Gravitational waves from the early universe

L. Sriramkumar

Centre for Strings, Gravitation and Cosmology, Department of Physics,
Indian Institute of Technology Madras, Chennai

Colloquium

Department of Physics

Indian Institute of Technology, Kharagpur
October 15, 2025



Plan of the talk

0 Standard model of cosmology

@ Inflationary scenario

@ Constraints on inflation from the CMB data

@ GWs provide a new window to the universe

e Generation of GWs in the early universe

e Observations by the PTAs and the stochastic GW background

0 Outlook

L. Sriramkumar (IIT Madras, Chennai) Gravitational waves from the early universe October 15, 2025



Standard model of cosmology

Plan of the talk

0 Standard model of cosmology

L. Sriramkumar (IIT Madras, Chennai) Gravitational waves from the early universe October 15, 2025



Standard model of cosmology Matter in the universe

Distribution of galaxies in the universe

Distribution of galaxies as observed by the Sloan Digital Sky Survey'.

! Image from htips://www.sdss4.org/science/.
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Standard model of cosmology

Radiation in the universe

Radiation in the universe and cosmic microwave background (CMB)
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Left: Spectrum of the cosmological background radiation?.

Right: Spectrum of the CMB as measured by COBE®. The CMB is a Planck spectrum
corresponding to a temperature of 2.725° K.

2Figure from D. Scott, arXiv:astro-ph/9912038.
3Image from http://www.astro.ucla.edu/"wright/cosmo_01.htm.
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Standard model of cosmology Hot big bang model

Big bang model seems popular!

Qur whole
universe wdas

N @cﬂ

densé*State

The current view of the universe, encapsulated in the hot big bang model, seems popular.
The above image is a screen grab from the theme song of the recent American sitcom ‘Th
Big Bang Theory™!

‘See http://www.cbs.com/shows/big_bang_theory/.
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Standard model of cosmology Hot big bang model

Decoupling of matter and radiation®

T~1eV ~3000K

Matter and radiation cease to interact at a temperature of about 7' ~ 3000° K, which
corresponds to a redshift of about = ~ 1000. ’
5Image from W. H. Kinney, arXiv:astro-ph/0301448v2.
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Standard model of cosmology Extent of isotropy of the CMB

Surface of last scattering and free streaming CMB photons

We can only see
the surface of the
cloud where light
was last scattered

CMB photons stream to us freely from the surface of last scattering when radiation decou-
pled from matter®.

6Image from http://planck.caltech.edu/epo/epo-cmbDiscovery4.html.
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Standard model of cosmology Extent of isotropy of the CMB

Projecting the surface of last scattering

Earth
Temperatures
R |
-63° -13° 3r
Centigrade
June 1992

Microwave Sky
Temperatures

-270.4252° -270.4250° -270.4248°
Centigrade
380,000 Years after Big Bang

As the surface of the Earth is often illustrated, the temperature of the CMB on the surface
of last scattering can be projected on to a plane using the Mollweide projection’.
7Image from http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/planckcmb.html.
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Standard model of cosmology Extent of isotropy of the CMB

Anisotropies in the CMB

The fluctuations in the temperature of the CMB as seen by COBE®. The CMB turns out t
be isotropic to one part in 10°.

8Image from http://aether.lbl.gov/www/projects/cobe/COBE_Home/DMR_Images.html.
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Standard model of cosmology Extent of isotropy of the CMB

Anisotropies in the CMB as observed by WMAP and Planck

Left: All-sky map of the anisotropies in the CMB created from nine years of Wilkinson
Microwave Anisotropy Probe (WMAP) data®.

Right: CMB intensity map derived from the joint analysis of Planck, WMAP, and 408 MHz
observations'?. The above images show temperature variations (as color differences) of

the order of 200 uK.
9Image from http://wmap.gsfc.nasa.gov/media/121238/index.html.

%Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A1 (2016).
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Inflationary scenario
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Inflationary scenario Need for inflation

Horizon problem

= SERR TR e =
The radiation from the CMB arriving at us from regions separated by more than the Hubble
radius at the surface of last scattering, which subtends an angle of about 1° today, co

not have interacted before decoupling.
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Inflationary scenario Need for inflation

Resolution of the horizon problem in the inflationary scenario

BIGBANG

Another illustration of the horizon problem (on the left), and an illustration of its resolution (on
the right) through an early and sufficiently long epoch of inflation'".

