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Introduction

Proliferation of inflationary models1

A partial list of ever-increasing number of inflationary models!
1From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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The inflationary paradigm Resolution of the horizon problem through inflation

Inflation resolves the horizon problem

Left: The radiation from the CMB arriving at us from regions separated by
more than the Hubble radius at the last scattering surface (which subtends an
angle of about 1◦ today) could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation
helps in resolving the horizon problem2.

2Images from W. Kinney, astro-ph/0301448.
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The inflationary paradigm Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius

Radiation Radiation
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A schematic diagram illustrating the behavior of the physical wavelength λ
P
∝

a (the green lines) and the Hubble radius H−1 (the blue line) during inflation
and the radiation dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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The inflationary paradigm Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation4. Of-
ten, these potentials are classified as small field, large field and hybrid models.

4Image from W. Kinney, astro-ph/0301448.
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Confronting inflationary power spectra with the CMB data Classification of the perturbations

The character of the perturbations
In a Friedmann universe, the perturbations in the metric and the matter can
be classified according to their behavior with respect to a local rotation of the
spatial coordinates on hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the
first order Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor pertur-
bations can be generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar
perturbations that are primarily responsible for the anisotropies in the CMB
and, eventually, the present day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Confronting inflationary power spectra with the CMB data Key definitions and observable quantities

The scalar and the tensor perturbation spectra
The dimensionless scalar power spectrum P

S
(k) is defined in terms of the

correlation function of the Fourier modes of the curvature perturbation R̂k as
follows:

〈0|R̂k(η) R̂k′(η)|0〉 =
(2π)2

2 k3
PS(k) δ(3) (k + k′) ,

where |0〉 is often referred to as the Bunch-Davies vacuum.

While comparing with the observations, for convenience, one often uses the
following power law, template scalar and the tensor spectra:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

and P
T

(k) = A
T

(
k

k∗

)n
T

,

with the spectral indices n
S

and n
T

assumed to be constant.
The tensor-to-scalar ratio r is defined as

r(k) ≡ PT
(k)

P
S
(k)

and it is usual to further set r = −8n
T

, viz. the so-called consistency relation,
which is valid during slow roll inflation.
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Angular power spectrum from the WMAP 9-year data6

The WMAP 9-year data for the CMB TT angular power spectrum (the black
dots with error bars) and the theoretical, best fit ΛCDM model with a power
law primordial spectrum (the solid red curve).

6C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Angular power spectrum from the Planck data7
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The CMB TT angular power spectrum from the Planck data (the red dots
with error bars) and the theoretical, best fit ΛCDM model with a power law
primordial spectrum (the solid green curve).

7P. A. R. Ade et al., arXiv:1303.5075 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Constraints from the WMAP data8

Joint constraints from the WMAP nine-year and other cosmological data on
the inflationary parameters n

S
and r for large field models with potentials of

the form V (φ) ∝ φn.

8G. Hinshaw et al., arXiv:1212.5226v1 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Constraints from Planck9
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9P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Does the primordial power spectrum contain features?
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Left: Reconstructed primordial spectra, obtained upon assuming the concor-
dant background ΛCDM model. Recovered spectra improve the fit to the
WMAP nine-year data by ∆χ2

eff ' 300, with respect to the best fit power law
spectrum10.
Right: Three different spectra with features that lead to an improved fit (of
∆χ2

eff ' 10) to the Planck data11.

10D. K. Hazra, A. Shafieloo and T. Souradeep, JCAP 1307, 031 (2013).
11P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Inflationary models permitting deviations from slow roll

Illustration of potentials that admit departures from slow roll.
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Spectra leading to an improved fit to the WMAP data
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The scalar power spectra in the different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum12.

12R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).
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Evaluation of the scalar bi-spectrum generated during inflation The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The scalar bi-spectrum

The scalar bi-spectrum BRRR(k1,k2,k3) is related to the three point corre-
lation function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows13:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BRRR(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)
−9/2

GRRR(k1,k2,k3).

13D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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Evaluation of the scalar bi-spectrum generated during inflation The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is basically intro-
duced through the relation14

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due
to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three-
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k3
1 k

3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

14E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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Evaluation of the scalar bi-spectrum generated during inflation The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The relation between f
NL

and the scalar bi-spectrum

Upon making use of the above expression for the three-point function of the
curvature perturbation and the definition of the scalar bi-spectrum, we can, in
turn, arrive at the following relation15:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
BRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1

= −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

15J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Evaluation of the scalar bi-spectrum generated during inflation The Maldacena formalism for evaluating the bi-spectrum

The action at the cubic order
It can be shown that, the third order term in the action describing the curvature
perturbation is given by16

S3
RRR[R] = M2

Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F1

(
δL2
RR
δR

)]
,

where F1(δL2
RR/δR) denotes terms involving the variation of the second or-

der action with respect to R, while χ is related to the curvature perturbation
R through the relation

∂2χ = a ε1R′.

