid models.

14Image from W. Kinney, astro-ph/0301448.
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The need for inflation Achieving inflation with scalar fields

Proliferation of inflationary models

A (partial?) list of ever-increasing number of inflationary models15. Actually, it may not
even be possible to rule out some of these models!

15
From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology,
Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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The need for inflation Generation of perturbations during inflation

From inside the Hubble radius to super-Hubble scales
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Back to formation of PBHs

The initial conditions are imposed in the sub-Hubble regime when the modes are well
inside the Hubble radius (viz. when k/(aH)� 1) and the power spectra are
evaluated when they sufficiently outside (i.e. as k/(aH)� 1).
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The need for inflation Generation of perturbations during inflation

Typical evolution of the perturbations
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Typical evolution of the real and the imaginary parts of the scalar modes during slow roll
inflation. The mode considered here leaves the Hubble radius at about 18 e-folds16.

16Figure from V. Sreenath, Computation and characteristics of inflationary three-point functions, Ph.D. Thesis,
Indian Institute of Technology Madras, Chennai, India (2015).
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The need for inflation Generation of perturbations during inflation

Spectral indices and the tensor-to-scalar ratio

While comparing with the observations, for convenience, one often uses the following
power law template for the scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1

, PT(k) = AT

(
k

k∗

)n
T

,

where the spectral indices nS and nT are assumed to be constant. The tensor-to-scalar
ratio r is defined as

r(k) =
PT(k)

PS(k)
.
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Constraints on inflation from Planck
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Constraints on inflation from Planck Constraints on the primordial power spectra

CMB angular power spectrum from Planck
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The CMB TT angular power spectrum from the Planck 2018 data (red dots with error bars)
and the best fit ΛCDM model with a power law primordial spectrum (solid blue curve)17.

17Planck Collaboration (N. Aghanim et al.), Astron. Astrophys. 641, A6 (2020).
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Constraints on inflation from Planck Constraints on the primordial power spectra

Performance of inflationary models in the ns-r plane
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Joint constraints on ns and r0.002 from Planck in combination with other data sets, com-
pared to the theoretical predictions of some of the popular inflationary models18.

18Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A10 (2020).
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Enhancing power on small scales
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Enhancing power on small scales Did LIGO observe primordial black holes?

Laser interferometer gravitational wave observatory (LIGO)

Views of the LIGO at Hanford (on the left) and at Livingston (on the right). These obser-
vatories are essentially Michelson-Morley interferometers with rather long arms (of length
about 4 km) that are extremely sensitive to the smallest disturbances of the mirrors19.

19Images from https://www.advancedligo.mit.edu/summary.html.
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Enhancing power on small scales Did LIGO observe primordial black holes?

Radiation from inspiralling binary black holes (BHs)

Play movie

Numerical simulations of gravitational waves (GWs) emitted due to the coalescence of
two BHs. The figure illustrates the amplitude of the emitted GWs (as orange contours),
the orbits of the BHs (as blues lines) and their spins (as green arrows)20.

20Image from E. Berti, Physics 9, 17 (2016).
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Enhancing power on small scales Did LIGO observe primordial black holes?

Signals of a binary BH merger at the two LIGO detectors

On September 14, 2015, similar signals were observed in both of LIGO’s interferometers.
The top panels show the measured signal in the Hanford (top left) and Livingston (top
right) detectors. The bottom panels show the expected signal produced by the merger of
two BHs, obtained from numerical simulations21.

21Figure from B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
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Enhancing power on small scales Did LIGO observe primordial black holes?

Catalog of merging compact objects

A catalog of close to a hundred merging compact binaries22.
22Figure from https://cns.utexas.edu/news/new-gravitational-wave-catalog-reveals-black-holes-of-all-shapes-and-sizes.
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Enhancing power on small scales How can BHs be produced in the early universe?

Behavior of the comoving wave numbers and Hubble radius

Evolution of physical lengths

Back to reheating

Behavior of the comoving wave numbers k (horizontal lines in different colors) and the
comoving Hubble radius dH/a = (aH)−1 (in green) across different epochs23.

23Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).
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Enhancing power on small scales How can BHs be produced in the early universe?

Formation of BHs in the early universe

Back to f
PBH

Primordial black holes (PBHs) can form when perturbations with significant amplitudes
reenter the Hubble radius during the radiation dominated epoch24.

24Figure from G. Franciolini, arXiv:2110.06815 [astro-ph.CO].
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Enhancing power on small scales How can BHs be produced in the early universe?

Amplitude required to form significant number of PBHs

In order to form significant number of BHs, the amplitude of the perturbations on small
scales has to be large enough such that the dimensionless amplitude of the scalar pertur-
bation is close to unity25.

25Figure credit G. Franciolini.
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials admitting ultra slow roll inflation
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Potentials leading to ultra slow roll inflation (with x = φ/v, v being a constant)26:
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26J. Garcia-Bellido and E. R. Morales, Phys. Dark Univ. 18, 47 (2017);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials permitting punctuated inflation
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Potentials admitting punctuated inflation27:

PI1 : V (φ) = V0
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)
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27D. Roberts, A. R. Liddle and D. H. Lyth, Phys. Rev. D 51, 4122 (1995);
R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Power spectra in ultra slow roll and punctuated inflation
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The scalar (in red) and the tensor (in blue) power spectra arising in the various inflationary
models28.

