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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass to be M
Pl

=
(8πG)−1/2.

F As is often done, particularly in the context of inflation, we shall assume the back-
ground universe to be described by the following spatially flat, Friedmann-Lemaître-
Robertson-Walker (FLRW) line-element:

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
,

where t is the cosmic time, a(t) is the scale factor and η =
∫

dt/a(t) denotes the
conformal time coordinate.

F We shall denote differentiation with respect to the cosmic and the conformal times t
and η by an overdot and an overprime, respectively.

F Moreover, N shall denote the number of e-folds and, as usual, H = ȧ/a shall denote
the Hubble parameter associated with the Friedmann universe.
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The inflationary paradigm
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The inflationary paradigm Resolution of the horizon problem through inflation

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the
Hubble radius at the last scattering surface (which subtends an angle of about 1◦ today)
could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation helps in re-
solving the horizon problem1.

1Images from W. Kinney, astro-ph/0301448.
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The inflationary paradigm Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius

Radiation

radius in non−inflationary
cosmology

1

Behaviour of Hubble

log a(t)

2λ
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> λ  )2

2

~ a

~ a

The behavior of the physical wavelength λP ∝ a (the green lines) and the Hubble radius
H−1 (the blue line) during inflation and the radiation dominated epochs2. Back to bounce

2See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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The inflationary paradigm Achieving inflation with scalar fields

Driving inflation with scalar fields

If we require that λP < dH at a sufficiently early time, then we need to have an epoch
wherein λP decreases faster than the Hubble scale as we go back in time, i.e. a regime
during which

− d

d t

(
λP

dH

)
< 0 ⇒ ä > 0.

From the Friedmann equations, we then require that, during this epoch,

(ρ+ 3 p) < 0.

In the case of canonical scalar fields, this condition simplifies to

φ̇2 < V (φ).

This condition can be achieved if the scalar field φ is initially displaced from a minima of the
potential, and inflation will end when the field approaches a minima with zero or negligible
potential energy3.

3See, for instance, B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006).
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The inflationary paradigm Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation4. Often, these
potentials are classified as small field, large field and hybrid models.

4Image from W. Kinney, astro-ph/0301448.
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The inflationary paradigm Achieving inflation with scalar fields

Proliferation of inflationary models

A (partial?) list of ever-increasing number of inflationary models5. Actually, it may not even
be possible to rule out some of these models!

5
From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology,
Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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The scalar and tensor power spectra generated during inflation
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The scalar and tensor power spectra generated during inflation Classification of perturbations and equations of motion

The character of the perturbations

In a Friedmann universe, the perturbations in the metric and the matter can be classified
according to their behavior with respect to local rotation of the spatial coordinates on
hypersurfaces of constant time as follows6:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the first order
Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor perturbations can be
generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar perturbations
that are primarily responsible for the anisotropies in the CMB and, eventually, the present
day inhomogeneities.

6See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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The scalar and tensor power spectra generated during inflation Classification of perturbations and equations of motion

The quadratic action governing the perturbations
One can show that, at the quadratic order, the action governing the curvature perturbation
R and the tensor perturbation γij are given by7

S2[R] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
,

S2[γij ] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

These actions lead to the following equations of motion governing the scalar and tensor
modes, say, fk and hk:

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

h′′k + 2
a′

a
h′k + k2 hk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll parameter.

7V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

Quantization of the scalar and tensor perturbations

On quantization, the operators R̂(η,x) and γ̂ij(η,x) representing the scalar and the tensor
perturbations can be expressed in terms of the corresponding Fourier modes fk and hk
as8

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) eik·x =

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k (η) e−ik·x

]
,

γ̂ij(η,x) =

∫
d3k

(2π)3/2
γ̂kij(η) eik·x

=
∑

s

∫
d3k

(2π)3/2

[
b̂sk ε

s
ij(k)hk(η) eik·x + b̂s†k εs∗ij (k)h∗k(η) e−ik·x

]
.

In these decompositions, the operators (âk, â
†
k) and (b̂sk, b̂

s†
k ) satisfy the standard commu-

tation relations, while the quantity εsij(k) represents the transverse and traceless polariza-
tion tensor describing the gravitational waves.

8See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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†
k) and (b̂sk, b̂

s†
k ) satisfy the standard commu-

tation relations, while the quantity εsij(k) represents the transverse and traceless polariza-
tion tensor describing the gravitational waves.

