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Introduction

Proliferation of inflationary models1

A partial list of ever-increasing number of inflationary models!
1From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Introduction

Large non-Gaussianities and possible implications
If one assumes the bi-spectrum to be of the local form, the WMAP 7-year
data constrains the non-Gaussianity parameter fNL to be 32± 21, at 68%
confidence level2.

If ongoing missions such as Planck indeed detect a large level of non-
Gaussianity as suggested by the above mean value of f

NL
, then it can

result in a substantial tightening in the constraints on the various infla-
tionary models. For example, canonical scalar field models that lead to
nearly scale invariant primordial spectra contain only a small amount of
non-Gaussianity and, hence, will cease to be viable3.
However, it is known that primordial spectra with features can lead to
reasonably large non-Gaussianities4. Therefore, if the non-Gaussianity
parameter f

NL
actually proves to be large, then either one has to reconcile

with the fact that the primordial spectrum contains features or we have
to turn our attention to non-canonical scalar field models such as, say,
D brane inflation models5.

2E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
3J. Maldacena, JHEP 05, 013 (2003).
4See, for instance, X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007).
5See, for example, X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Introduction Plan

Plan of the talk

1 Some essential remarks on the evaluation of the scalar power spectrum

2 The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

3 The Maldacena formalism for evaluating the bi-spectrum

4 Procedure for the numerical evaluation of the bi-spectrum

5 Discriminating power of the non-Gaussianity parameter

6 Contributions to the bi-spectrum during preheating

7 Summary
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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass
to be M2

Pl
= (8πG)−1.

F As is often done in the context of inflation, we shall assume the back-
ground to be described by the spatially flat, Friedmann line-element.

F We shall denote differentiation with respect to the cosmic and the confor-
mal times t and η by an overdot and an overprime, respectively.

F Further, N shall denote the number of e-folds.
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Some essential remarks on the evaluation of the scalar power spectrum

The curvature perturbation and the governing equation
On quantization, the operator corresponding to the curvature perturbation
R(η,x) can be expressed as

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) eik·x

=

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k(η) e−ik·x

]
,

where âk and â†k are the usual creation and annihilation operators that satisfy
the standard commutation relations.

The modes fk are governed by the differential equation

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll

parameter.
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Some essential remarks on the evaluation of the scalar power spectrum

The Bunch-Davies initial conditions
While studying the evolution of the curvature perturbation, it often proves to
be more convenient to work in terms of the so-called Mukhanov-Sasaki
variable vk, which is defined as vk = z fk. In terms of the variable vk, the
above equation of motion for fk reduces to the following simple form:

v′′k +

(
k2 − z′′

z

)
vk = 0.

The initial conditions on the perturbations are imposed when the modes are
well inside the Hubble radius during inflation.

Usually, it is the so-called Bunch-Davies initial conditions that are imposed
on the modes, which amounts to demanding that the Mukhanov-Sasaki
variable vk reduces to following Minkowski-like positive frequency form in the
sub-Hubble limit6:

lim
k/(aH)→∞

vk =
1√
2 k

e−i k η.

6T. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).
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Some essential remarks on the evaluation of the scalar power spectrum

The behavior of modes during inflation

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology
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A schematic diagram illustrating the behavior of the physical wavelength
λP ∝ a (the green lines) and the Hubble radius H−1 (the blue line) during
inflation and the radiation dominated epochs7.

7See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Some essential remarks on the evaluation of the scalar power spectrum

The scalar power spectrum
The dimensionless scalar power spectrum P

S
(k) is defined in terms of the

correlation function of the Fourier modes of the curvature perturbation R̂k as
follows:

〈0|R̂k(η) R̂p(η)|0〉 =
(2π)2

2 k3
PS(k) δ(3) (k + p) ,

where |0〉 is the Bunch-Davies vacuum, defined as âk|0〉 = 0 ∀ k.
In terms of the quantities fk and vk, the power spectrum is given by

PS(k) =
k3

2π2
|fk|2 =

k3

2π2

(
|vk|
z

)2

and, analytically, the spectrum is evaluated in the super-Hubble limit,
i.e. when k/(aH)→ 0.
As is well known, numerically, the Bunch-Davies initial conditions are
imposed on the modes when they are well inside the Hubble radius, and the
power spectrum is evaluated at suitably late times when the modes are
sufficiently outside8.

