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Big bang, CMB and inflation

The timeline of the universe1

A pictorial timeline of the universe—from the big bang until today.
1See http://wmap.gsfc.nasa.gov/media/060915/060915_CMB_Timeline150.jpg.
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Big bang, CMB and inflation

CMB anisotropies as seen by WMAP and Planck

Left: All-sky map of the anisotropies in the Cosmic Microwave Background (CMB) created from nine years
of Wilkinson Microwave Anisotropy Probe (WMAP) data2. The CMB is a snapshot of the oldest light in our
universe, imprinted on the sky when the universe was just 380,000 years old.
Right: The CMB anisotropies as observed by the more recent Planck mission3. The above images show
temperature variations (as color differences) of the order of 200◦ µK. The angular resolution of WMAP was
about 1◦, while that of Planck was a few arc minutes. These temperature fluctuations correspond to regions
of slightly different densities, and they represent the seeds of all the structure around us today.

2Image from http://wmap.gsfc.nasa.gov/media/121238/index.html.
3Image from http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe.
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Big bang, CMB and inflation

Inflation resolves the horizon problem

Left: The radiation from the CMB arriving at us from regions separated by more than the Hubble
radius at the last scattering surface (which subtends an angle of about 1◦ today) could not have
interacted before decoupling.
Right: An illustration of how an early and sufficiently long epoch of inflation helps in resolving the
horizon problem4.

4Images from W. Kinney, astro-ph/0301448.
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Big bang, CMB and inflation

Achieving inflation with scalar fields

A variety of scalar field potentials have been considered to drive inflation5. Often, these potentials
are classified as small field, large field and hybrid models.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar perturbations that
are primarily responsible for the anisotropies in the CMB and, eventually, the present day inhomo-
geneities.

5Image from W. Kinney, astro-ph/0301448.
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Confronting inflationary power spectra with the CMB data

Angular power spectrum from the Planck data6
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The CMB TT angular power spectrum from the Planck data (the red dots with error bars) and the
theoretical, best fit ΛCDM model with a power law primordial spectrum (the solid green curve).

6P. A. R. Ade et al., arXiv:1303.5075 [astro-ph.CO].
L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions March 8, 2014 6 / 17



Confronting inflationary power spectra with the CMB data

The scalar and the tensor perturbation spectra7

The dimensionless scalar power spectrum PS(k) is defined in terms of the correlation function of
the Fourier modes of the so-called curvature perturbation R̂k as follows:

〈R̂k R̂k′〉 =
(2π)2

2 k3
P

S
(k) δ(3) (k + k′) .

While comparing with the observations, for convenience, one often uses the following power law,
template scalar and the tensor spectra:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

and P
T

(k) = A
T

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant.
The tensor-to-scalar ratio r is defined as

r(k) ≡ PT
(k)

P
S
(k)

and it is usual to further set r = −8nT , viz. the so-called consistency relation, which is valid during
slow roll inflation.

7See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Confronting inflationary power spectra with the CMB data

Constraints from Planck8
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Joint constraints from Planck and other cosmological data on the inflationary parameters nS and r.
The performance of a few inflationary models against the data have also been indicated.

8P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Beyond the power spectrum—The three-point functions

The scalar bi-spectrum and the non-Gaussianity parameter f
NL

The scalar bi-spectrum BRRR(k1,k2,k3) is related to the three-point correlation function of the
Fourier modes of the curvature perturbation as follows9:

〈R̂k1
R̂k2
R̂k3
〉 = (2π)

3 BRRR(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)
−9/2

GRRR(k1,k2,k3).

The observationally relevant, dimensionless, non-Gaussianity parameter fNL is related to the scalar
bi-spectrum as follows10:

fNL(k1,k2,k3) = −10

3
(2π)1/2

(
k31 k

3
2 k

3
3

)
BRRR(k1,k2,k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]−1
= −10

3

1

(2π)4
(
k31 k

3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k31 PS(k2) PS(k3) + two permutations

]−1
.

9D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).

10J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
L. Sriramkumar (IIT Madras, Chennai) Inflationary three-point functions March 8, 2014 9 / 17



Beyond the power spectrum—The three-point functions

Template bi-spectra

An illustration of the three template basis bi-spectra, viz. the local (top left), the equilateral (bottom)
and the orthogonal (top right) forms for a generic triangular configuration of the wavevectors11.

11E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Beyond the power spectrum—The three-point functions

Constraints from Planck on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck data are as follows12:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the f
NL

parameter have been arrived at assuming that the other
two parameters are zero.

12P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Numerical evaluation of the inflationary three-point functions

BINGO: A code to numerically compute the scalar bi-spectrum

A comparison of the analytical results (on the left) for the non-Gaussianity parameter f
NL

with
the numerical results (on the right) from the BI-spectra and Non-Gaussianity Operator (BINGO)
code for a generic triangular configuration of the wavevectors in the case of the standard quadratic
potential13. The maximum difference between the numerical and the analytic results is found to be
about 5%.

13D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026 (2013).
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Numerical evaluation of the inflationary three-point functions

The cross-correlations and the tensor bi-spectrum

The cross-correlations involving two scalars and a tensor and a scalar and two tensors are defined
as

〈R̂k1
(ηe) R̂k2

(ηe) γ̂
k3
m3n3

(ηe) 〉 = (2π)
3 Bm3n3

RRγ (k1,k2,k3) δ(3) (k1 + k2 + k3) ,

〈R̂k1
(ηe) γ̂

k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)
3 Bm2n2m3n3

Rγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

while the tensor bi-spectrum is given by

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) .

As in the pure scalar case, we shall set

BABC(k1,k2,k3) = (2π)
−9/2

GABC(k1,k2,k3),

where each of (A,B,C) can be either a R or a γ.
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Numerical evaluation of the inflationary three-point functions

New non-Gaussianity parameters for cross-correlations
As in the scalar case, one can define dimensionless non-Gaussianity parameters to characterize the scalar-
scalar-tensor and the scalar-tensor-tensor cross-correlations and the tensor bi-spectrum, respectively, as
follows:

CR
NL

(k1,k2,k3) = − 4
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3
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3
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,
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3
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(
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3
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,

where the quantity Πk
m1n1,m2n2

is defined as

Πk
m1n1,m2n2

=
∑
s

εsm1n1
(k) εs∗m2n2

(k),

with εsij(k) denoting the polarization tensor associated with the gravitational waves.
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Numerical evaluation of the inflationary three-point functions

Comparison between the analytical and numerical results
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A comparison of the analytical results (at the bottom) for the non-Gaussianity parameters CR
NL

(on
the left), Cγ

NL
(in the middle) and h

NL
(on the right) with the numerical results (on top) for a generic

triangular configuration of the wavevectors in the case of the standard quadratic potential14. As
in the case of the scalar bi-spectrum, the maximum difference between the numerical and the
analytic results is about 5%.

14V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Outlook

Outlook

The strong constraints on the non-Gaussianity parameter f
NL

from Planck suggests that ad-
ditional inputs beyond the power spectrum can aid us considerably in arriving at smaller and
smaller classes of viable inflationary models15.
The new non-Gaussianity parameters CR

NL
and Cγ

NL
that we have introduced can play a vital

role towards characterizing as well as constraining inflationary models further16.

15In this context, see J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
16V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Thank you for your attention
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