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Introduction Conventions and notations

Conventions and notations

4 Units:c=h=1, M, = (87 G)~'/?

4 Background: Spatially flat FLRW metric described by the line-element
ds® = —dt* + a*(t) dz® = a*(n) (—dn® + dz?)
with ¢ — cosmic time and 1 — conformal time

4 Scale factor and Hubble parameter: a and H = a/a

4+ Derivatives: = d/dt,’ = d/dn

4+ E-folds: NV

4 Curvature perturbation and its Fourier mode: R and Ry

4+ Tensor perturbation and its Fourier mode: ~;; and ’yfj
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Introduction Conventions and notations

The latter part of this talk is based on...

@ J. Martin and L. Sriramkumar, The scalar bispectrum in the Starobinsky model:
The equilateral case, JCAP 1201, 008 (2012).

@ D. K. Hazra, J. Martin and L. Sriramkumar, Scalar bispectrum during preheating
in single field inflationary models, Phys. Rev. D 86, 063523 (2012).

@ D. K. Hazra, L. Sriramkumar and J. Martin, BINGO: A code for the efficient com-
putation of the scalar bispectrum, JCAP 1305, 026 (2013).

@ V. Sreenath, R. Tibrewala and L. Sriramkumar, Numerical evaluation of the three-
point scalar-tensor cross-correlations and the tensor bispectrum, JCAP 1312, 037
(2013).

@ J. Martin, L. Sriramkumar and D. K. Hazra, Sharp inflaton potentials and bi-
spectra: Effects of smoothening the discontinuity, JCAP 1409, 039 (2014).

@ V. Sreenath and L. Sriramkumar, Examining the consistency relations describing
the three-point functions involving tensors, JCAP 1410, 021 (2014).

@ V. Sreenath, D. K. Hazra and L. Sriramkumar, On the scalar consistency relation
away from slow roll, arXiv:1410.0252 [astro-ph.CO].
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The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

The scalar and tensor power spectra

The scalar and tensor power spectra P, (k) and P, (k) are defined as:

Rolne) R ) = 00 P (k) 6 e+ k),
s 1030 = SIS P (k) 8 (),

where 7, — conformal time towards the end of inflation and
m1n1 mang Z gmlnl ’n’LQ'le (k)

with ¢2 (k) — polarization tensor describing the gravitational waves.

When comparing with the observations, one often uses the following power
law, template scalar and tensor spectra:

k ng—1 k no
PS (k) == AS kjﬁ and PT (]f) == AT kf .
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The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

Constraints from cosmological data
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Left: The CMB TT angular power spectrum from the Planck 2014 data (the blue dots
with error bars) and the theoretical, best fit ACDM model with a power law primordial
spectrum (the solid red curve)'.

Right: Joint constraints from the recent Planck data (and other cosmological data) on
the inflationary parameters n. and » = P (k) /Pq (k)2

1 From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec1_16h30_Efstathiou_Cosmology.pdf.

2From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h30_Finelli_InflationPlanck.pdf.
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The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

Performance of inflationary models
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The efficiency of the inflationary paradigm leads to a situation wherein, de-
spite the strong constraints, a variety of models continue to remain consiste
with the data®.

3. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403, 039 (2014).
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The status of inflationary models: Constraints from Planck The scalar bispectrum and the non-Gaussianity parameter — Definitions

The scalar bispectrum

The scalar bispectrum Brrr (k1, k2, ks) evaluated towards the end of inflation
at the conformal time 7. is defined as follows*:

(Riy (116) Riey (116) Riey (110)) = (27)° Brrg (K1, ko, kz) 6 (ki + ko + k3) .
For convenience, we shall set

Brrr(ki, k2, ks) = (2 7T)79/2 Grrr(ki, ko, k3).

4D. Larson et al, Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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The status of inflationary models: Constraints from Planck The scalar bispectrum and the non-Gaussianity parameter — Definitions

The non-Gaussianity parameter

The observationally relevant non-Gaussianity parameter f,, is basically intro-
duced through the relation®

R(Wa :E) = RG (7771") - 3J;NL [RZ (777 :E) - <RZ (77,(13)>] )

where R denotes the Gaussian quantity.