8See, for example, D. S. Salopek, J. R. Bond and J. M. Bardeen, Phys. Rev. D 40, 1753 (1989);
C. Ringeval, Lect. Notes Phys. 738, 243 (2008).
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The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The scalar bi-spectrum

The scalar bi-spectrum B
S
(k1,k2,k3) is related to the three point correlation

function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows9:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BS(k1,k2,k3) δ(3) (k1 + k2 + k3) .

In our discussion below, for the sake of convenience, we shall set

BS(k1,k2,k3) = (2π)
−9/2

G(k1,k2,k3).

9D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is introduced
through the relation10

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due to
the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k3
1 k

3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

10E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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The scalar bi-spectrum and the non-Gaussianity parameter – Definitions

The relation between f
NL

and the bi-spectrum

Upon making use of the above expression for the three point function of the
curvature perturbation and the definition of the bi-spectrum, we can, in turn,
arrive at the following relation11:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
B

S
(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1

= −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
G(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

Note that, in the equilateral limit, i.e. when k1 = k2 = k3, this expression for
fNL simplifies to

f eq
NL

(k) = −10

9

1

(2π)4

k6 G(k)

P2
S
(k)

.

11See, for instance, S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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The Maldacena formalism for evaluating the bi-spectrum

The action at the cubic order
It can be shown that, the third order term in the action describing the
curvature perturbation is given by12

S3[R] = M2
Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F
(
δL2

δR

)]
,

where F(δL2/δR) denotes terms involving the variation of the second order
action with respect to R, while χ is related to the curvature perturbation R
through the relations

Λ = a ε1R′ and ∂2χ = Λ.

12J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The Maldacena formalism for evaluating the bi-spectrum

Evaluating the bi-spectrum
At the leading order in the perturbations, one then finds that the three point
correlation in Fourier space is described by the integral13

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are
imposed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are evaluated in the
initial vacuum state (viz. the Bunch-Davies vacuum in the situation of our
interest).

13See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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The Maldacena formalism for evaluating the bi-spectrum

The resulting bi-spectrum
The quantity G(k1,k2,k3) evaluated towards the end of inflation at the
conformal time η = ηe can be written as14

G(k1,k2,k3) ≡
7∑

C=1

G
C

(k1,k2,k3)

≡ M2
Pl

6∑
C=1

{
[fk1

(ηe) fk2
(ηe) fk3

(ηe)] G
C

(k1,k2,k3)

+
[
f∗k1

(ηe) f∗k2
(ηe) f∗k3

(ηe)
]
G∗

C
(k1,k2,k3)

}
+G7(k1,k2,k3),

where the quantities G
C

(k1,k2,k3) with C = (1, 6) correspond to the six
terms in the interaction Hamiltonian.
The additional, seventh term G7(k1,k2,k3) arises due to a field redefinition,
and its contribution to G(k1,k2,k3) is given by

G7(k1,k2,k3) =
ε2(ηe)

2

(
|fk2(ηe)|2 |fk3(ηe)|2 + two permutations

)
.

14J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The Maldacena formalism for evaluating the bi-spectrum

The integrals involved

The quantities GC (k1,k2,k3) with C = (1, 6) are described by the integrals

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f∗k1

f ′∗k2
f ′∗k3

+ two permutations
)
,

G2(k1,k2,k3) = − 2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1
f∗k2

f∗k3
,

G3(k1,k2,k3) = − 2 i

∫ ηe

ηi

dη a2 ε21

[(
k1 · k2

k22

)
f∗k1

f ′∗k2
f ′∗k3

+ five permutations

]
,

G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f∗k1

f∗k2
f ′∗k3

+ two permutations
)
,

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

[(
k1 · k2

k22

)
f∗k1

f ′∗k2
f ′∗k3

+ five permutations

]
,

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

{[
k21 (k2 · k3)

k22 k
2
3

]
f∗k1

f ′∗k2
f ′∗k3

+ two permutations

}
,

where ε2 is the second slow roll parameter that is defined with respect to the first as
follows: ε2 = d ln ε1/dN .
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Procedure for the numerical evaluation of the bi-spectrum Understanding the integrals involved

Evolution of fk on super-Hubble scales
During inflation, when the modes are on super-Hubble scales, it is well
known that the solution to fk can be written as

fk ' Ak +Bk

∫ η dη̃

z2(η̃)
,

where Ak and Bk are k-dependent constants which are determined by the
initial conditions imposed on the modes in the sub-Hubble limit.