8See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 14 / 73



The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

The scalar and tensor power spectra
The dimensionless scalar and tensor power spectra PS(k) and PT(k) are defined in terms
of the correlation functions of the Fourier modes R̂k and γ̂kmn as follows:

〈R̂k(η) R̂k′(η)〉 =
(2π)2

2 k3
PS(k) δ(3)

(
k + k′

)
,

〈γ̂km1n1
(η) γ̂k

′
m2n2

(η)〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3
(
k + k′

)
,

where Πk
m1n1,m2n2

=
∑

s ε
s
m1n1

(k) εs∗m2n2
(k).

In the Bunch-Davies vacuum, say, |0〉, which is defined as âk|0〉 = 0 and b̂sk|0〉 = 0 ∀ k
and s, we can express the power spectra in terms of the quantities fk and gk as

PS(k) =
k3

2π2
|fk|2, PT(k) = 4

k3

2π2
|hk|2.

With the initial conditions imposed in the sub-Hubble domain, viz. when k/(aH) � 1,
these spectra are to be evaluated on super-Hubble scales, i.e. as k/(aH)� 1.
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The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

From inside the Hubble radius to super-Hubble scales

Radiation

radius in non−inflationary
cosmology

1

Behaviour of Hubble

log a(t)
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The initial conditions are imposed in the sub-Hubble regime when the modes are well
inside the Hubble radius (viz. when k/(aH) � 1) and the power spectra are evaluated
when they sufficiently outside (i.e. as k/(aH)� 1).
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The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

Typical evolution of the scalar modes

15 16 17 18 19 20
N

−4
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−1

0
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R
e[

R
k
],

I
m
[R

k
]

Typical evolution of the real and the imaginary parts of the scalar modes during slow roll
inflation. The mode considered leaves the Hubble radius at about 18 e-folds9

9Figure from V. Sreenath, Computation and characteristics of inflationary three-point functions, Ph.D. Thesis,
Indian Institute of Technology Madras, Chennai, India (2015).
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The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

Spectral indices and the tensor-to-scalar ratio
While comparing with the observations, for convenience, one often uses the following
power law, template scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1
, PT(k) = AT

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant.

The tensor-to-scalar ratio r is defined as

r(k) =
PT(k)

PS(k)

and it is usual to further set r = −8nT , viz. the so-called consistency relation, which is
valid during slow roll inflation.

In general, the scalar and tensor spectral indices are defined as10

nS = 1 +
d lnPS

d ln k
, nT =

d lnPT

d ln k
.

10See, for example, B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 18 / 73



The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra

Spectral indices and the tensor-to-scalar ratio
While comparing with the observations, for convenience, one often uses the following
power law, template scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1
, PT(k) = AT

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant.

The tensor-to-scalar ratio r is defined as

r(k) =
PT(k)

PS(k)

and it is usual to further set r = −8nT , viz. the so-called consistency relation, which is
valid during slow roll inflation.

In general, the scalar and tensor spectral indices are defined as10

nS = 1 +
d lnPS

d ln k
, nT =

d lnPT

d ln k
.

10See, for example, B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537 (2006).
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The scalar and tensor power spectra generated during inflation Quantization of the perturbations and power spectra
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Constraints from Planck
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Constraints from Planck The observed CMB angular power spectra

Theoretical angular power spectra11

The theoretically computed, CMB angular power and cross-correlation spectra – temperature (T ,
in black), E (in green), B (in blue), and T -E (in red) – arising due to scalars (on the left) and tensors
(on the right) corresponding to a tensor-to-scalar ratio of r = 0.24. The B-mode spectrum induced
by weak gravitational lensing has also been shown (in blue) in the panel on the left.

11Figure from A. Challinor, arXiv:1210.6008 [astro-ph.CO].
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Constraints from Planck The observed CMB angular power spectra

CMB anisotropies as seen by Planck

CMB intensity map at 5′ resolution derived from the joint analysis of Planck, WMAP, and
408 MHz observations12.

12Planck Collaboration (R. Adam et al.), Astron. Astrophys. 594, A1 (2016).
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Constraints from Planck The observed CMB angular power spectra

CMB TT angular power spectrum from Planck
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The CMB TT angular power spectrum from the Planck 2015 data (the blue dots with error
bars) and the theoretical, best fit ΛCDM model with a power law primordial spectrum (the
solid red curve)13.

13Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A20 (2016).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 22 / 73



Constraints from Planck The observed CMB angular power spectra

CMB TE and EE angular power spectra from Planck
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The CMB TE (on the left) and EE (on the right) angular power spectra from the Planck
2015 data (the blue dots with error bars) and the theoretical, best fit ΛCDM model with a
power law primordial spectrum (the solid red curves)14.

