Inflationary three-point functions

L. Sriramkumar
Department of Physics, Indian Institute of Technology Madras, Chennai

In-house symposium
Department of Physics, IIT Madras, Chennai
March 8, 2014

The timeline of the universe ${ }^{1}$

A pictorial timeline of the universe-from the big bang until today.

[^0]
CMB anisotropies as seen by WMAP and Planck

Left: All-sky map of the anisotropies in the Cosmic Microwave Background (CMB) created from nine years of Wilkinson Microwave Anisotropy Probe (WMAP) data ${ }^{2}$. The CMB is a snapshot of the oldest light in our universe, imprinted on the sky when the universe was just 380,000 years old.
Right: The CMB anisotropies as observed by the more recent Planck mission ${ }^{3}$. The above images show temperature variations (as color differences) of the order of $200^{\circ} \mu \mathrm{K}$. The angular resolution of WMAP was about 1°, while that of Planck was a few arc minutes. These temperature fluctuations correspond to regions of slightly different densities, and they represent the seeds of all the structure around us today.

[^1]
Inflation resolves the horizon problem

Left: The radiation from the CMB arriving at us from regions separated by more than the Hubble radius at the last scattering surface (which subtends an angle of about 1° today) could not have interacted before decoupling.
Right: An illustration of how an early and sufficiently long epoch of inflation helps in resolving the horizon problem ${ }^{4}$.
${ }^{4}$ Images from W. Kinney, astro-ph/0301448.

Achieving inflation with scalar fields

A variety of scalar field potentials have been considered to drive inflation ${ }^{5}$. Often, these potentials are classified as small field, large field and hybrid models.
It is the fluctuations in the inflaton field ϕ that act as the seeds for the scalar perturbations that are primarily responsible for the anisotropies in the CMB and, eventually, the present day inhomogeneities.

[^2]
Angular power spectrum from the Planck data ${ }^{6}$

The CMB TT angular power spectrum from the Planck data (the red dots with error bars) and the theoretical, best fit Λ CDM model with a power law primordial spectrum (the solid green curve).

[^3]
The scalar and the tensor perturbation spectra ${ }^{7}$

The dimensionless scalar power spectrum $\mathcal{P}_{\mathrm{S}}(k)$ is defined in terms of the correlation function of the Fourier modes of the so-called curvature perturbation $\hat{\mathcal{R}}_{k}$ as follows:

$$
\left\langle\hat{\mathcal{R}}_{\boldsymbol{k}} \hat{\mathcal{R}}_{\boldsymbol{k}^{\prime}}\right\rangle=\frac{(2 \pi)^{2}}{2 k^{3}} \mathcal{P}_{\mathrm{S}}(k) \delta^{(3)}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) .
$$

While comparing with the observations, for convenience, one often uses the following power law, template scalar and the tensor spectra:

$$
\mathcal{P}_{\mathrm{S}}(k)=\mathcal{A}_{\mathrm{S}}\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{S}}-1} \quad \text { and } \quad \mathcal{P}_{\mathrm{T}}(k)=\mathcal{A}_{\mathrm{T}}\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{T}}},
$$

with the spectral indices n_{S} and n_{T} assumed to be constant.
The tensor-to-scalar ratio r is defined as

$$
r(k) \equiv \frac{\mathcal{P}_{\mathrm{T}}(k)}{\mathcal{P}_{\mathrm{S}}(k)}
$$

and it is usual to further set $r=-8 n_{\mathrm{T}}$, viz. the so-called consistency relation, which is valid during slow roll inflation.

[^4]
Constraints from Planck ${ }^{8}$

Joint constraints from Planck and other cosmological data on the inflationary parameters n_{s} and r The performance of a few inflationary models against the data have also been indicated.

[^5]
The scalar bi-spectrum and the non-Gaussianity parameter f_{NL}

The scalar bi-spectrum $\mathcal{B}_{\mathcal{R} \mathcal{R} \mathcal{R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)$ is related to the three-point correlation function of the Fourier modes of the curvature perturbation as follows ${ }^{9}$:

$$
\left\langle\hat{\mathcal{R}}_{\boldsymbol{k}_{1}} \hat{\mathcal{R}}_{\boldsymbol{k}_{2}} \hat{\mathcal{R}}_{\boldsymbol{k}_{3}}\right\rangle=(2 \pi)^{3} \mathcal{B}_{\mathcal{R} \mathcal{R} \mathcal{R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) .
$$