Therefore, on super-Hubble scales, the mode fk simplifies to

fk ' Ak.

Moreover, the leading non-zero contribution to its derivative is determined by
the decaying mode, and is given by

f ′k '
Bk

z2
=

B̄k

a2 ε1
,

where we have set B̄k = Bk/(2 M2
Pl

).
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Procedure for the numerical evaluation of the bi-spectrum Understanding the integrals involved

Splitting the integrals
To begin with, we shall divide each of the integrals G

C
(k1,k2,k3), where

C = (1, 6), into two parts as follows:

G
C

(k1,k2,k3) = Gis
C

(k1,k2,k3) + Gse
C

(k1,k2,k3).

The integrals in the first term Gis
C

(k1,k2,k3) run from the earliest time (i.e. ηi)
when the smallest of the three wavenumbers k1, k2 and k3 is sufficiently
inside the Hubble radius [typically corresponding to k/(aH) ' 100] to the
time (say, ηs) when the largest of the three wavenumbers is well outside the
Hubble radius [say, when k/(aH) ' 10−5].

Then, evidently, the second term Gse
C

(k1,k2,k3) will involve integrals which
run from the latter time ηs to the end of inflation at ηe.
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Procedure for the numerical evaluation of the bi-spectrum Understanding the integrals involved

The various times of interest

The exact behavior of the physical wavelengths and the Hubble radius
plotted as a function of the number of e-folds in the case of the archetypical
quadratic potential, which allows us to illustrate the various times of our
interest, viz. ηi, ηs and ηe.
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Procedure for the numerical evaluation of the bi-spectrum The super-Hubble contributions to the bi-spectrum

Contributions due to the fourth and the seventh terms
Upon using the form of the mode fk and its derivative on super-Hubble
scales, the integral appearing in the fourth term can be trivially carried out
with the result that the corresponding contribution to the bi-spectrum can be
expressed as

Gse
4 (k1,k2,k3) ' iM2

Pl
[ε2(ηe)− ε2(ηs)]

×
[
|Ak1
|2 |Ak2

|2
(
Ak3

B̄∗k3
−A∗k3

B̄k3

)
+ two permutations

]
.

The Wronskian corresponding to the equation of motion for fk and the
standard Bunch-Davies initial conditions can then be utilized to arrive at the
following simpler expression:

Gse
4 (k1,k2,k3) ' −1

2
[ε2(ηe)− ε2(ηs)]

[
|Ak1
|2 |Ak2

|2 + two permutations
]
.

The first of these terms involving the value of ε2 at ηe exactly cancels the
contribution G7(k1,k2,k3) (with fk set to Ak).

Note that the remaining term is essentially the same as the one due to the
field redefinition, but which is now evaluated on super-Hubble scales (i.e.
at ηs) rather than at the end of inflation.
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Procedure for the numerical evaluation of the bi-spectrum The super-Hubble contributions to the bi-spectrum

The contribution due to the second term
Upon making use of the behavior of the mode fk on super-Hubble scales in
the corresponding integral, one obtains the contribution to the bi-spectrum
due to Gse

2 (k1,k2,k3) to be

Gse
2 (k1,k2,k3) = − 2 iM2

Pl
(k1 · k2 + two permutations)

× |Ak1
|2 |Ak2

|2 |Ak3
|2 [I2(ηe, ηs)− I∗2 (ηe, ηs)] ,

where the quantity I2(ηe, ηs) is described by the integral

I2(ηe, ηs) =

∫ ηe

ηs

dη a2 ε21.

Note that, due to the quadratic dependence on the scale factor, actually,
I2(ηe, ηs) is a rapidly growing quantity at late times.

