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Looking beyond slow roll inflation

S-dimensional assisted inflation
anisotropic brane inflation
anomaly-induced inflation
assisted inflation

assisted chaotic inflation
boundary inflation

brane inflation
brane-assisted inflation
brane gas inflation
brane-antibrane inflation
braneworld inflation
Brans-Dicke chaotic inflation
Brans-Dicke inflation
bulky brane inflation
chaotic hybrid inflation
chaotic inflation

chaotic new inflation
D-brane inflation

D-term inflation
dilaton-driven inflation
dilaton-driven brane infl

Proliferation of inflationary

extended open inflation
extended warm inflation
extra dimensional inflation
F-term inflation

F-term hybrid inflation

false vacuum inflation

false vacuum chaotic inflation
fast-roll inflation

first order inflation

gauged inflation

generalised inflation
generalized assisted inflation
generalized slow-rollinflation
gravity driven inflation
Hagedorn inflation
higher-curvature inflation
hybrid inflation
hyperextended inflation
induced gravity inflation
induced gravity open inflation

double inflation

double D-term inflation
dualinflation

dynamical inflation
dynamical SUSY inflation
eternal inflation
extended inflation

inflation
inverted hybrid inflation
isocurvature inflation

K inflation

kinetic inflation

lambda inflation

large field inflation

late D-term inflation

models’

late-time mild inflation
low-scale inflation

low-scale supergravity inflation
M-theory inflation

mass inflation

massive chaotic inflation
moduliinflation

multi-scalar inflation

multiple inflation

multiple-field slow-roll inflation
multiple-stage inflation

natural inflation

natural Chaotic inflation
natural double inflation

natural i

pre-Big-Bang inflation

primary inflation

primordial inflation

quasi-open inflation

quintessential inflation

Reinvariant topological inflation

rapid asymmetric inflation

running inflation

scalar-tensor gravity inflation

scalar-tensor stochastic inflation

Seiberg-Witten inflation

single-bubble open inflation

spinodal inflation

stable starobinsky-type inflation
d

inflation
new inflation
next-to-minimal supersymmetric
hybrid inflation
non-commutative inflation
non-slow-roll inflation
nonminimal chaotic inflation
old inflation
open hybrid inflation
open inflation
oscillating inflation
polynomial chaotic inflation
polynomial hybrid inflation
power-law inflation

ly ternal inflation
steep inflation
stochastic inflation

string-forming open inflation
successful D-term inflation
supergravity inflation

supernatural inflation

superstring inflation

supersymmetric hybrid inflation
supersymmetric inflation
supersymmetric topological inflatior
supersymmetric new inflation
synergistic warm inflation

TeV-scale hybrid inflation

A (partial?) list of ever-increasing number of inflationary models. May be, we
should look for models that permit deviations from the standard picture of

slow roll inflation.

TFrom E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Looking beyond slow roll inflation

Based on

@ J. Martin and L. Sriramkumar, The scalar bi-spectrum in the Starobinsky
model I: The equilateral case, In preparation.
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Outline of the talk

Outline of the talk

@ Features, fits and non-Gaussianities

e The scalar power spectrum in the Starobinsky model
e The non-Gaussianity parameter f,,

° The method for evaluating f,,

© /.. in the Starobinsky model (in the equilateral limit)

@ Summary
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Features, fits and non-Gaussianities Outliers in the CMB data

Angular power spectrum from the WMAP  -year data?
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The WMAP 7-year data for the CMB TT angular power spectrum (the black
dots with error bars) and the theoretical, best fit ACDM model with a power
law primordial spectrum (the solid red curve). Note the outliers near the
multipoles ¢ = 2, 22 and 40.

2D, Larson et al., Astrophys. J. Suppl. 192, 16 (2011).
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Features, fits and non-Gaussianities Does the primordial spectrum contain features?

Reconstructing the primordial spectrum
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Reconstructed primordial spectra, obtained upon assuming the concordant
background ACDM model. The recovered spectrum on the left improves the fit to the
WMAP 3-year data by Ax?; ~ 15, with respect to the best fit power law spectrum?.
The spectrum on the right has been recovered from a variety of CMB datasets,
including the WMAP 5-year data®.

3A. Shafieloo, T. Souradeep, P. Manimaran, P. K. Panigrahi and R. Rangarajan, Phys. Rev. D 75,
123502 (2007).
4G. Nicholson and C. R. Contaldi, JCAP 0907, 011 (2009).
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Features, fits and non-Gaussianities Generating features in the primordial spectrum

Inflationary models leading to features®
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The scalar power spectra in a few different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum.

