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Looking beyond slow roll inflation

Proliferation of inflationary models1

A (partial?) list of ever-increasing number of inflationary models. May be, we
should look for models that permit deviations from the standard picture of
slow roll inflation.

1From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Looking beyond slow roll inflation

Based on

J. Martin and L. Sriramkumar, The scalar bi-spectrum in the Starobinsky
model I: The equilateral case, In preparation.
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Features, fits and non-Gaussianities Outliers in the CMB data

Angular power spectrum from the WMAP 7-year data2
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The WMAP 7-year data for the CMB TT angular power spectrum (the black
dots with error bars) and the theoretical, best fit ΛCDM model with a power
law primordial spectrum (the solid red curve). Note the outliers near the
multipoles ` = 2, 22 and 40.

2D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011).
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Features, fits and non-Gaussianities Does the primordial spectrum contain features?

Reconstructing the primordial spectrum

Reconstructed primordial spectra, obtained upon assuming the concordant
background ΛCDM model. The recovered spectrum on the left improves the fit to the
WMAP 3-year data by ∆χ2

eff ' 15, with respect to the best fit power law spectrum3.
The spectrum on the right has been recovered from a variety of CMB datasets,
including the WMAP 5-year data4.

3A. Shafieloo, T. Souradeep, P. Manimaran, P. K. Panigrahi and R. Rangarajan, Phys. Rev. D 75,
123502 (2007).

4G. Nicholson and C. R. Contaldi, JCAP 0907, 011 (2009).
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Features, fits and non-Gaussianities Generating features in the primordial spectrum

Inflationary models leading to features5
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Starobinsky model

Punctuated inflation

Quadratic potential with a step

Axion monodromy model

P
S
(k)

k
The scalar power spectra in a few different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum.

5R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v1 [astro-ph.CO].
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Features, fits and non-Gaussianities Features and non-Gaussianities

‘Large’ non-Gaussianities and its possible implications
The WMAP 7-year data constrains the non-Gaussianity parameter fNL

to be f
NL

= (26± 140) in the equilateral limit, at 68% confidence level6.
If forthcoming missions such as Planck detect a large level of
non-Gaussianity, as suggested by the above mean value of f

NL
, then it

can result in a substantial tightening in the constraints on the various
inflationary models. For example, canonical scalar field models that lead
to a nearly scale invariant primordial spectrum contain only a small
amount of non-Gaussianity and, hence, will cease to be viable7 .
However, it is known that primordial spectra with features can lead to
reasonably large non-Gaussianities8. Therefore, if the non-Gaussianity
parameter f

NL
indeed proves to be large, then either one has to

reconcile with the fact that the primordial spectrum contains features or
we have to turn our attention to non-canonical scalar field models such
as, say, D brane inflation models9.

6E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
7J. Maldacena, JHEP 05, 013 (2003).
8See, for instance, X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007).
9See, for example, X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The scalar power spectrum in the Starobinsky model The model

The Starobinsky model10

The Starobinsky model involves the canonical scalar field which is described
by the potential

V (φ) =

{
V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0.

10A. A. Starobinsky, Sov. Phys. JETP Lett. 55, 489 (1992).
L. Sriramkumar (IIT Madras, Chennai) The scalar bi-spectrum in the Starobinsky model August 10–12, 2011 9 / 28



The scalar power spectrum in the Starobinsky model The model

Assumptions and properties

It is assumed that the constant V0 is the dominant term in the potential
for a range of φ near φ0. As a result, over the domain of our interest, the
expansion is of the de Sitter form corresponding to a Hubble
parameter H0 determined by V0.
The scalar field rolls slowly until it reaches the discontinuity in the
potential. It then fast rolls for a brief period as it crosses the discontinuity
before slow roll is restored again.
Since V0 is dominant, the first slow roll parameter ε1 remains small even
during the transition. This property allows the background to be
evaluated analytically to a good approximation.
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.

One can show that, after the transition, the evolution of the first slow roll
parameter ε1 can be expressed in terms of the number of e-folds N as
follows:

ε1− '
A2
−

18M2
Pl
H4

0

[
1− ∆A

A−
e−3 (N−N0)

]2
,

where ∆A = (A− −A+), while N0 is the e-fold at which the field crosses the
discontinuity.