28H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Enhancing power on small scales Generating features in two field models

Enhanced power on small scales in two field models
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The scalar (on top) and the tensor (at the bottom) power spectra evaluated at the end of
inflation have been plotted for a few different sets of initial conditions for the fields and a
range of values of the parameter b129.

29M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Implications for PBH formation and secondary GWs

Plan of the talk

1 The cosmic microwave background (CMB)

2 The need for inflation

3 Constraints on inflation from Planck

4 Enhancing power on small scales

5 Implications for PBH formation and secondary GWs

6 Imprints of reheating on primary GWs

7 Outlook

L. Sriramkumar (IIT Madras, Chennai) Decoding the mysteries of the early universe February 28, 2023 38 / 50



Implications for PBH formation and secondary GWs Constraints on the density of PBHs

Time scale of evaporation of PBHs

Recall that BHs of mass M emit Hawking radiation which is thermal in nature, with the
temperature

kB T =
~ c3

4πM
.

These BHs will evaporate over a time scale of

tev =
60G2M3

π3 ~ c4

(
M

M�

)3

= 2.5× 1063
(
M

M�

)3

yrs.

This implies that PBHs with mass M . 10−18M� would have evaporated by now.
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Implications for PBH formation and secondary GWs Constraints on the density of PBHs

Constraints on f
PBH

(M)

Observational constraints on the quantity fPBH(M), i.e. the fractional energy density of
PBHs that constitute cold dark matter today30.

30P. Villanueva-Domingo, O. Mena and S. Palomares-Ruiz, Front. Astron. Space Sci. 8, 681084 (2021);
For latest constraints, see https://github.com/bradkav/PBHbounds/blob/master/README.md.
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Implications for PBH formation and secondary GWs Production of PBHs in ultra slow roll and punctuated inflation

f
PBH

(M) in ultra slow roll and punctuated inflation
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Formation of PBHs

The fraction of PBHs contributing to the dark matter density today fPBH(M) has been
plotted for the different models of interest, viz. USR2 (on top, in red) and PI3 (at the
bottom, in red)31.

31H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

Ω
GW

(f) in ultra slow roll and punctuated inflation
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The dimensionless spectral energy density of GWs ΩGW arising in the models of USR2
(in red, on top) and PI3 (in red, at the bottom) has been plotted as a function of the
frequency f32.

32H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Implications for PBH formation and secondary GWs Secondary GWs induced by the scalar perturbations

Ω
GW

(f) in the two field model
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The dimensionless spectral energy density of GWs ΩGW(f) arising in the two field model
has been plotted for a set of initial conditions for the background fields as well as a range
of values of the parameter b133.

33M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Imprints of reheating on primary GWs
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Imprints of reheating on primary GWs The epoch of reheating

Evolution of the scalar field in an inflationary potential
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The evolution of the scalar field in the so-called Starobinsky model has been indicated (as
circles, in blue and red) at regular intervals of time. Inflation is terminated as the field
approaches the bottom of the potential (near the light blue dot). Thereafter, the field
oscillates at the bottom of the potential (indicated by the red dots).
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Imprints of reheating on primary GWs The epoch of reheating

Effects on Ω
GW

(f) due to reheating
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The behavior of the dimensionless spectral energy density of primary GWs today, viz.
ΩGW(f), has been plotted over a wide range of frequencies for different reheating temper-
atures (in red, green, brown and black)34. Evolution of comoving lengths

34Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).
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Imprints of reheating on primary GWs The epoch of reheating

Effects on Ω
GW

(f) due to late time entropy production
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The dimensionless spectral energy density of primary GWs observed today ΩGW(f) has
been plotted in a scenario involving late time production of entropy.
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Outlook

Outlook

The measurements of the anisotropies in the CMB on large scales and the sensitivity of
the ongoing and forthcoming GW observatories on small scales provide a wide lever arm
to help us constrain the physics operating in the early universe.

L. Sriramkumar (IIT Madras, Chennai) Decoding the mysteries of the early universe February 28, 2023 49 / 50



Thank you for your attention


	Introduction
	Plan
	References

	The cosmic microwave background (CMB)
	CMB, its discovery and thermal nature
	The hot big bang model and the origin of CMB
	Anisotropies in the CMB
	Anisotropies in the CMB

	The need for inflation
	Horizon problem in the hot big bang model
	Resolution of the horizon problem through inflation
	Achieving inflation with scalar fields
	Generation of perturbations during inflation

	Constraints on inflation from Planck
	Constraints on the primordial power spectra

	Enhancing power on small scales
	Did LIGO observe primordial black holes?
	How can BHs be produced in the early universe?
	Models leading to ultra slow roll and punctuated inflation
	Generating features in two field models

	Implications for PBH formation and secondary GWs
	Constraints on the density of PBHs
	Production of PBHs in ultra slow roll and punctuated inflation
	Secondary GWs induced by the scalar perturbations

	Imprints of reheating on primary GWs
	The epoch of reheating

	Outlook