The large angle (50 < ` < 150) TE anti-correlation detected by Planck (and earlier by
WMAP) is a distinctive signature of primordial, super-Hubble, adiabatic perturbations15.

14Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A20 (2016).
15D. N. Spergel and M. Zaldarriaga, Phys. Rev. Lett. 79, 2180 (1997).
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Constraints from Planck Constraints on inflationary parameters

Joint constraints on r and n
S
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Marginalized joint confidence contours for (ns, r), at the 68 % and 95 % CL, in the presence
of running of the spectral indices16.

16Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A20 (2016).
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Constraints from Planck Constraints on inflationary models

Specific inflationary models of interest I
Power law potentials: In power law potentials of the following form17:

V (φ) = λM4
Pl

(φ/M
Pl

)n ,

inflation occurs for large values of the field, i.e. φ > M
Pl

.

Hilltop models: The hilltop models are described by the potential18:

V (φ) ' Λ4 [1− (φ/µ)p + . . .]

and, in these models, the inflaton rolls away from an unstable equilibrium. The ellipsis in-
dicates higher order terms that are considered to be negligible during inflation, but ensure
positiveness of the potential.
Natural inflation: In natural inflation, a non-perturbative shift symmetry is invoked to sup-
press radiative corrections, leading to the periodic potential19

V (φ) = Λ4 [1 + cos (φ/f)] ,

where f is the scale which determines the curvature of the potential.

17A. D. Linde, Phys. Lett. B 129, 177 (1983).
18L. Boubekeur and D. Lyth, JCAP 0507, 010 (2005).
19K. Freese, J. .A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990).
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Constraints from Planck Constraints on inflationary models

Specific inflationary models of interest II

D-brane inflation: In brane world scenarios, if the standard model of particle physics is
confined to our three dimensional brane, the distance between our brane and the anti-
brane can drive inflation. In such a scenario, the effective potential driving inflation is
given by20

V (φ) = Λ4 [1− (µ/φ)p + ...] .

Exponential potentials: Exponential potentials of the following form are ubiquitous in infla-
tionary models motivated by supergravity and string theory21:

V (φ) = Λ4
(

1− e−q φ/MPl + . . .
)
.

As in the case of the hilltop models, the ellipsis indicates possible higher order terms that
are considered to be negligible during inflation, but ensure positiveness of the potential.

20S. Kachru, R. Kallosh, A. D. Linde, J. Maldacena, L. McAllister and S. P. Trivedi, JCAP 0310, 013 (2003);
G. Dvali, Q. Shafi and S. Solganik, arXiv:hep-th/0105203.

21See, for instance, A. Goncharov and A. D. Linde, Sov. Phys. JETP 59, 930 (1984);
M. Cicoli, C. Burgess and F. Quevedo, JCAP 0903, 013, (2009).
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Constraints from Planck Constraints on inflationary models

Specific inflationary models of interest III

Spontaneously broken SUSY: Hybrid inflationary models predicting nS > 1 are strongly
disfavored by the Planck data. An example of a hybrid model that leads to nS < 1 is
the case wherein slow roll inflation is driven by loop corrections in spontaneously broken
supersymmetric (SUSY) grand unified theories described by the following potential22:

V (φ) = Λ4 [1 + αh log(φ/M
Pl

)] ,

where αh > 0 is a dimensionless parameter.

22E. J. Copeland, A. R. Liddle, D. Lyth, E. D. Stewart and D. Wands, Phys. Rev. D 49, 6410 (1994);
G. R. Dvali, Q. Shafi and R. K. Schaefer, Phys. Rev. Lett. 73, 1886 (1994).
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Constraints from Planck Constraints on inflationary models

Specific inflationary models of interest III

R2 inflation: The first inflationary model proposed with the action23

S[gµν ] =
M2

Pl

2

∫
d4x
√−g

(
R+

R2

6M2

)
,

corresponds to the following potential in the Einstein frame:

V (φ) = Λ4
(

1− e−
√

2/3φ/M
Pl

)2
.

α-attractors: A class of inflationary models motivated by recent developments in conformal
symmetry and supergravity correspond to the potential24

V (φ) = Λ4
[
1− e−

√
2/3φ/(

√
αM

Pl)
]2
.

A second class of models, called the super-conformal α-attractors, are described by the
following potential:

V (φ) = Λ4 tanh2m
(
φ/
√

6αM
Pl

)
.