However, the complete super-Hubble contribution to the bi-spectrum
vanishes identically since the integral I2(ηe, ηs) is a purely real quantity15.

15D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Procedure for the numerical evaluation of the bi-spectrum The super-Hubble contributions to the bi-spectrum

The contributions due to the remaining terms
On super-Hubble scales, one can easily show that the contributions due to the first
and the third terms can be written as

Ges
1 (k1,k2,k3) +Ges

3 (k1,k2,k3) = 2 iM2
Pl

[(
1− k1 · k2

k22
− k1 · k3

k23

)
|Ak1 |

2

×
(
Ak2 B̄

∗
k2
Ak3B̄

∗
k3
−A∗k2

B̄k2 A
∗
k3
B̄k3

)
+ two permutations

]
I13(ηe, ηs),

while the corresponding contributions due to the fifth and the sixth terms are given by

Gse
5 (k1,k2,k3) +Gse

6 (k1,k2,k3) =
iM2

Pl

2

[(
k1 · k2

k22
+

k1 · k3

k23
+
k21 (k2 · k3)

k22 k
2
3

)
× |Ak1 |

2 (Ak2B̄
∗
k2
Ak3B̄

∗
k3
−A∗k2

B̄k2 A
∗
k3
B̄k3

)
+ two permutations

]
I56(ηe, ηs),

where the quantities I13(ηe, ηs) and I56(ηe, ηs) are described by the integrals

I13(ηe, ηs) =

∫ ηe

ηs

dη

a2
and I56(ηe, ηs) =

∫ ηe

ηs

dη

a2
ε1.
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Procedure for the numerical evaluation of the bi-spectrum The super-Hubble contribution to the non-Gaussianity parameter

The complete super-Hubble contribution to f eq
NL

To arrive at the complete super-Hubble contribution to the non-Gaussianity
parameter f

NL
, let us restrict ourselves to the equilateral limit for simplicity.

In such a case, the sum of the super-Hubble contributions due to the first, the
third, the fifth and the sixth terms to f eq

NL
is found to be

f eq (se)
NL

(k) ' −
5 iM2

Pl

18

(
A2

k B̄
∗
k

2 −A∗k2 B̄2
k

|Ak|2

) [
12 I13(ηe, ηs)−

9

4
I56(ηe, ηs)

]
,

where we have made use of the fact that fk ' Ak at late times in order to
arrive at the power spectrum.
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Procedure for the numerical evaluation of the bi-spectrum The super-Hubble contribution to the non-Gaussianity parameter

An estimate of the super-Hubble contribution to f eq
NL

Consider power law inflation of the form a(η) = a1 (η/η1)γ+1, where a1 and η1

are constants, while γ is a free index. For such an expansion, the first slow
roll parameter is a constant, and is given by ε1 = (γ + 2)/(γ + 1).

In such a case, one can easily obtain that

feq (se)
NL

(k) =
5

72π

[
12− 9 (γ + 2)

γ + 1

]
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1) (γ + 2)

× (γ + 1)−2 (γ+1) sin (2π γ)

[
1− Hs

He
e−3 (Ne−Ns)

] (
k

asHs

)−(2 γ+1)

.

and, in arriving at this expression, for convenience, we have set η1 to be ηs.

For γ = −(2 + ε), where ε ' 10−2, the above estimate for fNL reduces to

f eq (se)
NL

(k) . −5 ε2

9

(
ks

asHs

)3

' −10−19,

where, in obtaining the final value, we have set ks/(asHs) = 10−5.
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Procedure for the numerical evaluation of the bi-spectrum Robustness of the approach

Convergence on the upper limit
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Quadratic potential

Focusing on the equilateral limit, the quantities k6 times the absolute values of
G1 +G3 (in green), G2 (in red), G4 +G7 (in blue) and G5 +G6 (in purple), evaluated
numerically, have been plotted as a function of the upper limit of the integrals involved
for a given mode in the case of the conventional, quadratic inflationary potential.
Evidently, the integrals converge rapidly once the mode leaves the Hubble radius.
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Procedure for the numerical evaluation of the bi-spectrum Robustness of the approach