For convenience, we shall set

$$
\mathcal{B}_{\mathcal{R R R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=(2 \pi)^{-9 / 2} G_{\mathcal{R R R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) .
$$

The observationally relevant, dimensionless, non-Gaussianity parameter f_{NL} is related to the scalar bi-spectrum as follows ${ }^{10}$:

$$
\begin{aligned}
f_{\mathrm{NL}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)= & -\frac{10}{3}(2 \pi)^{1 / 2}\left(k_{1}^{3} k_{2}^{3} k_{3}^{3}\right) \mathcal{B}_{\mathcal{R} \mathcal{R} \mathcal{R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& \times\left[k_{1}^{3} \mathcal{P}_{\mathrm{S}}\left(k_{2}\right) \mathcal{P}_{\mathrm{S}}\left(k_{3}\right)+\text { two permutations }\right]^{-1} \\
= & -\frac{10}{3} \frac{1}{(2 \pi)^{4}}\left(k_{1}^{3} k_{2}^{3} k_{3}^{3}\right) G_{\mathcal{R} \mathcal{R} \mathcal{R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& \times\left[k_{1}^{3} \mathcal{P}_{\mathrm{S}}\left(k_{2}\right) \mathcal{P}_{\mathrm{S}}\left(k_{3}\right)+\text { two permutations }\right]^{-1}
\end{aligned}
$$

[^6]
Template bi-spectra

An illustration of the three template basis bi-spectra, viz. the local (top left), the equilateral (bottom) and the orthogonal (top right) forms for a generic triangular configuration of the wavevectors ${ }^{11}$.

[^7]
Constraints from Planck on f_{NL}

The constraints on the non-Gaussianity parameters from the recent Planck data are as follows ${ }^{12}$:

$$
\begin{aligned}
f_{\mathrm{NL}}^{\mathrm{loc}} & =2.7 \pm 5.8 \\
f_{\mathrm{NL}}^{\mathrm{eq}} & =-42 \pm 75 \\
f_{\mathrm{NL}}^{\mathrm{orth}} & =-25 \pm 39
\end{aligned}
$$

It should be stressed here that these are constraints on the primordial values.
Also, the constraints on each of the f_{NL} parameter have been arrived at assuming that the other two parameters are zero.

[^8]
BINGO: A code to numerically compute the scalar bi-spectrum

A comparison of the analytical results (on the left) for the non-Gaussianity parameter f_{NL} with the numerical results (on the right) from the BI-spectra and Non-Gaussianity Operator (BINGO) code for a generic triangular configuration of the wavevectors in the case of the standard quadratic potential ${ }^{13}$. The maximum difference between the numerical and the analytic results is found to be about 5%.

[^9]
The cross-correlations and the tensor bi-spectrum

The cross-correlations involving two scalars and a tensor and a scalar and two tensors are defined as

$$
\begin{gathered}
\left\langle\hat{\mathcal{R}}_{\boldsymbol{k}_{1}}\left(\eta_{\mathrm{e}}\right) \hat{\mathcal{R}}_{\boldsymbol{k}_{2}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\left(\eta_{\mathrm{e}}\right)\right\rangle=(2 \pi)^{3} \mathcal{B}_{\mathcal{R} \mathcal{R} \gamma}^{m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right), \\
\left\langle\hat{\mathcal{R}}_{\boldsymbol{k}_{1}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\left(\eta_{\mathrm{e}}\right)\right\rangle=(2 \pi)^{3} \mathcal{B}_{\mathcal{R} \gamma \gamma}^{m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
\times \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right),
\end{gathered}
$$

while the tensor bi-spectrum is given by

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\left(\eta_{\mathrm{e}}\right)\right\rangle=(2 \pi)^{3} & \mathcal{B}_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& \times \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) .
\end{aligned}
$$

As in the pure scalar case, we shall set

$$
\mathcal{B}_{\mathrm{ABC}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=(2 \pi)^{-9 / 2} G_{\mathrm{ABC}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right),
$$

where each of (A, B, C) can be either a \mathcal{R} or a γ.