23A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
24See, for example, R. Kallosh, A. D. Linde and D. Roest, JHEP 1311, 198 (2013).
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Constraints from Planck Constraints on inflationary models

Specific inflationary models of interest IV

Non-minimally coupled inflaton: Inflationary predictions are quite sensitive to the non-
minimal coupling, ξ Rφ2, of the inflaton to the Ricci scalar. An interesting aspect of non-
minimal coupling would be to reconcile, say, the quartic potential V (φ) = λφ4/4, with the
Planck observations for ξ � 1. It is found that this model lies within the 95% CL region for
ξ > 0.001925.

Higgs inflation model: The Higgs inflation model, in which inflation is driven by the poten-
tial26

V (φ) = λ (φ2 − φ20)2/4
is found to lead to the same predictions as the R2 model to the lowest order (in the slow
roll approximation at tree level) for ξ � 1 and φ� φ0.

25P. A. R. Ade et al., Astron. Astrophys. 571, A22 (2014).
26F. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).
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Constraints from Planck Constraints on inflationary models

Performance of models in the ns-r plane

Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combina-
tion with other data sets, compared to the theoretical predictions of selected inflationary
models27.

27Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A20 (2016).
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Constraints from Planck Constraints on inflationary models

Performance of inflationary models

The efficiency of the inflationary paradigm leads to a situation wherein, despite the strong
constraints, a variety of models continue to remain consistent with the data28.

28J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403, 039 (2014).
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Non-Gaussianities
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Non-Gaussianities The Maldacena formalism to evaluate the inflationary scalar bispectrum

The scalar bispectrum

The scalar bispectrum BRRR(k1,k2,k3) is related to the three point correlation function
of the Fourier modes of the curvature perturbation, evaluated towards the end of inflation,
say, at the conformal time ηe, as follows29:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)3 BRRR(k1,k2,k3) δ
(3) (k1 + k2 + k3) .

Note that the delta function on the right hand side imposes the triangularity condition,
viz. that the three wavevectors k1, k2 and k3 have to form the edges of a triangle.

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)−9/2 GRRR(k1,k2,k3).

29D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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Non-Gaussianities The Maldacena formalism to evaluate the inflationary scalar bispectrum

The cubic order action governing the perturbations

It can be shown that, the third order term in the action describing the curvature perturbation
is given by30

S3RRR[R] = M2
Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F1

(
δL2RR
δR

)]
,

where F1(δL2RR/δR) denotes terms involving the variation of the second order action with
respect to R, while χ is related to the curvature perturbation R through the relation

∂2χ = a ε1R′.

30J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Non-Gaussianities The Maldacena formalism to evaluate the inflationary scalar bispectrum

Evaluating the scalar bispectrum

At the leading order in the perturbations, one then finds that the scalar three-point corre-
lation function in Fourier space is described by the integral31

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action, while ηi denotes
a sufficiently early time when the initial conditions are imposed on the modes, and ηe
denotes a very late time, say, close to when inflation ends.

Note that, while the square brackets imply the commutation of the operators, the angular
brackets denote the fact that the correlations are evaluated in the initial vacuum state
(viz. the Bunch-Davies vacuum in the situation of our interest).

31See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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Non-Gaussianities The scalar non-Gaussianity parameter

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is basically introduced through
the relation32

R(η,x) = RG(η,x)− 3 fNL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due to the relation
between the Bardeen potential and the curvature perturbation during the matter domi-
nated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three-point correla-
tion function of the curvature perturbation in Fourier space in terms of the parameter fNL .
It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k31 k
3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]
.

32E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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Non-Gaussianities The scalar non-Gaussianity parameter

The relation between f
NL

and the scalar bispectrum

Upon making use of the above expression for the three-point function of the curvature
perturbation and the definition of the scalar bispectrum, we can, in turn, arrive at the
following relation33:

fNL(k1,k2,k3) = −10

3
(2π)1/2

(
k31 k

3
2 k

3
3

)
BRRR(k1,k2,k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]−1

= −10

3

1

(2π)4
(
k31 k

3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]−1
.

33J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Non-Gaussianities The scalar non-Gaussianity parameter

The shape of the slow roll bispectrum

The results for the non-Gaussianity parameter f
NL

, evaluated analytically in the slow roll approx-
imation, has been plotted as a function of k3/k1 and k2/k1 for the case of the popular quadratic
potential. Note that the non-Gaussianity parameter peaks in the equilateral limit wherein k1 = k2 =

k3. In slow roll scenarios involving the canonical scalar field, the largest value of f
NL

is found to be
of the order of the first slow roll parameter ε1, while f

NL
∼ ε1/c2S in non-canonical models, where c

S

denotes the speed of the scalar perturbations34. The most recent results imply that c
S
≥ 0.02435.

34See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).