5R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v1 [astro-ph.CQO].
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Features, fits and non-Gaussianities Features and non-Gaussianities

‘Large’ non-Gaussianities and its possible implications

@ The WMAP 7-year data constrains the non-Gaussianity parameter f,
to be f,, = (26 + 140) in the equilateral limit, at 68% confidence level®.

@ If forthcoming missions such as Planck detect a large level of
non-Gaussianity, as suggested by the above mean value of f, , then it
can result in a substantial tightening in the constraints on the various
inflationary models. For example, canonical scalar field models that lead
to a nearly scale invariant primordial spectrum contain only a small
amount of non-Gaussianity and, hence, will cease to be viable” .

@ However, it is known that primordial spectra with features can lead to
reasonably large non-Gaussianities®. Therefore, if the non-Gaussianity
parameter f,. indeed proves to be large, then either one has to
reconcile with the fact that the primordial spectrum contains features or
we have to turn our attention to non-canonical scalar field models such
as, say, D brane inflation models®.

6E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).

7). Maldacena, JHEP 05, 013 (2003).

8See, for instance, X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007).

9See, for example, X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The scalar power spectrum in the Starobinsky model The model

The Starobinsky model'®
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The Starobinsky model involves the canonical scalar field which is described
by the potential

Vot AL (6—d0) for 6> dn
V(¢){%+At(¢—¢0) for ¢ < ¢o.

10 A. Starobinsky, Sov. Phys. JETP Lett. 55, 489 (1992).
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The scalar power spectrum in the Starobinsky model The model

Assumptions and properties

@ Itis assumed that the constant 1}, is the dominant term in the potential
for a range of ¢ near ¢y. As a result, over the domain of our interest, the
expansion is of the de Sitter form corresponding to a Hubble
parameter H, determined by 1}.

@ The scalar field rolls slowly until it reaches the discontinuity in the
potential. It then fast rolls for a brief period as it crosses the discontinuity
before slow roll is restored again.

@ Since V} is dominant, the first slow roll parameter ¢; remains small even
during the transition. This property allows the background to be
evaluated analytically to a good approximation.
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.

One can show that, after the transition, the evolution of the first slow roll
parameter ¢; can be expressed in terms of the number of e-folds N as

follows: ,

2
oA [ AA sy
ISMZH; | A

where AA = (A_ — A,), while Ny is the e-fold at which the field crosses the
discontinuity.

€1—
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.

One can show that, after the transition, the evolution of the first slow roll
parameter ¢; can be expressed in terms of the number of e-folds N as

follows: , )
a-= 18]\?; |t %e_wm%) ’
P10 -
where AA = (A_ — A,), while Ny is the e-fold at which the field crosses the
discontinuity.

It is found that, immediately after the transition, the second slow roll
parameter ¢, is given by

6AA e 3(N—No)
A_ 1—(AAJA_) e 3(N=No)"

€y X~
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The scalar power spectrum in the Starobinsky model Evolution of the background in the Starobinsky model

Evolution of the slow roll parameters
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The evolution of the first slow roll parameter ¢; on the left, and the second

slow roll parameter ¢» on the right in the Starobinsky model. While the blue
curves describe the numerical results, the dotted red curves represent the

analytical expressions mentioned in the previous slide.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The modes before and after the transition

It can be shown that, under the assumptions that one is working with, the
quantity = = a M, \/2 €1, which determines the evolution of the perturbations,
simplifies to

Z”/Z ~ 9 H2
both before as well as after the transition with the overprime denoting the
derivative with respect to the conformal time, while # is the conformal
Hubble parameter.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The modes before and after the transition

It can be shown that, under the assumptions that one is working with, the
quantity = = a M, \/2 €1, which determines the evolution of the perturbations,
simplifies to

Z”/Z ~ 9 H2
both before as well as after the transition with the overprime denoting the
derivative with respect to the conformal time, while # is the conformal
Hubble parameter.

As a result, while the solution to the Mukhanov-Sasaki variable v;, before the

transition is given by
1 i\
v () = V2E (1_ /“7) e

after the transition, it can be expressed as a linear combination of the
positive and the negative frequency modes as follows:

_ oy { ik B { ik
=—F (1-— ny R (14— m
o () V2Ek ( kn)e V2 k ( k??)e

where «; and 3, are the usual Bogoliubov coefficients.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The scalar power spectrum in the Starobinsky model

The Bogoliubov coefficients a, and ;. can be obtained by matching the
mode v, and its derivative at the transition.
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

The scalar power spectrum in the Starobinsky model

The Bogoliubov coefficients ;. and 3, can be obtained by matching the
mode vy, and its derivative at the transition.