Implementation of the cut-off in the sub-Hubble limit
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The various contributions to the bi-spectrum, obtained numerically, have been plotted
(with the same choice of colors as in the previous figure) as a function of the cut-off
parameter κ for a given mode and a fixed upper limit [corresponding to
k/(aH) = 10−5] in the case of the quadratic inflationary potential. The solid, dashed
and the dotted lines correspond to integrating from k/(aH) of 102, 103 and 104,
respectively. Clearly, κ = 0.1 seems to be an optimal value.
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Procedure for the numerical evaluation of the bi-spectrum Comparison with the analytical results

The spectral dependence in power law inflation
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The different non-zero contributions to the bi-spectrum in the power law case (on the
left) and the corresponding contributions to the non-Gaussianity parameter feq

NL
(on

the right), arrived at numerically, have been plotted as solid lines for two different
values of γ (γ = −2.02 on top and γ = −2.25 below). The dots on the lines
represent the spectral dependences arrived at from analytical arguments.
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Procedure for the numerical evaluation of the bi-spectrum Comparison with the analytical results

The Starobinsky model

The Starobinsky model involves the canonical scalar field which is described
by the potential16

V (φ) =

{
V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0.

16A. A. Starobinsky, Sov. Phys. JETP Lett. 55, 489 (1992).
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Procedure for the numerical evaluation of the bi-spectrum Comparison with the analytical results

Evolution of the slow roll parameters

The evolution of the first (on the left) and the second (on the right) slow roll
parameters ε1 and ε2 in the Starobinsky model. While the solid blue curves
describe the numerical results, the dotted red curves (which lie right below
the blue curves and hence not very evident!) represent the corresponding
analytical expressions.
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Procedure for the numerical evaluation of the bi-spectrum Comparison with the analytical results

The scalar power spectrum in the Starobinsky model

The scalar power spectrum in the Starobinsky model17. While the solid blue
curve denotes the analytic result, the red dots represent the scalar power
spectrum that has been obtained through a complete numerical integration
of the background as well as the perturbations.

17J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Procedure for the numerical evaluation of the bi-spectrum Comparison with the analytical results

Comparison in the case of the Starobinsky model
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Starobinsky model 

A comparison of the analytical expressions (the solid curves) with the
corresponding numerical results (the dashed curves) in the case of the
Starobinsky model. We have chosen the same set of colors to denote the
different contributions to the bi-spectrum as in the earlier figures18.

18See, J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012);
In this context, also see, F. Arroja, A. E. Romano and M. Sasaki, Phys. Rev. D 84, 123503 (2011);
F. Arroja and M. Sasaki, JCAP 1208, 012 (2012).
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Discriminating power of the non-Gaussianity parameter

Punctuated inflation
Punctuated inflation is a scenario wherein a brief period of rapid roll inflation
or even a departure from inflation is sandwiched between two epochs of slow
roll inflation19.

Such a scenario can be achieved in inflaton potentials such as20

V (φ) =
(
m2/2

)
φ2 −

(√
2λ (n− 1)m/n

)
φn + (λ/4) φ2(n−1),

where n > 2 is an integer. This potential contains a point of inflection located
at

φ0 =

[
2m2

(n− 1)λ

] 1
2 (n−2)

,

and it is the presence of this inflection point that admits punctuated inflation.

These scenarios can lead to a sharp drop in power on large scales and
result in an improved fit to the data at the low multipoles.

19R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
R. K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, Phys. Rev. D 82, 023509 (2010).

20R. Allahverdi, K. Enqvist, J. Garcia-Bellido, A. Jokinen and A. Mazumdar, JCAP 0706, 019 (2007).
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Discriminating power of the non-Gaussianity parameter

Inflaton potentials with a step
Given a potential V (φ), one can introduce the step in the following fashion21:

Vstep(φ) = V (φ)

[
1 + α tanh

(
φ− φ0

∆φ

)]
,

where, evidently, α, φ0 and ∆φ denote the height, the location, and the width
of the step, respectively.

Such a step in potentials V (φ) which otherwise only result in slow roll lead to
oscillatory features in the scalar power spectrum that provide a better fit to
the outliers near ` = 20 and ` = 4422.