Utilizing the above relation and Wick’s theorem, one can arrive at
3fu, (27)°2

10 k$ k3 k3
x [k} Py (k2) Ps(ks) + two permutations]

<7€k1 7%"62 7%”6'3> = 6(3) (kl + ko + k3)

so that one obtains®

[ (R, k2, k3) = RENCESE (k$ k3 k3) Grrr(k1, ko, k3)

x [k3 P, (k2) Ps(ks) + two permutations| -

5E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
6See, for example, J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

An illustration of the inflationary bispectrum

A typical scalar bispectrum encountered in slow roll inflation.
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

The observed CMB TTT angular bispectrum
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Left: The CMB TTT angular bispectrum as observed by Planck, in 2013.
Right: The corresponding 2014 result®.

7P A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
8From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec1_15h00_Wandelt_NG.pdf.
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

Template bispectra

For comparison with the observations, the scalar bispectrum is often expressed
in terms of the parameters f1°°, f°4 and fo'*" as follows:

NL’

Grrr (ki k2, ks) = [0 Gl (k1 ks, ka) + 51 G (R, ko, ks) + for™ GRRr (K1, ks, k).

1.0
0.9
< 08 0.5
£ 0.7psqueezed equilateral
0.6 | | 0
os folded — "\ oca \
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ky/k, Ks/K, -0.5
Shope of Fy(1 ka/kuks/ki)(ka/k)*(ks/ k)" |
where x=local, equilateral, orthogonal
-1.5
Equilateral 7
0.0 0.2 0.4 0.6 0.8 1.0
ks/k,

lllustration of the three template basis bispectra®.
9k Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

Constraints on

The constraints on the primordial values of the non-Gaussianity parameters
from the Planck data are as follows'?:

2013 results

2014 results

Note that the constraints on each of the f,,, parameters have been arrived at
assuming that the other two parameters are zero.

We should also add that these constraints become less stringent if the primor-
dial spectra are assumed to contain features.

These constraints imply that slowly rolling single field models involving the

canonical scalar field which are favored by the data at the level of power spec-

tra are also consistent with the data at the level of non-Gaussianities.
10p A R. Ade et al., Astron. Astrophys. 571, A24 (2014);

From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h50_Bartolo_PSandBispectrum.pdf.

L. Sriramkumar (lIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 13/44



Some remarks on the computation of the power spectra during inflation

Quantization and power spectra

On quantization, the operators (1, ) and 4,; (1, ) can be expressed as'’
> ' d3k A ik-x A * —ik-x
R(n,x) = /W [akfk(ﬂ)ek +al, frme
2. . dSk B s k ik-x bs‘i‘ S% k * —itk-x
e = 3 [ Gom (B35 (R) gu(m) ™= + b3 35 (k) gi(m) e 7
where the Fourier modes f;, and g, satisfy the following equations of motion:
E+2()2) i + K [ =0 and g +2(d'/a) gk +k* gr =0,

with z = a M, v/2¢1 and e; = —dIn H/dN being the first slow roll parameter.

In the vacuum state annihilated by the operators a;, and b;,, the power spectra are
given by the expressions

k® 2 k® 2
Ps(k):ﬁ\fﬂ and PT(k):ZLﬁ‘gk"

With the initial conditions imposed in the sub-Hubble domain, viz. when k/(a H) > 1,
these spectra are to be evaluated on super-Hubble scales, i.e. as k/(a H) < 1.

" See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Some remarks on the computation of the power spectra during inflation

From inside the Hubble radius to super-Hubble scales

log (length)

H~! ~ constant it Behavior of Hubble

’ . ..
, « radius in the absence

L, of inflation

“— Inflation /. — |
log a(t)

A schematic diagram illustrating the behavior of the physical wavelength A\,

a (the blue lines) and the Hubble radius /! (the red line) during inflation and
the radiation dominated epochs'2.