35P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Non-Gaussianities Constraints on non-Gaussianities

Template bispectra
For comparison with the observations, the scalar bispectrum is often expressed in terms
of the parameters f loc

NL
, f eq

NL
and forth

NL
as follows:

GRRR(k1,k2,k3) = f loc
NL

Gloc
RRR(k1,k2,k3) + feq

NL
Geq
RRR(k1,k2,k3) + forth

NL
Gorth
RRR(k1,k2,k3).

Illustration of the three template basis bispectra36.
36E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Non-Gaussianities Constraints on non-Gaussianities

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows37:

f loc
NL

= 0.8± 5.0,

f eq
NL

= −4± 43,

forth
NL

= −26± 21.

It should be stressed that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at assuming that
the other two parameters are zero.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

37Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A17 (2016).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 40 / 73



Non-Gaussianities Constraints on non-Gaussianities

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows37:

f loc
NL

= 0.8± 5.0,

f eq
NL

= −4± 43,

forth
NL

= −26± 21.

It should be stressed that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at assuming that
the other two parameters are zero.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

37Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A17 (2016).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 40 / 73



Non-Gaussianities Constraints on non-Gaussianities

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows37:

f loc
NL

= 0.8± 5.0,

f eq
NL

= −4± 43,

forth
NL

= −26± 21.

It should be stressed that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at assuming that
the other two parameters are zero.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

37Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A17 (2016).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 40 / 73



Non-Gaussianities Constraints on non-Gaussianities

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows37:

f loc
NL

= 0.8± 5.0,

f eq
NL

= −4± 43,

forth
NL

= −26± 21.

It should be stressed that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at assuming that
the other two parameters are zero.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

37Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A17 (2016).
L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 40 / 73



Non-Gaussianities Constraints on non-Gaussianities

Can inflation be falsified I?

As the cosmological data continues to improve with its inevitable twists, it has become
evident that whatever the observations turn out to be they will be lauded as ‘proof of
inflation’. This was poignantly brought to the fore when the BICEP2 data was released, in
the wake of Planck’s initial cosmological papers. Even though the two datasets taken at
face-value contradicted each other, they were both advertised as proof of inflation. With
the demise of the BICEP2 claim no one seems to have noted the flaw subjacent to this
attitude: inflation can in fact predict practically anything. Interesting sociology will no doubt
be reenacted when Planck’s polarization data makes its mark, in the hopefully not too
distant futurea.

aG. Gubitosi, M. Lagos, J. Magueijo and R. Allison, JCAP 06, 002 (2016).
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Non-Gaussianities Constraints on non-Gaussianities

Can inflation be falsified II?

As the recent hiccups in CMB polarization observations demonstrated, whatever the data
turns out to be it will be paraded as proof of inflation. This is because for any observation
there is an inflationary model fitting it. Concomitantly, there is a trend in parroting the
death of inflation’s alternatives (such as cyclic models, string gas cosmology and varying
speed of light models).

Putting aside sociology, these perceptions may derive from an important scientific issue.
We argued here that the oft-used concept of Bayesian evidence fails to adequately capture
the tenet that falsifiability is the hallmark of a scientific theory. Whilst the concept may be
perfectly appropriate for comparing models within a paradigm, it fails to suitably penalize
the whole paradigm for not making a prediction that could rule it outa.

aG. Gubitosi, M. Lagos, J. Magueijo and R. Allison, JCAP 06, 002 (2016).
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Bouncing scenarios

Plan of the talk
1 The inflationary paradigm

2 The scalar and tensor power spectra generated during inflation

3 Constraints from Planck

4 Non-Gaussianities

5 Bouncing scenarios

6 The tensor power spectrum in a symmetric matter bounce

7 The tensor-to-scalar ratio in a matter bounce scenario

8 Summary
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Bouncing scenarios An alternative to inflation

Bouncing scenarios as an alternative paradigm38

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields will have to violate the null energy condition near the bounce in
order to give rise to such a scale factor. Also, there exist (genuine) concerns whether
such an assumption about the scale factor is valid in a domain where general relativity
can be supposed to fail and quantum gravitational effects are expected to take over.

38See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios An alternative to inflation

Overcoming the horizon problem in bouncing models
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Behavior in inflation

Evolution of the physical wavelength and the Hubble radius in a bouncing scenario39.
39Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
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Bouncing scenarios Nature of sources driving bounces

Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

It can be shown that, if the modes of cosmological interest have to be inside the Hubble
radius at early times during the contracting phase, the universe needs to undergo non-
accelerated contraction.