It is found that, immediately after the transition, the second slow roll
parameter ε2 is given by

ε2− '
6 ∆A

A−

e−3 (N−N0)

1− (∆A/A−) e−3 (N−N0)
.
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Evolution of the slow roll parameters

The evolution of the first slow roll parameter ε1 on the left, and the second
slow roll parameter ε2 on the right in the Starobinsky model. While the blue
curves describe the numerical results, the dotted red curves represent the
analytical expressions mentioned in the previous slide.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The modes before and after the transition
It can be shown that, under the assumptions that one is working with, the
quantity z = aM

Pl

√
2 ε1, which determines the evolution of the perturbations,

simplifies to
z′′/z ' 2H2

both before as well as after the transition with the overprime denoting the
derivative with respect to the conformal time, while H is the conformal
Hubble parameter.

As a result, while the solution to the Mukhanov-Sasaki variable vk before the
transition is given by

v+k (η) =
1√
2 k

(
1− i

k η

)
e−i k η,

after the transition, it can be expressed as a linear combination of the
positive and the negative frequency modes as follows:

v−k (η) =
αk√
2 k

(
1− i

k η

)
e−i k η +

βk√
2 k

(
1 +

i

k η

)
ei k η,

where αk and βk are the usual Bogoliubov coefficients.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The scalar power spectrum in the Starobinsky model
The Bogoliubov coefficients αk and βk can be obtained by matching the
mode vk and its derivative at the transition.

The scalar power spectrum, given by

PS(k) = (k3/2π2) |Rk|2 = (k3/2π2) (|vk|/z)2,

where Rk is the curvature perturbation, can be evaluated at late times to be

PS(k) =

(
9H6

0

4π2A2
−

) {
1− 3 ∆A

A+

k0
k

[(
1− k20

k2

)
sin

(
2 k

k0

)
+

2 k0
k

cos

(
2 k

k0

)]

+
9 ∆A2

2A2
+

k20
k2

(
1 +

k20
k2

)[(
1 +

k20
k2

)
− 2 k0

k
sin

(
2 k

k0

)

+

(
1− k20

k2

)
cos

(
2 k

k0

)]}
,

where k0 is the wavenumber of the mode that crosses the Hubble radius
when the field crosses the discontinuity. Note that the power spectrum
depends on the wavenumber only through the ratio (k/k0).
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

Comparison with the numerical result

The scalar power spectrum in the Starobinsky model. While the blue solid
curve denotes the analytic result, the red dots represent the corresponding
numerical scalar power spectrum that has been obtained through an exact
integration of the background as well as the perturbations.
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The non-Gaussianity parameter f
NL

The scalar bi-spectrum

The scalar bi-spectrum B
S
(k1,k2,k3) is related to the three point correlation

function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows11:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BS(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

B
S
(k1,k2,k3) = (2π)

−9/2
G(k1,k2,k3).

11D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).

L. Sriramkumar (IIT Madras, Chennai) The scalar bi-spectrum in the Starobinsky model August 10–12, 2011 16 / 28



The non-Gaussianity parameter f
NL

The introduction of f
NL

The observationally relevant non-Gaussianity parameter f
NL

is introduced
through the equation12

R(η,x) = RG(η,x)− 3 fNL

5

[
RG(η,x)

]2
,

where RG denotes the Gaussian quantity, and the factor of (3/5) arises due
to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

In Fourier space, the above equation can be written as

Rk = RG
k −

3 f
NL

5

∫
d3p

(2π)3/2
RG

p RG
k−p.

12J. Maldacena, JHEP 0305, 013 (2003);
S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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The non-Gaussianity parameter f
NL

The introduction of f
NL

. . . continued

Using this relation and Wick’s theorem, one can arrive at the three point
correlation of the curvature perturbation in Fourier space in terms of the
parameter f

NL
. It is found to be

〈Rk1Rk2Rk3〉 = −
(

3 f
NL

10

)
(2π)4 (2π)−3/2

(
1

k31 k
3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k31 PS

(k2) P
S
(k3) + two permutations

]
.
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The non-Gaussianity parameter f
NL

The relation between f
NL

and the bi-spectrum

Using the above expression for the three point function of the curvature
perturbation and the definition of the bi-spectrum, we can then arrive at the
following relation:

f
NL

= −
(

10

3

)
(2π)−4 (2π)9/2

(
k31 k

3
2 k

3
3

)
B

S
(k1,k2,k3)

×
[
k31 PS

(k2) P
S
(k3) + two permutations

]−1
= −

(
10

3

)
(2π)−4

(
k31 k

3
2 k

3
3

)
G(k1,k2,k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]−1
.