Radiation domination

125ee, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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The Maldacena formalism for evaluating the scalar bispectrum

The quadratic action governing the perturbations

The actions governing the perturbations at a given order can be arrived at
using the ADM formalism.

For instance, one can work in a gauge wherein, upon taking into account
the scalar and the tensor perturbations, the FLRW metric is described by the
line-element

ds? = —di? + a2(t) 2 R(t@) [e'y(t,a:):| datda’.

ij

One can show that, at the quadratic order, the actions governing R and v;;
are given by

SR [R] = % / dy / Pz 22 [R’Z - (672)2} :

and

S Sl = M, /dn /d3aca 'yw (6’yu)}.

By F Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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The Maldacena formalism for evaluating the scalar bispectrum

The action at the cubic order

It can be shown that the third order term in the action describing the curvature
perturbation is given by’

Srrrl[R /dn /dgzc [a ERR?+a* R (OR)?
2

—2ae; R (O'R) (0;x) + % b RPR + %1 (0'R) (9;x) (9%x)

L @PR) (0y)? + FLR) Yokr
1 x R |

where e; = dlne; /dN is the second slow roll parameter, £% . represents the
second order Lagrangian density governing the scalars, and 9%y = ae; R'.

14y, Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The Maldacena formalism for evaluating the scalar bispectrum
Evaluating the scalar bispectrum

At the leading order in the perturbations, one then finds that the scalar three-
point correlation function in Fourier space is described by the integral®®

<7%k1 (7e) 7%14:2 (77e) 7A3k3 (77c)V>
=i [ ayatn) ([Ru, (1) Ruc 1) R ), )] ).

i

where H; is the Hamiltonian corresponding to the above third order action and
7; denotes a sufficiently early time when the initial conditions are imposed on
the modes.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are to be evaluated
in the perturbative vacuum.

153ee, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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The Maldacena formalism for evaluating the scalar bispectrum

The resulting bispectrum

The quantity Grrr (k1, k2, k3) evaluated towards the end of inflation at the conformal
time 7. can be written as'®

Grrr(k1, k2, k3) = Z GXpr (1, ka2, ks3)

6

Mlzl Z {[fkl (775) sz (77‘3) fks (Ue)] g7(zc7)z7z(k’17 k27 k3)

C=1

+ complex conjugate} + GRRR(kzl, ko, k3),

where the quantities G, (k1, k2, k3) with C' = (1,6) correspond to the six terms in
the interaction Hamiltonian.

The additional, seventh term Gggm(kl, ko, ks3) arises due to a field redefinition, and
its contribution to Grrr (k1, k2, k3) is given by

Gg%zn(kl, ko, k3) = 62(176) (| e ()12 | fis (1) |” + two permutations) .

18, Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The Maldacena formalism for evaluating the scalar bispectrum

The integrals involved

The quantities G5 (k1, k2, k3) with C' = (1,6) are described by the integrals

Te
Q%)QR(kl,kg,kg) = 24 dna® € (fr, fie fis + two permutations)

i
Me
(J%)QR(kl,kz,ka) = —2i (ki1 - k2 + two permutations) / dna’® € fr, fry frss
i
(3) . e 2 2 kl N k2 * I plx .
Grrr(ki, ko, ks) = —21/ dna” €] 2 frey fry fig + five permutations |,
i 2
Me
Oiinr (i ko ks) = i [ dna®eiés (fi, fi, il + two permutations) ,
73
e .
7(357)373(k1, ko, ks) = % / dna® e {(klk;”) fry fry frg + five permutations},
7; 2

i [ kD (k2 k3)| o o e
Gt oo, ks) = & [ anat et { PRI g g g
i 23

+ two permutations}.
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The Maldacena formalism for evaluating the scalar bispectrum

The analytical scalar bispectrum in slow roll inflation

1.0F 0.023
ook 0.021
0.019
£ 08F
> F 0.017
* orf
0.014
o8t 0.012
05k . . . . 0.010
0.0 02 04 0.6 08 1.0

ka/k,
The inflationary scalar bispectrum (actually, the non-Gaussianity parameter f,, ) in the
case of the conventional quadratic potential, arrived at analytically using the slow roll
approximation”.