The scalar power spectrum, given by
Ps(k) = (k%/27°) |Ry.|* = (k%/27°) (|vx| /2)?,
where R, is the curvature perturbation, can be evaluated at late times to be

_( 9H§ 3AA kg K3\ . (2k 2k (2k
7’s<’“><w) {1 A k| U)ol ) e sy
9AA? k2 k2 K2\ 2ko 2k
O B I o) 14+ 2 ) - 22 g -
oA 2 ( +k2) < +k2> k Sln(k())
O APNEL
2 coS o s
where kq is the wavenumber of the mode that crosses the Hubble radius

when the field crosses the discontinuity. Note that the power spectrum
depends on the wavenumber only through the ratio (k/k).
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The scalar power spectrum in the Starobinsky model Evolution of the perturbations

Comparison with the numerical result
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The scalar power spectrum in the Starobinsky model. While the blue solid
curve denotes the analytic result, the red dots represent the corresponding
numerical scalar power spectrum that has been obtained through an exac
integration of the background as well as the perturbations.
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The non-Gaussianity parameter INT

The scalar bi-spectrum

The scalar bi-spectrum B, (ki, ko, k3) is related to the three point correlation
function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time 7., as follows!:

(Ric, (1) Rics (e) Ricy () = (27)° By (ki, ka, ks) 63 (ky + ks + ks) .
For convenience, we shall set

B, (ki ko, ks) = (27) "% G(ky, ks, ks).

11D, Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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The non-Gaussianity parameter INT

The introduction of f,

The observationally relevant non-Gaussianity parameter f,, is introduced
through the equation'?
3f 2
R(W»X) = RG(U7X) - % [RG(nax)] )
where R© denotes the Gaussian quantity, and the factor of (3/5) arises due
to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

12, Maldacena, JHEP 0305, 013 (2003);
S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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The non-Gaussianity parameter INT

The introduction of f,

The observationally relevant non-Gaussianity parameter f,, is introduced
through the equation'?

3 far 2
Rinx) = RO (n,x) — 2L (RS (5, )],
where R© denotes the Gaussian quantity, and the factor of (3/5) arises due

to the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

In Fourier space, the above equation can be written as

3f d3p
_ pG G pG
Rk =Ry — 5NL / )i Ry Ri_p-

12, Maldacena, JHEP 0305, 013 (2003);
S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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The non-Gaussianity parameter INT

The introduction of f, ... continued

Using this relation and Wick’s theorem, one can arrive at the three point
correlation of the curvature perturbation in Fourier space in terms of the
parameter f, . It is found to be

3 1
(R, Ri, Rics) = — ( {8L> @2m)* (2m)~3/2 (kgkgk?,) 6P (k; + ko + k)
1™v2 ™3

x [k} Py (ka) Py (ks) + two permutations] .
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The non-Gaussianity parameter INT

The relation between f,, and the bi-spectrum

Using the above expression for the three point function of the curvature
perturbation and the definition of the bi-spectrum, we can then arrive at the
following relation:

10

fo = = () @0 @07 () Bk

x [k} Py (k2) Py (ks) + two permutations] o
1
- (30) (2m)~* (k$ k3 Kk3) G(ki, ko, ks)

x [k} Py (ka) Py (ks) + two permutations] -
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The non-Gaussianity parameter INT

The relation between f,, and the bi-spectrum

Using the above expression for the three point function of the curvature
perturbation and the definition of the bi-spectrum, we can then arrive at the
following relation:

10

fo = = () @0 @07 () Bk

x [k} Py (k2) Py (ks) + two permutations] !

1
- (30) @m)" (M k3 k5) Gl ke, ko)
x [I6} P (ke) Py (ks) + two permutations] .

In the equilateral limit (i.e. when k; = ky = ks3), this expression for f,

simplifies to
== (3) e ()
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The method for evaluating ,/‘\l I The interaction Hamiltonian and the bi-spectrum

The action at the cubic order'3

It can be shown that the third order term in the action describing the
curvature perturbations is given by

/dn /d3x la AERR?+ad®>ER(OR)? —2ae, R (O'"R) (9ix)

’ iR €1 0Lz
+ 5 e b RER + (3 R) (9ix) (9*x) + a1 (0°R) (9x)* + F <(5R>] ’

where F(6L2/0R) denotes terms involving the variation of the second order
action with respect to R, while x is related to the curvature perturbation R
through the relations

A=ae R and 0%y = A.