In such cases, one finds that Ḣ will be positive near the bounce, which implies that (ρ+ p)
has to be negative in this domain. In other words, the null energy condition needs to be
violated in order to achieve such bounces.
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Bouncing scenarios Nature of sources driving bounces

Classical bounces and sources
Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η20

)q
= a0

(
1 + k20 η

2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0
denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k20M

2
Pl
a
1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k20M

2
Pl
a0/a

3 and
ρ2 = −12 k20M

2
Pl
a20/a

4.
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Bouncing scenarios Nature of sources driving bounces

E-N -folds

The conventional e-fold N is defined N = log (a/ai) so that a(N) = ai expN . However,
the function eN is a monotonically increasing function of N .

In completely symmetric bouncing scenarios, an obvious choice for the scale factor seems
to be40

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the differential
equation governing the background as well as the perturbations.

We shall refer to the variable N as e-N -fold since the scale factor grows roughly by the
amount eN between N and (N + 1).

40L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Bouncing scenarios Nature of sources driving bounces

Behavior of Ḣ and ρ in a matter bounce
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The behavior of Ḣ (on the left) and the total energy density ρ (on the right) in a symmetric
matter bounce scenario has been plotted as a function ofN . Note that the maximum value
of ρ is much smaller than M4

Pl
, which suggests that the bounce can be treated completely

classically. Back to scalar perturbations
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Bouncing scenarios Duality invariance and scale invariant spectra

Duality between de Sitter inflation and matter bounce
It is known that the solutions to the equations of motion governing the scalar and ten-
sor perturbations are invariant under a certain transformation referred to as the duality
transformation41.

For instance, recall that the Mukhanov-Sasaki variable corresponding to the tensor per-
turbations [which is defined as uk = (M

Pl
/
√

2) a hk] satisfies the differential equation

u′′k +

(
k2 − a′′

a

)
uk = 0.

Given a scale factor a, the corresponding dual, say, ã, which leads to the same equation
for the variable uk is given by

a(η)→ ã(η) = C a(η)

η∫

η∗

dη̄

a2(η̄)
,

where C and η∗ are constants.
It is straightforward to show that the dual solution to de Sitter inflation corresponds to the
matter bounce. Both these cases lead to scale invariant spectra.

41D. Wands, Phys. Rev. D 60, 023507 (1999).
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For instance, recall that the Mukhanov-Sasaki variable corresponding to the tensor per-
turbations [which is defined as uk = (M

Pl
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2) a hk] satisfies the differential equation
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)
uk = 0.
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for the variable uk is given by
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where C and η∗ are constants.
It is straightforward to show that the dual solution to de Sitter inflation corresponds to the
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for the variable uk is given by
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The tensor power spectrum in a symmetric matter bounce
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms
of the conformal time coordinate η by the relation

a(η) = a0
(
1 + η2/η20

)
= a0

(
1 + k20 η

2
)
.

As we had discussed earlier, at very early times, viz. when η � −η0, the scale factor
behaves as in a matter dominated epoch42.

The quantity a′′/a corresponding to the above scale factor is given by

a′′

a
=

2 k20
1 + k20 η

2
,

which is essentially a Lorentzian profile.

42See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The behavior of a′′/a

−4 −2 0 2 4

N
0.0

0.5

1.0

1.5

2.0

(a
′′ /

a
)
η

2 0

The behavior of the quantity a′′/a has been plotted as a function of N for the matter
bounce scenario of interest. Note that the maximum value of a′′/a is of the order of k20.

L. Sriramkumar (IIT Madras, Chennai) Did the universe bang or bounce? November 22, 2016 53 / 73



The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k20 η
2

(
1− i

k η

)
e−i k η.
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The modes in the second domain
Let us now consider the behavior of the modes in the domain −αη0 < η < β η0, where,

say, β ' 102. Since we are interested in scales much smaller than k0, we shall assume
that ηk � −αη0, which corresponds to k � k0/α.

In such a case, upon ignoring the k2 term, the equation governing hk can be immediately
integrated to yield

hk(η) ' hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
,

where η∗ is a suitably chosen time and the scale factor a(η) is given by the complete
expression.

If we choose η∗ = −αη0, we can make use of the solution in the first domain to determine
the constants and express the solution in the second domain as follows:

hk = Ak + Bk f(k0 η),

where the function f(k0 η) is given by Back to scalar perturbations

f(k0 η) =
k0 η

1 + k20 η
2

+ tan−1 (k0 η) .
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

Evolution of the tensor modes across the bounce

−15 −10 −5 0 5 10

N
10−47

10−41

10−35

10−29

10−23

10−17

10−11

10−5

101

107

1013

1019

1025

h
k
(N

)

A comparison of the numerical results (in solid red) with the analytical results (in dashed
cyan) for the amplitude of the tensor mode |hk| corresponding to k/k0 = 10−20. We have
set k0 = M

Pl
, a0 = 3×107, and we have chosen α = 105 for plotting the analytical results43.