Note that f, ~ e: in canonical models involving a single scalar field, while f,, ~
e1/c2 in non-canonical models, where ¢, denotes the speed of the scalar perturba-
tions'®. The most recent results imply that ¢, > 0.024'°.

17D, K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013).

1836, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);

X. Chen, Adv. Astron. 2010, 638979 (2010).

19From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h50_Bartolo_PSandBispectrum.pdf.
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BINGO: An efficient code to numerically compute the bispectrum

The various times of interest?°

10%°E [ T [ N RS
N : Inflation: : Rghéating ]
10sf ! ! L Co 7
- 1 1 i ]
L A, -
[ 1 1 [
1020 [ Az > Ay , s
N \ )\(., > Ag \ Y
r | —— () 1 1
L 1 1 1
10" I |
[ 1 A 1
L | . |
o L _____ R !
10%°F 1, T 1
F 1 : T 1
r 1 1
10° * f
r 1 1
C~ " |
10°F 7 :
C I I 11
o 20 40

e—fold number N

The exact behavior of the physical wavelengths and the Hubble radius plotted
as a function of the number of e-folds in the case of the archetypical quadratic
potential, which allows us to illustrate the various times of our interest, viz.
Miy Ns ANd 7.

20D, K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013).
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BINGO: An efficient code to numerically compute the bispectrum

An estimate of the super-Hubble contribution to

In power law inflation of the form a(n) = a1 (/71)”"!, one can show that the
super-Hubble contribution to f,, in the equilateral limit is given by

eq (se) _ 9 _9('7"‘2) 2 1 2441
raeow = 2= [i2- 20D p (44 1) 7 4 ) (42

H. k —(2v+1)
X (v + 1)_2(7+1) sin (27 ) |:1 — Fse_3(Ne_NS):| (T ) ,

where we have set 1, to be 7.

For v = —(2 + ¢), where € ~ 102, the above estimate for f,, reduces to

5¢2 (ke \°
eq (se) < _ Y= s ~ 1 —19
raeow s -2 () = -0,

where, in obtaining the final value, we have set &, /(as Hy) = 107°.
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BINGO: An efficient code to numerically compute the bispectrum

Implementation of the cut-off in the sub-Hubble limit

le-14 —

1e-15 F

1e-16 £

1e-17

(V]

c

K |G

1e-18 ¢

1e-19 ¢

1e-20 ¢

e oo 0.01 01 1
The various contributions to the bispectrum, with the sub-Hubble cut-off introduced as
exp — k k/(a H), have been plotted as a function of the parameter « for a given mode
and a fixed upper limit in the case of the quadratic inflationary potential?'. The solid,
dashed and the dotted lines correspond to integrating from k/(a H) of 10%, 10* and
10, respectively. Clearly, x = 0.1 seems to be an optimal value?.

21X Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008).
22D, K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026, (2013).
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BINGO: An efficient code to numerically compute the bispectrum

Results from BINGO?23

0.0 02 04 06 08 1.0 0.0 02 04 0.6 08 1.0

ky/ky ky/ky
A comparison of the analytical results (on the left) for the non-Gaussianity
parameter f,, with the numerical results from the code Blspectra and Non-
Gaussianity Operator or, simply, BINGO (on the right) for a generic triangular
configuration of the wavevectors in the case of the standard quadratic poten-
tial. The maximum difference between the numerical and the analytic results
is found to be about 5%.

23D, K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026, (2013).
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BINGO: An efficient code to numerically compute the bispectrum

Inflationary models permitting deviations from slow roll

Axion monodromy model
Punctuated inflation
Quadratic potential with a step
1.5 |- 1
=
~
— 1.0 N
=
S~—
=N
0.5
0.0 ‘
0.0 0.5

1.0 1.5

o/M,,

lllustration of potentials that admit departures from slow roll.