21J. A. Adams, B. Cresswell and R. Easther, Phys. Rev. D 64, 123514 (2001).
22L. Covi, J. Hamann, A. Melchiorri, A. Slosar and I. Sorbera, Phys. Rev. D 74, 083509 (2006);

M. J. Mortonson, C. Dvorkin, H. V. Peiris and W. Hu, Phys. Rev. D 79, 103519 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010).
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Discriminating power of the non-Gaussianity parameter

Oscillating inflation potentials
Potentials containing oscillatory terms are encountered in string theory. A
popular example is the axion monodromy model, which is described by the
potential23

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
.

Interestingly, such a potential leads to non-local features – i.e. a certain
characteristic and repeated pattern that extends over a wide range of scales
– in the primordial spectrum which result in an improved fit to the data24.

Another potential that has been considered in this context is the conventional
quadratic potential which is superposed by sinusoidal oscillations as
follows25:

V (φ) =
1

2
m2 φ2

[
1 + α sin

(
φ

β
+ δ

)]
.

23R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, JCAP 1006, 009 (2010).
24M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
25C. Pahud, M. Kamionkowski and A. R. Liddle, Phys. Rev. D 79, 083503 (2009).
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Discriminating power of the non-Gaussianity parameter

The various models of interest

Illustration of the potentials in the different inflationary models of our interest.
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Discriminating power of the non-Gaussianity parameter

Inflationary models leading to features
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Punctuated inflation

Quadratic potential with a step

Axion monodromy model

The scalar power spectra in the different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum26.

26R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

f eq
NL

in punctuated inflation
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The contributions to the bi-spectrum due to the various terms (on the left), and the
absolute value of feq

NL
due to the dominant contribution (on the right), in the

punctuated inflationary scenario27. The absolute value of feq
NL

in a Starobinsky model
that closely resembles the power spectrum in punctuated inflation has also been
displayed. The large difference in feq

NL
between punctuated inflation and the

Starobinsky model can be attributed to the considerable difference in the background
dynamics.

27D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

f eq
NL

in models with a step
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Small field model with a step

The contributions due to the various terms (on the left) and feq
NL

due to the dominant
contribution (on the right) when a step has been introduced in the popular chaotic
inflationary model involving the quadratic potential28. The feq

NL
that arises in a small

field model with a step has also been illustrated29. The background dynamics in these
two models are very similar, and hence they lead to almost the same feq

NL
.

28X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008);
P. Adshead, W. Hu, C. Dvorkin and H. V. Peiris, Phys. Rev. D 84, 043519 (2011);
P. Adshead, C. Dvorkin, W. Hu and E. A. Lim, Phys. Rev. D 85, 023531 (2012).

29D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

f eq
NL

in the axion monodromy model
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The contributions due to the various terms (on the left) and f eq
NL

due to the
dominant contribution (on the right) in the axion monodromy model30. The
modulations in the potential give rise to a certain resonant behavior, leading
to a large f eq

NL

31.

In contrast, the quadratic potential with superposed oscillations does not lead
to such a large level of non-Gaussianity.

30D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
31S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010);

R. Flauger and E. Pajer, JCAP 1101, 017 (2011).
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Behavior of the field in a quadratic potential

The behavior of the scalar field during the epochs of inflation and preheating
have been plotted as a function of the number of e-folds for the case of the
conventional chaotic inflationary model described by the quadratic potential.
The blue curve denotes the numerical result, while the dotted red curve in
the inset represents the analytical result.
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Evolution of the slow roll parameters

The evolution of the first (on the left) and the second (on the right) slow roll
parameters ε1 and ε2 as the field is oscillating about the quadratic minimum.
As in the previous figure, the blue curves represent the numerical result,
while the dashed red curves denote the analytical result during preheating.
Note that, for the choice parameters and initial conditions that we have
worked with, ε1 turns unity at the e-fold of Ne ' 28.3, indicating the
termination of inflation at the point.
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The curvature perturbation during preheating
Though the modes of cosmological interest are well outside the Hubble
radius at late times, the conventional super-Hubble solutions to the modes fk
during inflation do not a priori hold at the time of preheating.