43D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor power spectrum after the bounce

The quantities Ak and Bk are given by

Ak =

√
2

M
Pl

1√
2 k

1

a0 α2

(
1 +

i k0
αk

)
ei α k/k0 + Bk f(α),

Bk =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(

3 i k0
α2 k

+
3

α
− i k

k0

)
ei α k/k0 .

If we evaluate the tensor power spectrum after the bounce at η = β η0, we find that it can
be expressed as

PT(k) = 4
k3

2π2
|Ak + Bk f(β)|2.
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor power spectrum
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The behavior of the tensor power spectrum has been plotted as a function of k/k0 for a
wide range of wavenumbers. In plotting this figure, we have set k0 = M

Pl
, a0 = 3 × 107,

α = 105 and β = 102. Note that the power spectrum is scale invariant for k � k0/α.
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The tensor-to-scalar ratio in a matter bounce scenario Modeling the matter bounce with scalar fields

A new model for the completely symmetric matter bounce
As we had discussed, the matter bounce scenario described by the scale factor

a(η) = a0
(
1 + η2/η20

)
= a0

(
1 + k20 η

2
)

can be driven with the aid of two fluids, one which is matter and another fluid which be-
haves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, φ
and χ, that are governed by the following action44:

S[φ, χ] = −
∫

d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ) + U0

(
−1

2
∂µχ∂

µχ

)2
]
,

where U0 is a constant and the potential V (φ) is given by

V (φ) =
6M2

Pl
(k20/a

2
0)

cosh6[φ/(
√

12M
Pl

)]
.

44R. N. Raveendran, D. Chowdhury and L. Sriramkumar, arXiv:1703.10061v1 [gr-qc].
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

The scalar perturbations
When the scalar perturbations are taken into account, the FLRW line element can be
written as

ds2 = −(1 + 2A) dt2 + 2 a(t) (∂iB) dt dxi + a2(t) [(1− 2ψ) δij + 2 (∂i ∂jE)] dxi dxj ,

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.

The gauge invariant curvature and isocurvature perturbations R and S can be defined
in terms of the above metric perturbations and the perturbations δφ and δχ in the scalar
fields as follows45:

R =
H

φ̇2 − U0 χ̇4

(
φ̇ δφ− U0 χ̇

3 δχ
)
, S =

H
√
α χ̇2

φ̇2 − U0 χ̇4

(
χ̇ δφ− φ̇ δχ

)
.

The quantities δφ and δχ denote the gauge invariant versions of the perturbations in the
scalar fields, and are given by

δφ = δφ+
φ̇ ψ

H
, δχ = δχ+

χ̇ ψ

H
.

45R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

Equations governing the curvature and isocurvature perturbations

We obtain the equations of motion describing the gauge invariant perturbations Rk and
Sk in our model to be

R′′
k +

2
(
7 + 9 k20 η

2 − 6 k40 η
4
)

η (1− 3 k20 η
2)

2
(1 + k20 η

2)
R′

k −
k2
(
5 + 9 k20 η

2
)

3 (1− 3 k20 η
2)
Rk

=
4
(
5 + 12 k20 η

2
)

√
3 η (1− 3 k20 η

2)
√

1 + k20 η
2
S ′k −

4
[
5− 22 k20 η

2 − 24 k40 η
4 + k2 η2

(
1 + k20 η

2
)2]

√
3 η2 (1 + k20 η

2)
3/2

(1− 3 k20 η
2)

Sk,

S ′′k −
2
(
9 + 7 k20 η

2 + 6 k40 η
4
)

η (1− 3 k20 η
2) (1 + k20 η

2)
S ′k

− 18− 85 k20 η
2 − 25 k40 η

4 − 6 k60 η
6 + k2 η2

(
3− k20 η2

) (
1 + k20 η

2
)2

η2 (1− 3 k20 η
2) (1 + k20 η

2)
2 Sk

=
4
√

3
(
3− 2 k20 η

2
)

η
√

1 + k20 η
2 (1− 3 k20 η

2)
R′

k +
4 k2

√
1 + k20 η

2

√
3 (1− 3 k20 η

2)
Rk. Behavior of Ḣ

However, some of the coefficients diverge when Ḣ and/or H vanish.
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

The uniform-χ gauge
The issue of diverging coefficients can be avoided by working in a gauge wherein δχ = 046.