" Images from W. Kinney, astro-ph/0301448.
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Inflationary scenario Need for inflation

Time and duration of inflation
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Inflation—a brief period of accelerated expansion—is expected to have taken place during
the very early stages of the universe'?.
12Image from P. J. Steinhardt, Sci. Am. 304, 18 (2011).
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Inflationary scenario Achieving inflation with scalar fields

Inflationary attractor
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Evolution of the scalar field in the popular Starobinsky model, which leads to slow roll
inflation, is indicated (as circles, in blue and red) at regular intervals of time (on the left).
lllustration of the behavior of the scalar field in phase space (on the right)'2.

13'Figure from H. V. Ragavendra, Observational imprints of non-trivial inflationary dynamics over large and small,
scales, Ph.D. Thesis, Indian Institute of Technology Madras, Chennai, India (2022).
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Inflationary scenario Generation of perturbations during inflation

Origin of the primordial perturbations

Scalar perturbations:

4+ The quantum fluctuations associated with the scalar fields that drive inflation are
responsible for the primordial perturbations. The perturbations in the metric and matter
are related through the Einstein’s equations.

4+ The scalar perturbations leave the largest imprints on the CMB, and are primarily
responsible for the inhomogeneities in the distribution of matter in the universe.

Tensor perturbations:

4+ The tensor perturbations, i.e. gravitational waves (GWs), can be generated even in the
absence of sources.

4+ GWs are small disturbances in a given spacetime (much like ripples in water), which
travel at the speed of light. They satisfy the wave equation in the given background
spacetime.

+ GWs are transverse in nature and are characterized by two degrees of polarization'4

4See, for example, J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi, 2003).
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Inflationary scenario Generation of perturbations during inflation

Behavior of the comoving wave number and Hubble radius

Comoving Hubble Radius [In (1/aH)]
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Behavior of the comoving wave number & (horizontal lines in different colors) and the
comoving Hubble radius d,, /a = (a H)~" (in green) across different epochs!®. .

S\Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).
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Inflationary scenario Generation of perturbations during inflation

Describing the primordial perturbations

While comparing with the observations, for convenience, one often uses the following power
law, template scalar and the tensor spectra’®:

where A, and A denote the scalar and tensor amplitudes, k. represents the so-called

pivot scale at which the amplitudes are quoted, while the spectral indices n, and n.. are
assumed to be constant.

The tensor-to-scalar ratio r is defined as

18See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Constraints on inflation from the CMB data
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Constraints on inflation from the CMB data Constraints on the primordial power spectra

CMB angular power spectrum from Planck
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The CMB TT angular power spectrum from the Planck 2018 data (red dots with error bars
and the best fit ACDM model with a power law primordial spectrum (solid blue curve)!”
7Planck Collaboration (N. Aghanim et al.), Astron. Astrophys. 641, A6 (2020).
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Constraints on inflation from the CMB data Constraints on the primordial power spectra

Performance of inflationary models inthe - plane
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Latest constraints on ns and » from ACT, in combination with other data sets, compared to

the theoretical predictions of some of the popular inflationary models'®.
8ACT Collaboration (E. Calabrese et al.), arXiv:2503.14454 [astro-ph.CO].
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Constraints on inflation from the CMB data Constraints on the primordial power spectra

Prospects of observing the imprints of the tensor perturbations
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The B-mode angular power spectra of the CMB resulting from the primary tensor perturba-

tions for models with (o5 = 0.05 have been plotted, along with the CMB lensing signal and
the instrumental noise of a LiteBIRD-like configuration'®.

9p, Paoletti, F. Finelli, J. Valiviita and M. Hazumi, Phys. Rev. D 106, 083528 (2022).

L. Sriramkumar (IIT Madras, Chennai) Gravitational waves from the early universe October 15, 2025



Constraints on inflation from the CMB data Constraints on the primordial power spectra

Timeline of the universe

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern  Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.
L O e
Ry s e
Inflation

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

A pictorial timeline of the universe®°.
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GWs provide a new window to the universe
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GWs provide a new window to the universe Observations by LIGO

Laser Interferometer Gravitational-Wave Observatory (LIGO)

Views of LIGO at Hanford (on the left) and at Livingston (on the right). These observatories
are essentially Michelson-Morley interferometers with rather long arms (of length about 4
km) that are extremely sensitive to the smallest disturbances of the mirrors?'.

2 Images from https://www.advancedligo.mit.edu/summary.html.
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GWs provide a new window to the universe Observations by LIGO

GWs from coalescing binary black holes (BHs)

Numerical simulations of the GWs emitted by the coalescence of two BHs. The orange
contours represent the GWs and the blue lines represent the orbits of the BHs?2.

22|mage from E. Berti, Physics 9, 17 (2016).
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GWs provide a new window to the universe Observations by LIGO

First observation of the merger of binary BHs

Hanford, Washington Livingston, Louisiana
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On September 14, 2015, similar signals were observed in both of LIGO’s interferometers.
The top panels show the measured signal in the Hanford (top left) and Livingston (top right)
detectors. The bottom panels show the expected signal produced by the merger of two
BHs, based on numerical simulations®3.