In the equilateral limit (i.e. when k1 = k2 = k3), this expression for f
NL

simplifies to

f
NL

= −
(

10

9

)
(2π)−4

(
k6 G(k)

P2
S
(k)

)
.
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)
(2π)−4

(
k6 G(k)

P2
S
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The method for evaluating f
NL

The interaction Hamiltonian and the bi-spectrum

The action at the cubic order13

It can be shown that the third order term in the action describing the
curvature perturbations is given by

S3[R] = M2
Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2 − 2 a ε1R′ (∂iR) (∂iχ)

+
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ) +

ε1
4

(∂2R) (∂χ)2 + F
(
δL2

δR

)]
,

where F(δL2/δR) denotes terms involving the variation of the second order
action with respect to R, while χ is related to the curvature perturbation R
through the relations

Λ = a ε1R′ and ∂2χ = Λ.

13J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The method for evaluating f
NL

The interaction Hamiltonian and the bi-spectrum

Evaluating the bi-spectrum
At the leading order in the perturbations, one then finds that the three point
correlation in Fourier space is described by the integral

〈R̂k1
(ηe) R̂k2

(ηe) R̂k3
(ηe)〉 = −i

∫ ηe

ηi

dη a(η)
〈[
R̂k1

(ηe) R̂k2
(ηe) R̂k3

(ηe), ĤI(η)
]〉
,

where ĤI is the operator corresponding to the above third order action, while
ηi is the time at which the initial conditions are imposed on the modes when
they are well inside the Hubble radius, and ηe denotes a very late time, say,
close to when inflation ends.

In the equilateral limit, the quantity G(k), evaluated towards the end of
inflation at the conformal time η = ηe, can be written as

G(k) ≡
6∑

C=1

G
C

(k) = M2
Pl

6∑
C=1

[
f3k (ηe) GC

(k) + f∗k
3 (ηe) G∗C (k)

]
,

where the quantities G
C

(k) are integrals that correspond to six terms that
arise in the action at the third order in the perturbations, while fk are the
modes associated with the curvature perturbation Rk.
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f
NL

in the Starobinsky model

Evaluating f
NL

in the Starobinsky model

When there exist deviations from slow roll, it is found that the fourth term G4
provides the dominant contribution to fNL .

It is described by the following integral

G4(k) = 3 i

∫ ηe

ηi

dη a2 ε1 ε
′
2 f
∗
k
2 f ′∗k .

In the case of the Starobinsky model, as ε2 is a constant before the transition,
ε′2 vanishes, and hence the above integral G4 is non-zero only post-transition.

We find that the integral involved can be computed analytically.

In fact, with some effort, analytic expressions can be arrived at for all the Gn.
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f
NL

in the Starobinsky model

The dominant contribution in the Starobinsky model

The absolute value of the quantity [k6G4] has been plotted as a function of
(k/k0) (the blue curve). We have worked with the same of values of A+, A−
and V0 as in the earlier figure wherein we had plotted the power spectrum.
The green and the red curves in the inset represent the limiting values for
k � k0 and k � k0, respectively.
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f
NL

in the Starobinsky model

The different contributions

The quantities k6 times the absolute values of (G1 +G3) (in green), G2 (in
red), G4 (in blue) and (G5 +G6) (in purple) have been plotted as a function of
(k/k0) for the Starobinsky model.
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f
NL

in the Starobinsky model

f
NL

due to the dominant contribution

The non-Gaussianity parameter f
NL

due to the dominant term in the
Starobinsky model, plotted as a function of (k/k0) for (A−/A+) = 0.216 and
(A−/A+) = 0.0216. Larger the difference between A− and A+, larger is the
corresponding fNL .
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f
NL

in the Starobinsky model

f
NL

for a range of values of the parameters

The non-Gaussianity parameter f
NL

due to the dominant term in the
Starobinsky model, plotted as a function of (k/k0) and the ratio
r = (A−/A+). The white contours indicate regions wherein fNL can be as
large as 50. Note that, provided r is reasonably small, f

NL
can be of the

order of 20 or so, as is indicated by the currently observed mean value.
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Summary

Summary

Amazingly, we find that, for a certain range of values of the parameters
involved, the non-Gaussianity parameter fNL can be evaluated
analytically, to a good accuracy (as is confirmed by comparison with
numerical computations) in the Starobinsky model.

Interestingly, for suitably small values of r = (A−/A+), f
NL

in the
Starobinsky model can be as large as indicated by the currently
observed mean values.
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Thank you for your attention
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