16J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Evaluation of the scalar bi-spectrum generated during inflation The Maldacena formalism for evaluating the bi-spectrum

Evaluating the scalar bi-spectrum
At the leading order in the perturbations, one then finds that the scalar three-
point correlation function in Fourier space is described by the integral17

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are im-
posed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are evaluated in
the initial vacuum state (viz. the Bunch-Davies vacuum in the situation of our
interest).

17See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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Evaluation of the scalar bi-spectrum generated during inflation BINGO: An efficient code to numerically compute the bi-spectrum

The various times of interest

The exact behavior of the physical wavelengths and the Hubble radius plotted
as a function of the number of e-folds in the case of the archetypical quadratic
potential, which allows us to illustrate the various times of our interest, viz. ηi,
ηs and ηe.
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Evaluation of the scalar bi-spectrum generated during inflation BINGO: An efficient code to numerically compute the bi-spectrum

Results from BINGO

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the numerical results (on the right) from the BIspectra and
Non-Gaussianity Operator (BINGO) code for a generic triangular configuration
of the wavevectors in the case of the standard quadratic potential18. The
maximum difference between the numerical and the analytic results is found
to be about 5%.

18D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
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Constraints from Planck on the scalar bi-spectrum

Template bispectra
For comparison with the observations, the scalar bi-spectrum is often expressed as
follows19:

GRRR(k1,k2,k3) = f
loc

NL
G

loc
RRR(k1,k2,k3) + f

eq

NL
G

eq
RRR(k1,k2,k3) + f

orth

NL
G

orth
RRR(k1,k2,k3),

where f loc
NL

, feq
NL

and forth
NL

are free parameters that are to be estimated, and the local,
the equilateral, and the orthogonal template bi-spectra are given by:

G
loc
RRR(k1,k2,k3) =

6

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
k
3
1 PS

(k2)P
S

(k3) + two permutations
)
,

G
eq
RRR(k1,k2,k3) =

3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

) (
6 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 3 k

3
3 PS

(k1)P
S

(k2)

−2 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
,

G
orth
RRR(k1,k2,k3) =

3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
18 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 9 k

3
3 PS

(k1)P
S

(k2)

−8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
.

The basis (f loc
NL
, feq

NL
, forth

NL
) for the scalar three-point function is considered to be large

enough to encompass a range of interesting models.
19C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Constraints from Planck on the scalar bi-spectrum

Illustration of the template bi-spectra

An illustration of the three template basis bi-spectra, viz. the local (top left),
the equilateral (bottom) and the orthogonal (top right) forms for a generic tri-
angular configuration of the wavevectors20.

20E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Constraints from Planck on the scalar bi-spectrum

Constraints on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck
data are as follows21:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at
assuming that the other two parameters are zero.

We should also add that these constraints become less stringent if the primor-
dial spectra are assumed to contain features.

21P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Constraints from Planck on the scalar bi-spectrum Are features in the power spectrum consistent with small non-Gaussianities?
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The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit when a step has
been introduced in the conventional chaotic inflationary model22 involving the quadratic
potential (in blue). The f loc

NL
that arises in a small field model with a step23 has also

been illustrated (in red).
22X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008);

P. Adshead, W. Hu, C. Dvorkin and H. V. Peiris, Phys. Rev. D 84, 043519 (2011);
P. Adshead, C. Dvorkin, W. Hu and E. A. Lim, Phys. Rev. D 85, 023531 (2012).

23D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
L. Sriramkumar (IIT Madras, Chennai) Non-Gaussianities and constraints from Planck September 6, 2013 26 / 34



Constraints from Planck on the scalar bi-spectrum Are features in the power spectrum consistent with small non-Gaussianities?
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The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit in the ax-
ion monodromy model24.The modulations in the potential give rise to a certain
resonant behavior25, leading to a large f loc

NL
.