23Figure from LIGO Scientific and Virgo Collaborations (B. P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016).
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GWs provide a new window to the universe Sources of GWs

Sources and spectral range of GWs

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei
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Different sources of GWs and the corresponding detectors®*.

24). B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi, 2003).
October 15, 2025
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GWs provide a new window to the universe Observing the early universe

Probing the primordial universe through GWs

tt f ! l

Birth of Primordial Cosmic Microwave Background
the Universe gravitational waves (CMB)

IO 108sec? 378,000 years 13.8 billion years
Inflation Dark age Formation of galaxies

The first stars Current Universe

GWs provide a unique window to probe the primordial universe®®.

25Image from
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Generation of GWs in the early universe
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Generation of GWs in the early universe Boosting the strengths of primary GWs during reheating

Evolution of the scalar field in an inflationary potential

x10~1

0 2 3
¢/M,,
The evolution of the scalar field in the so-called Starobinsky model has been indicated (as
circles, in blue and red) at regular intervals of time. Inflation is terminated as the fie
approaches the bottom of the potential (near the light blue dot). Thereafter, the f
oscillates at the bottom of the potential (indicated by the red dots).
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Generation of GWs in the early universe Boosting the strengths of primary GWs during reheating

Effects on primary GWs due to late time entropy production
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The dimensionless spectral energy density of primary GWs observed today (2., (f) has
been plotted in a scenario involving late time production of entropy?®.
Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Coalescence of compact binaries observed by LIGO
Masses in the Stellar Graveyard

EM Neutron Stars

The third GW Transient Catalog of mergers involving BHs and neutron stars observed b
the LIGO-Virgo-KAGRA collaboration®”.

27Image from
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Formation of BHs in the early universe

t Inflation RD/MD
Scales ;

+ Horizon Ry =1/H

Rehela.ting
: Time
Early universe “Big bang”
BHs can form when perturbations with significant amplitudes reenter the Hubble radius
during the radiation dominated epoch?®.

28Figure from G. Franciolini, arXiv:2110.06815 [astro-ph.CO].
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Amplitude for producing significant number of primordial BHs (PBHSs)
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In order to form significant number of PBHs, the amplitude of the perturbations on small
scales has to be large enough such that the dimensionless amplitude of the scalar pert
bation is close to unity®°.

29Figure credit G. Franciolini.
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Single-field models admitting ultra slow roll (USR) inflation
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Potentials which contain a point of inflection generically admit a period of USR inflation°.

303ee, for example, C. Germani and T. Prokopec, Phys. Dark Univ. 18, 6 (2017);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
Figures credits, H. V. Ragavendra and S. Maity.
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Generation of GWs in the early universe

Production of secondary GWs by enhanced scalar perturbations

Power spectra in models permitting USR inflation
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Scalar (in red) and the tensor (in blue) power spectra arising in different single-field models
that permit a period of USR inflation3'.

31H.V.Ragavendra,P.Saha,L.SriramkumarandJ.SiIk,Phys.Rev. D 103, 083510 (2021);
Also see H. V. Ragavendra and L. Sriramkumar, Galaxies 11, 34 (2023).
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Non-trivial inflationary dynamics in a two-field model
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Behavior of the two scalar fields ¢ and x (in blue and red, on the left) and the first slow roll
parameter ¢; (on the right) in the two-field model of interest2.

32\, Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Enhanced scalar power on small scales in the two-field model
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The scalar (on top) and the tensor (at the bottom) power spectra arising in the two-field
model have been plotted for a few different sets of initial conditions for the fields and a
range of values of a particular parameter33.

3. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
October 15, 2025
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Formation of PBHSs in single-field and two-field models of inflation
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The fraction of PBHs contributing to the dark matter density today f.., (/M) arising in
different single-field3* and two-field®® inflationary models.

34H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
3\, Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Secondary GWs in single-field models permitting USR inflation
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The dimensionless density parameter (., arising in the single-field models leading to an

epoch of USR inflation has been plotted as a function of the frequency 36,

38H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Generation of GWs in the early universe Production of secondary GWs by enhanced scalar perturbations

Secondary GWs in the two-field model

100 103 10 10° T 1012 101 108 102!
10'5 ‘l 1
-7
10 SKA,,
109 ¢ >

8.4

101
10-13

~
>
by []W;ﬁl]

Qewh?

1015 {
10"
1010
102

1023 »

10710 108 10 10 102 10° 10?
f [Hz]

The dimensionless density parameter (2, (f) arising in the two-field model has been
plotted for a set of initial conditions for the background fields as well as a range of values of
a parameter describing the model®’.