13y, Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).

L. Sriramkumar (IIT Madras, Chennai) The scalar bi-spectrum in the Starobinsky model August 10-12, 2011 20/28



The method for evaluating ,/‘\” The interaction Hamiltonian and the bi-spectrum

Evaluating the bi-spectrum

At the leading order in the perturbations, one then finds that the three point
correlation in Fourier space is described by the integral

Ne

(Ric, (1) Rics (1) Ries (1)) = —i / dna(n) <{7@k1 (1) Rics (me) R (ne),ﬁl(n)b,
A

where H; is the operator corresponding to the above third order action, while

7; is the time at which the initial conditions are imposed on the modes when

they are well inside the Hubble radius, and 7., denotes a very late time, say,
close to when inflation ends.

In the equilateral limit, the quantity G (%), evaluated towards the end of
inflation at the conformal time 1 = 7., can be written as

6 6
Gk) =D G (k) =M% > [fE (1) Go (k) + £ (ne) G2 ()]
c=1 c=1
where the quantities G, (k) are integrals that correspond to six terms that
arise in the action at the third order in the perturbations, while f, are the
modes associated with the curvature perturbation R..
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INT in the Starobinsky model

Evaluating f,, in the Starobinsky model

When there exist deviations from slow roll, it is found that the fourth term G,
provides the dominant contribution to f, .

It is described by the following integral
ne
Gk =31 [ dna e, i f
i

In the case of the Starobinsky model, as ¢, is a constant before the transition,
€5 vanishes, and hence the above integral G, is non-zero only post-transition.
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When there exist deviations from slow roll, it is found that the fourth term G,
provides the dominant contribution to f, .

It is described by the following integral
ne
Gk =31 [ dna e, i f
i

In the case of the Starobinsky model, as ¢, is a constant before the transition,
€5 vanishes, and hence the above integral G, is non-zero only post-transition.

We find that the integral involved can be computed analytically.
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INT in the Starobinsky model

Evaluating f,, in the Starobinsky model

When there exist deviations from slow roll, it is found that the fourth term G,
provides the dominant contribution to f, .

It is described by the following integral
ne
Gk =31 [ dna e, i f
i

In the case of the Starobinsky model, as ¢, is a constant before the transition,
€5 vanishes, and hence the above integral G, is non-zero only post-transition.

We find that the integral involved can be computed analytically.

In fact, with some effort, analytic expressions can be arrived at for all the G,,.
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in the Starobinsky model

SN,

The dominant contribution in the Starobinsky model
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The absolute value of the quantity [k° 4] has been plotted as a function of

(k/ko) (the blue curve). We have worked with the same of values of A, A_
and V4 as in the earlier figure wherein we had plotted the power spectrum
The green and the red curves in the inset represent the limiting values for
k < ko and k > ko, respectively.
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in the Starobinsky model

NI

The different contributions
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The quantities k° times the absolute values of (G'; + G3) (in green), G5 (in
red), G4 (in blue) and (G5 + Gs) (in purple) have been plotted as a function of
(k/ko) for the Starobinsky model.
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INT in the Starobinsky model

f«. due to the dominant contribution
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The non-Gaussianity parameter f,, due to the dominant term in the
Starobinsky model, plotted as a function of (k/k) for (A_/A,) = 0.216 and

(A_/A,) =0.0216. Larger the difference between A_ and A, larger is th
corresponding f,, .
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INT in the Starobinsky model

[, for a range of values of the parameters
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The non-Gaussianity parameter f,. due to the dominant term in the
Starobinsky model, plotted as a function of (k/ky) and the ratio
r = (A_/A,). The white contours indicate regions wherein f,, can be as
large as 50. Note that, provided r is reasonably small, f,,, can be of the
order of 20 or so, as is indicated by the currently observed mean value.
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Summary

Summary

@ Amazingly, we find that, for a certain range of values of the parameters
involved, the non-Gaussianity parameter f,, can be evaluated
analytically, to a good accuracy (as is confirmed by comparison with
numerical computations) in the Starobinsky model.

L. Sriramkumar (IIT Madras, Chennai) The scalar bi-spectrum in the Starobinsky model August 10-12, 2011 27/28



Summary
Summary

@ Amazingly, we find that, for a certain range of values of the parameters
involved, the non-Gaussianity parameter f,, can be evaluated
analytically, to a good accuracy (as is confirmed by comparison with
numerical computations) in the Starobinsky model.

@ Interestingly, for suitably small values of » = (A_/A.), f., inthe
Starobinsky model can be as large as indicated by the currently
observed mean values.
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