This is due to the fact that, though k/(aH) is small, because of the
oscillating scalar field, the quantity z′′/z itself can vanish during preheating.
In fact, when the values of the parameters fall in certain domains known as
the resonant bands, the modes display an instability32.

However, for the case of quadratic minima associated with mass, say, m, it
can be shown that, the conventional, inflationary, super-Hubble solutions
indeed apply provided the following two conditions are satisfied:(

k

aH

)2
H2

m2
� 1 and

(
k

aH

)2
H

3m
� 1.

Given that, H < m immediately after inflation, it is evident that the first of the
above two conditions will be satisfied if the second is33.

32F. Finelli and R. Brandenberger, Phys. Rev. Lett. 82, 1362 (1999).
33K. Jedamzik, M. Lemoine and J. Martin, JCAP 1009, 034 (2010); JCAP 1004 021 (2010).
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Analytic solution during preheating
Up to the order k2, the dominant, super-Hubble, inflationary solution to the
mode fk is given by

fk(η) ' Ak

[
1− k2

∫ η dη̄

z2(η̄)

∫ η̄

dη̃ z2(η̃)

]
.

The solutions for the background available when the potential around the
minimum behaves quadratically allows us to actually evaluate the above
integrals in a closed form.

We find that, during this epoch, the growing mode of the curvature
perturbation can be written as

fk = Ak

[
1− 1

5

(
k

aH

)2
H

m
tan (mt+ ∆)

]
,

where ∆ is a constant of integration34.

34R. Easther, R. Flauger and J. B. Gilmore, JCAP 1104, 027 (2011).
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Comparison with the numerical result

The behavior of the curvature perturbation during preheating. The blue curve
denotes the numerical result, while the dashed red curve represents the
super-Hubble analytical solution. We have chosen to work with a very small
scale mode that leaves the Hubble radius at about two e-folds before the
end of inflation.
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An illustration of the accuracy of the analytical result

The behavior of the quantity G2(k1,k2,k3) in the equilateral limit for a mode
that leaves the Hubble radius at about 20 e-folds before the end of inflation.
The blue curve represents the numerical result, while the dashed red curve
denotes the analytical result35.

35D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
L. Sriramkumar (IIT Madras, Chennai, India) Scalar bi-spectrum during inflation and preheating December 10, 2012 46 / 49



Contributions to the bi-spectrum during preheating The evolution of the bi-spectrum

An estimate of the contribution to f eq
NL

during preheating
Upon assuming inflation to be of the power law form, the contribution to the
non-Gaussianity parameter f

NL
during preheating can be obtained to be

feq
NL

(k) =
115 ε1
288π

Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2π γ) |γ + 1|−2 (γ+1)

×
[
1− e−3 (Nf−Ne)/2

] [(π2 g∗
30

)−1/4

(1 + zeq)1/4
ρ
1/4
cri

Trh

]−(2 γ+1)

×
(

k

a0H0

)−(2 γ+1)

,

where g∗ denotes the effective number of relativistic degrees of freedom at
reheating, Trh the reheating temperature and zeq the redshift at the epoch of
equality. Also, ρcri, a0 and H0 represent the critical energy density, the scale
factor and the Hubble parameter today, respectively.

For a model with γ ' −2 and a reheating temperature of Trh ' 1010 GeV, one
obtains that f

NL
≈ 10−60 for the modes of cosmological interest (i.e. for k

such that k/a0 ' H0), a value which is completely unobservable36.
36D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Summary

Summary

We have developed an efficient and robust procedure for numerically
evaluating the scalar bi-spectrum in single field inflationary models.

We find that the numerical results obtained match the spectral depen-
dence in power law inflation and the analytical results available in the
case of the Starobinsky model very well.
As an immediate application, we had investigated the power of the non-
Gaussianity parameter f

NL
to be able to discriminate between different

inflationary models that lead to deviations from slow roll and result in
similar features in the scalar power spectrum. We find that certain dif-
ferences in the background dynamics – reflected in the behavior of the
slow roll parameters – can lead to a reasonably large difference in the
f eq
NL

generated by the competing models.
Further, we have shown that, in single field inflationary potentials with a
quadratic minimum, the contributions to the bi-spectrum during preheat-
ing proves to be completely negligible.
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Thank you for your attention
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