2.0 2.5

L. Sriramkumar (IIT Madras, Chennai, India)

Inflationary three-point functions

December 16, 2014 26/44



BINGO: An efficient code to numerically compute the bispectrum

Spectra leading to an improved fit to the CMB data

Axion monodromy model 3
Punctuated inflation 1
Quadratic potential with a step

1071(1

10711

10712
=
=107
58

1071 1

10715

10710

1017

10718
10°° 10 10 102 10! 10° 1074 103 102 10!

Left: The scalar power spectra in different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum?*.
Right: A set of spectra with features considered by the Planck team?®.

24R K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).

25p A R. Ade et al., Astron. Astrophys. 571, A22 (2014).
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BINGO: An efficient code to numerically compute the bispectrum

in models with features?®

1499.0

750

<750

-1485.0

-0.6 0.5 L L
0.0 0.2 0

0.1 06
ks/kn

0.8 10

0.2 0. 6 0.8 Lo

lk‘;/h 0,
The scalar non-Gaussianity parameter f,, in the punctuated inflationary sce-
nario (on the left), quadratic potential with a step (in the middle) and the axion
monodromy model (on the right).

26D, K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013);
V. Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.CO].
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Contributions to the scalar bispectrum during preheating

Evolution during preheating

101
10"+

10"+

£y

91
TR 10

| (k) |

108_

107+

10°L . . .

290 292 294 296 298 300 302 28.0 285 29.0 295 300 305 31.0
Number of e—folds N Number of e-folds N

Left: The evolution of the curvature perturbation associated with a very small
scale mode during preheating in a quadratic minimum.

Right: The behavior of the corresponding G (k1, k2, k3) in the equilateral limit.
The blue curves represent the numerical results, while the dashed red curves
denote the analytical results.
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Contributions to the scalar bispectrum during preheating

An estimate of the contributionto  during preheating

Upon assuming inflation to be of the power law form, the contribution to the
non-Gaussianity parameter f,,, during preheating can be obtained to be

. 115 1 . -
A = et (v g) F @y 1) sinny) b

-2 —~1/4 1747~ @7+
x [1 - e [( g*> (14 zeq)'/* Boric

30 Trh
y k —(2v+1)
aop Ho ’

where ¢, denotes the effective number of relativistic degrees of freedom at
reheating, 7.1, the reheating temperature and =, the redshift at the epoch of
equality. Also, p..i, ag and H, represent the critical energy density, the scale
factor and the Hubble parameter today, respectively.

For a model with v ~ —2 and a reheating temperature of 7;;, ~ 10'° GeV, one
obtains that f,, ~ 10~ for the modes of cosmological interest (i.e. for k s
that &k /ao ~ Hy), a value which is completely unobservable?’.

27D, K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The cross-correlations and the tensor bispectrum

The cross-correlations involving two scalars and a tensor and a scalar and
two tensors are defined as

(Rie, (1) Riey (0e) 482 (ne) ) = (27)° B (K, ko, ki) 6 (k1 + ks + ks) ,
(Riey () 382, (1) AK2 0 (ne)) = (27)° BR2r™3" (key koo, k)
x 6G) (ky + kg + k3),

while the tensor bispectrum is given by

(R (1) 82, (1) RS g (me)) = (270)° B ™212575 (K oy, Kig)
X 6(3) (k1 + kg —+ kg) .

As in the pure scalar case, we shall set
Bgc(k1, ka, ks) = (27) "% Gasc(k1, ka, ks),

where each of (A, B, C) can be eithera R or a ~.
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

Introducing additional non-Gaussianity parameters

Extending the original argument for introducing the parameter f,, , one can
introduce dimensionless non-Gaussianity parameters, say, CZ}L, CY and h,,
to characterize the other three-point functions as follows?®:

Ripa) = Rolnw)— 2D [R2 (n,2) (R (5.2))

- CZ?L R (7% CC) Veh (777 .’13)
and

Vi) = ASnx) — by, (750, ®) va(n ) — (75 (0, ) Y5a (0, ))]
=CY () Re(n, ),

where R, and ~; denote the Gaussian quantities.