24D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
25S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010);

R. Flauger and E. Pajer, JCAP 1101, 017 (2011).
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Evaluating the other three-point functions The three-point functions and the corresponding non-Gaussianity parameters

The cross-correlations and the tensor bi-spectrum

The cross-correlations involving two scalars and a tensor and a scalar and
two tensors are defined as

〈R̂k1
(ηe) R̂k2

(ηe) γ̂k3
m3n3

(ηe) 〉 = (2π)
3 Bm3n3

RRγ (k1,k2,k3) δ(3) (k1 + k2 + k3) ,

〈R̂k1
(ηe) γ̂k2

m2n2
(ηe) γ̂k3

m3n3
(ηe)〉 = (2π)

3 Bm2n2m3n3

Rγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

while the tensor bi-spectrum is given by

〈γ̂k1
m1n1

(ηe) γ̂k2
m2n2

(ηe) γ̂k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) .

As in the pure scalar case, we shall set

BABC(k1,k2,k3) = (2π)
−9/2

GABC(k1,k2,k3),

where each of (A,B,C) can be either a R or a γ.
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Evaluating the other three-point functions The three-point functions and the corresponding non-Gaussianity parameters

The corresponding non-Gaussianity parameters
As in the scalar case, one can define dimensionless non-Gaussianity parameters to
characterize the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations
and the tensor bi-spectrum, respectively, as follows:

CR
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m3n3
RRγ (k1,k2,k3)

]
×
(

Πk3
m3n3,m̄n̄

)−1
{[
k3

1 PS(k2) + k3
2 PS(k1)

]
PT(k3)

}−1

,

Cγ
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m2n2m3n3
Rγγ (k1,k2,k3)

]
×
{
PS(k1)

[
Πk2
m2n2,m3n3

k3
3 PT(k2) + Πk3

m3n3,m2n2
k3

2 PT(k3)
]}−1

,

hNL = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]
×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT(k1) PT(k2) + five permutations

]−1

,

where the quantity Πk
m1n1,m2n2

is defined as

Πk
m1n1,m2n2

=
∑
s

εsm1n1
(k) εs∗m2n2

(k).
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Evaluating the other three-point functions The three-point functions and the corresponding non-Gaussianity parameters

The actions governing the three point functions

The actions that lead to the correlations involving two scalars and one tensor,
one scalar and two tensors and three tensors are given by

S3
RRγ [R, γij ] = M2

Pl

∫
dη

∫
d3x

[
a2 ε1 γij ∂iR ∂jR+

1

4
∂2γij ∂iχ∂jχ

+
a ε1
2

γ′ij ∂iR ∂jχ+ F2
ij(R)

δL2
γγ

δγij
+ F3(R, γij)

δL2
RR
δR

]
,

S3
Rγγ [R, γij ] =

M2
Pl

4

∫
dη

∫
d3x

[
a2 ε1

2
R γ′ij γ′ij +

a2 ε1
2
R ∂lγij ∂lγij

− a γ′ij ∂lγij ∂lχ+ F4
ij(R, γmn)

δL2
γγ

δγij

]
,

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The quantities L2
RR and L2

γγ are the second order Lagrangian densities com-
prising of two scalars and tensors which lead to the equations of motion.
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Evaluating the other three-point functions Comparison between the analytical and numerical results

Comparison for an arbitrary triangular configuration

A comparison of the analytical results (at the bottom) for the non-Gaussianity
parameters CR

NL
(on the left), Cγ

NL
(in the middle) and h

NL
(on the right) with

the numerical results (on top) for a generic triangular configuration of the
wavevectors in the case of the standard quadratic potential26. As in the case
of the scalar bi-spectrum, the maximum difference between the numerical and
the analytic results is about 5%.

26V. Sreenath, R. Tibrewala and L. Sriramkumar, In preparation.
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Evaluating the other three-point functions Three point functions in models with deviations from slow roll

Three point functions for models with features

Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the mid-
dle) and h

NL
(at the bottom) evaluated numerically for an arbitrary triangular

configuration of the wavenumbers for the case of the punctuated inflationary
scenario (on the left), the quadratic potential with the step (in the middle) and
the axion monodromy model (on the right).
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Outlook

Outlook

The strong constraints on the non-Gaussianity parameter f
NL

from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.

In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features27.
The possibility of such features can provide a strong handle on constrain-
ing inflationary models.
Else, one may need to carry out a systematic search involving the scalar
and the tensor power spectra28, the scalar and the tensor bi-spectra and
the cross correlations29 to arrive at a small subset of viable inflationary
models.

27P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
28In this context, see, J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
29V. Sreenath, R. Tibrewala and L. Sriramkumar, In preparation.
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Thank you for your attention
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