In this gauge, the equations of motion for the metric perturbations Ak and ψk can be
obtained to be

A′′k + 4HA′k +

(
k2

3
− 20 a20 k

2
0

a2

)
Ak = −3Hψ′k +

4 k2

3
ψk,

ψ′′k − 2Hψ′k + k2 ψk = 2HA′k −
20 a20 k

2
0

a2
Ak,

where H = a′/a. These equations prove to be helpful in evolving the scalar perturbations
across the bounce.

Also, in the uniform-χ gauge, the curvature and isocurvature perturbations simplify to be

Rk = ψk +
2HM2

Pl

φ̇2 − U0 χ̇4

(
ψ̇k +H Ak

)
, Sk =

2HM2
Pl

√
U0 χ̇4

(
φ̇2 − U0 χ̇4

)
φ̇

(
ψ̇k +H Ak

)
.

46L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Solutions for Rk and Sk in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after
the bounce at η = β η0. Also, to arrive at the analytical approximations, as earlier, we shall
divide period of interest into two domains, viz. −∞ < η < −αη0 and −αη0 < η < β η0.

In the first domain, we find that the solution to the curvature perturbation can be arrived at
as in the case of tensors and is given by

Rk(η) ' 1√
6 kM

Pl
a0 k20 η

2

(
1− i

k η

)
e−i k η.

Using this solution, it is straightforward to obtain the following solution for the isocurvature
perturbation at early times:

Sk(η) ' 1

9
√

2 k3 a0 k30MPl
η4

(
−12 i (1 + i k η) e−i k η +

9

31/4
k k0 η

2 e−i k η/
√
3

+ 4 k2 η2 e−i k η/
√
3
{
π + iEi

[
e−i (3−

√
3) k η/3

]})
.
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Solutions for ψk and Ak in the second domain

In the second domain, upon ignoring the k2 dependent terms, one finds that the combina-
tion Ak + ψk satisfies the same equation of motion as the tensor modes.

This feature helps us obtain the solutions for Ak and ψk, and they are given by

Ak(η) + ψk(η) ' Ck
2 a20

f(k0 η) +Dk,

Ak(η) ' Ck k0 η
4 a20 (1 + k20 η

2)
+ Ek e−2

√
5 tan−1(k0 η) + Fk e2

√
5 tan−1(k0 η),

where f(k0 η) is the same function that we had encountered earlier in the case of tensors,
and Ck, Dk, Ek and Fk are four constants of integration. Function f(k0 η)

The four constants, viz. Ck, Dk, Ek and Fk, are determined by matching the above solutions
with the solutions for Rk and Sk in the first domain at η = −αη0.
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Evolution of Rk, Sk and hk
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The evolution of the curvature, isocurvature and tensor perturbations, viz. Rk (in blue and
orange), Sk (in green and magenta) and hk (in red and cyan) across the bounce for the
modes k/k0 = 10−20 (on the left) and k/k0 = 10−25 (on the right). We have set k0 = M

Pl
,

a0 = 3×107, α = 105 and β = 102. The solid lines denote the results obtained numerically,
while the dashed lines represent the analytical approximations.
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The tensor-to-scalar ratio in a matter bounce scenario The power spectra in the matter bounce scenario

The scalar and tensor power spectra in the matter bounce
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The scalar (curvature as blue and isocurvature as green) and tensor (as red) power spec-
tra have been plotted before (as dotted lines) as well as after (as solid lines) the bounce47.

47R. N. Raveendran, D. Chowdhury and L. Sriramkumar, arXiv:1703.10061v1 [gr-qc].
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The tensor-to-scalar ratio in a matter bounce scenario The power spectra in the matter bounce scenario

The evolution of the tensor-to-scalar ratio
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The evolution of the tensor-to-scalar ratio r across the symmetric matter bounce for a typ-
ical mode of cosmological interest. The solid (in red) and dashed (in cyan) lines represent
the numerical and analytical results, respectively.
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Summary

Summary

F Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be
large in symmetric bounces.

In this work, we have been able to construct a completely symmetric matter bounce
scenario that leads to scale invariant spectra and a tensor-to-scalar ratio that is con-
sistent with the observations.
We are currently working on constructing symmetric bouncing models that lead to
scalar power spectra with a tilt as suggested by the cosmological data.
It is also important to examine if the non-Gaussianities generated in such models are
in agreement with the recent constraints from Planck.
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Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios48?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations49?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models50?

48L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
49Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
50J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
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