New non-Gaussianity parameters for cross-correlations

As in the scalar case, one can define dimensionless non-Gaussianity parameters to characterize the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations and the tensor bi-spectrum, respectively, as follows:

$$
\begin{aligned}
C_{\mathrm{NL}}^{\mathcal{R}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=- & \frac{4}{\left(2 \pi^{2}\right)^{2}}\left[k_{1}^{3} k_{2}^{3} k_{3}^{3} G_{\mathcal{R} \mathcal{R} \gamma}^{m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)\right] \\
& \times\left(\Pi_{m_{3} n_{3}, \bar{m} \bar{n}}^{\boldsymbol{k}_{3}}\right)^{-1}\left\{\left[k_{1}^{3} \mathcal{P}_{\mathrm{S}}\left(k_{2}\right)+k_{2}^{3} \mathcal{P}_{\mathrm{S}}\left(k_{1}\right)\right] \mathcal{P}_{\mathrm{T}}\left(k_{3}\right)\right\}^{-1}, \\
C_{\mathrm{NL}}^{\gamma}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=- & \frac{4}{\left(2 \pi^{2}\right)^{2}}\left[k_{1}^{3} k_{2}^{3} k_{3}^{3} G_{\mathcal{R} \gamma \gamma}^{m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)\right] \\
& \times\left\{\mathcal{P}_{\mathrm{S}}\left(k_{1}\right)\left[\Pi_{m_{2} n_{2}, m_{3} n_{3}}^{\boldsymbol{k}_{2}} k_{3}^{3} \mathcal{P}_{\mathrm{T}}\left(k_{2}\right)+\Pi_{m_{3} n_{3}, m_{2} n_{2}}^{\boldsymbol{k}_{3}} k_{2}^{3} \mathcal{P}_{\mathrm{T}}\left(k_{3}\right)\right]\right\}^{-1}, \\
h_{\mathrm{NL}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=- & \left(\frac{4}{2 \pi^{2}}\right)^{2}\left[k_{1}^{3} k_{2}^{3} k_{3}^{3} G_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)\right] \\
& \times\left[\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{\boldsymbol{k}_{1}} \Pi_{m_{3} n_{3}, \bar{m} \bar{n}}^{\boldsymbol{k}_{2}} k_{3}^{3} \mathcal{P}_{\mathrm{T}}\left(k_{1}\right) \mathcal{P}_{\mathrm{T}}\left(k_{2}\right)+\text { five permutations }\right]^{-1},
\end{aligned}
$$

where the quantity $\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k}$ is defined as

$$
\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k}=\sum_{s} \varepsilon_{m_{1} n_{1}}^{s}(\boldsymbol{k}) \varepsilon_{m_{2} n_{2}}^{s *}(\boldsymbol{k}),
$$

with $\varepsilon_{i j}^{s}(\boldsymbol{k})$ denoting the polarization tensor associated with the gravitational waves.

Comparison between the analytical and numerical results

A comparison of the analytical results (at the bottom) for the non-Gaussianity parameters $C_{\mathrm{NL}}^{\mathcal{R}}$ (on the left), C_{NL}^{γ} (in the middle) and h_{NL} (on the right) with the numerical results (on top) for a generic triangular configuration of the wavevectors in the case of the standard quadratic potential ${ }^{14}$. As in the case of the scalar bi-spectrum, the maximum difference between the numerical and the analytic results is about 5%.

[^10]
Outlook

- The strong constraints on the non-Gaussianity parameter f_{NL} from Planck suggests that additional inputs beyond the power spectrum can aid us considerably in arriving at smaller and smaller classes of viable inflationary models ${ }^{15}$.
- The new non-Gaussianity parameters $C_{\mathrm{NL}}^{\mathcal{R}}$ and C_{NL}^{γ} that we have introduced can play a vital role towards characterizing as well as constraining inflationary models further ${ }^{16}$.

[^11]
Thank you for your attention

[^0]: ${ }^{1}$ See http://wmap.gsfc.nasa.gov/media/060915/060915_CMB_Timeline150.jpg.

[^1]: ${ }^{2}$ Image from http://wmap.gsfc.nasa.gov/media/121238/index.html.
 ${ }^{3}$ Image from http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe.

[^2]: ${ }^{5}$ Image from W. Kinney, astro-ph/0301448.

[^3]: ${ }^{6}$ P. A. R. Ade et al., arXiv:1303.5075 [astro-ph.CO].

[^4]: ${ }^{7}$ See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).

[^5]: ${ }^{8}$ P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].

[^6]: ${ }^{9}$ D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
 E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).

 10 J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).

[^7]: ${ }^{11}$ E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).

[^8]: ${ }^{12}$ P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].

[^9]: ${ }^{13}$ D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).

[^10]: ${ }^{14}$ V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).

[^11]: ${ }^{15}$ In this context, see J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
 ${ }^{16}$ V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).