6.4

7M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).
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Observations by the PTAs and the stochastic GW background
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Observations by the PTAs and the stochastic GW background Pulsars and the pulsar timing arrays

Pulsars

© Mark A. Garlick f space-art.co.uk

Pulsars are dense and rotating neutron stars that emit regular beams of light8.

38Image from https://dmr-astronomersclub.blogspot.com/2012/07/what-is-pulsar.html.
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Observations by the PTAs and the stochastic GW background Pulsars and the pulsar timing arrays

Pulsar timing arrays (PTASs)

HUNTING GRAVITATIONAL WAVES USING PULSARS

2 Telescopes on
Earth measure tiny
differences in the
arrival times of the

distant galaxies-subtly
shift the position of Earth

! NEW MILLISECOND PULSARS | ; 3 Measuring the
An all-skyymapiasiseen by:the Fermi N effect on'an array of
Gamma-ray Space Telescope in its firstyear pulsars enhances the

0 i chance of detecting the

gravitational waves

The PTAs monitor an array of millisecond pulsars®®.

gee https://ipta.github.io/mock_data_challenge/.
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Hellings-Downs curve
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The inter-pulsar correlations measured from 2,211 distinct pairings in the 67-pulsar array of
the NANOGrav 15-year data. The dashed black line shows the Hellings-Downs correlati
patternC,

4ONANOGrav Collaboration (G. Agazie et al.), Astrophys. J. Lett. 951, 1 (2023).
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Stochastic GW background observed by pulsar timing arrays (PTASs)
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The Bayesian evidence for a variety of astrophysical and cosmological sources for the
stochastic GW background suggested by the observations of the PTAs*!.
“NANOGrav Collaboration (G. Agazie et al.), Astrophys. J. Lett. 951, 1 (2023).
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Shape of the inflationary scalar power spectrum

We assume that the inflationary scalar power spectrum is given by*?

k 4
A k<k eaks
<kpeak> = ek

E o™
k>k
<kpeak> = hpeak;

where A, and n, are the amplitude and spectral index of the power spectrum at the CMB
pivot scale of k, = 0.05 Mpc~!.

We set the reheating temperature to the rather low value of 7, = 50 MeV.

k; TLS—l
P =4 ()7 + o

We shall assume that the threshold value of the density contrast for the formation of PBHs

is given by3:
3 (1 + wre) -2 ™ wre
gan — 2A2 T re) Svre )
© T Bt 3we <1+3wre>

“2For other forms of spectra, see G. Doménech, S. Pi, A. Wang and J. Wang, arXiv:2402.18965 [astro-ph.CO].
*n this context, see T. Harada, C.-M. Yoo, and K. Kohri, Phys. Rev. D 88, 084051 (2013).
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Generation of secondary GWs during the epoch of reheating
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The dimensionless spectral energy density of the secondary GWs today (2, (f) is plotted
for a given reheating temperature and the best-fit values of the parameters in the different
models*4.

4g, Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, JCAP 01, 118 (2025).
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Power spectra and the extent of PBHs formed
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Scalar power spectra (on the left) and the extent of PBHs formed (on the right). We
have assumed a specific reheating temperature and have plotted the fraction of PBHs
that constitute the dark matter density today, viz. f.., (M), for the best-fit values of the
parameters in the different models*®.

g, Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, JCAP 01, 118 (2025).
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Bayesian evidence

BFy x
Model X | Model Y (— - - - - -
0. = 0.502" 0. = 02" 0. = L.Ho2"
SMBHB R2pB 1.7+ .06 | 260.04 £ 19.21 | 350.61 £ 27.36

The Bayesian factors BFy, x for the model R2pB that invokes primordial physics as the
source of the stochastic GW background observed by the NANOGrav 15-year data, when

compared to the astrophysical scenario that involves mergers of supermassive black hole
binaries.

L. Sriramkumar (IIT Madras, Chennai)
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4+ The increasingly precise observations of the CMB by future missions such as Lite-
BIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic
background Radiation Detection), Primordial Inflation Explorer (PIXIE) and Exploring
Cosmic History and Origin (ECHO, a proposed Indian effort) can be expected to help
us improve the current constraints on the primordial correlations.

4+ The observations by LIGO are a culmination of almost fifty years of effort to detect
GWs. They have opened up a new window to observe the universe.

4+ The observations by the PTAs and their possible implications for the stochastic GW
background offer a wonderful opportunity to understand the physics operating in the
early universe.

4+ Over the coming decades, GW observatories such as the Laser Interferometer Space
Antenna, Einstein Telescope and Cosmic Explorer, can be expected to provide us with
an unhindered view of the primordial universe.
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