28y Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

Expressions for the non-Gaussianity parameters

One finds that the non-Gaussianity parameters C

NL?
terms of the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations and

the tensor bispectrum as®

CY, and hy, canbe expressed in

ox = —ﬁ [k k8 kS G (k. B, )|

< (108 n) {[ki" Pe (ka) + k3 Py (k)] PT(ks,)}l,
cl = —(2::2)2 [k K3 k3 GR2i2ms™ (key, ko, kes)]

x {PS (k1) (105 nmans b Pr (k) + T g man b Pr (k)| }
hyy = — (2‘;2)2 (K3 k5 k3 GImam2namans (g ko, k)]

-1
X [H,’:}lnlmwm H,’ffgngymﬁ k3 Pyp(k1) Py (ko) + five permutations] .

29y, Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The actions governing the other three point functions

The actions that lead to the correlations involving two scalars and one tensor,
one scalar and two tensors and three tensors are given by3°

1
S%R,Y[R, 'Vij] = Msl /d’l] /dgoc |:a2 €1 Vij 817% 837% + Z 82’)/ij (‘%x 8jX

acy 6£?W 3 553372
+ — 5 7118R8jx+ (R) 57 + F(R,vij) SR

/ a2 €1
i Yt 5 R 0rvij Orvij

a2€
S%—w[ 7’71] Pl /dﬂ/d?’ |: 21

, 4 0L,
— a7 al%'j ax + ]:ij (R, Ymn) 577 )
3 a?
S5 vzl = My, /dn /d x [ Y15 Yim OO0mYij — o Vi Yim (MMU}.

The quantities L%, and L2 are the second order Lagrangian densities com-
prising of two scalars and tensors which lead to the equations of motion.

30J. Maldacena, JHEP 0305, 013 (2003).
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Evaluating the other three-point functions Computation of the three-point functions

Comparison between analytical and numerical results
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ks/ky ks ks

A comparison of the analytical results (at the bottom) for the non-Gaussianity
parameters C”* (on the left), C7 (in the middle) and %, (on the right) with
the numerical results (on top) for a generic triangular configuration of the
wavevectors in the case of the standard quadratic potential®!. As in the case
of the scalar bispectrum, the maximum difference between the numerical and
the analytic results is about 5%.

31V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions Three point functions in models with deviations from slow roll

Three point functions for models with features
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Density plots of the non-Gaussianity parameters C* (on top), €7, (in the
middle) and ., (at the bottom) evaluated numerically for an arbitrary triangu-
lar configuration of the wavevectors for the case of the punctuated inflationa
scenario (on the left), the quadratic potential with the step (in the middle)

and the axion monodromy model (on the right).
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The effect of the long wavelength modes

Since the amplitude of a scalar or a tensor mode is a constant when they are
well outside the Hubble radius, a long wavelength perturbation can be treated
as a background as far as the smaller wavelength modes are concerned.

Let us denote the constant amplitude (i.e. as far as their time dependence is
concerned) of the long wavelength scalar and tensor modes as, say, R" and
7i;, respectively.
In the presence of such modes, the background FLRW metric will take the
form

ds® = —dt? + a?(t) 27 [eVB]ij da’ da?,

i.e. the long wavelength modes lead to modified spatial coordinates.

Such a modification is completely equivalent to a spatial transformation of the
form o’ = A x, with the components of the matrix A being given by

Ay = eR? [eVB /2}

ij
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The behavior of the two-point functions

One finds that the scalar and the tensor two-point functions in the presence of
a long wavelength mode denoted by, say, the wavenumber k, can be written
as

(2m)?

(Riey Riey)ie = 573 Py (k1) 6 (k1 + k2)
1

—4
x [1_(ns -R" - (nSQ ) %Bjﬁliﬁlj]y

5 -y 27T 2 H’;‘Ij} ni,man
<77I7€111n1 77’?122H2>k = (2 k‘:))’ ' i = PT(kl) 6(3) (kl + k2)
1

-3
X [l—nTRB - (”T2 > ijflufllj],

where n1; = kli/kl-
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The squeezed limit and the consistency relations

The behavior of the three-point functions

One can also show that, in the presence of a long wavelength mode, the three-point

functions can be written as

(Riy Riey Ries Yks = (( Ry Ry Vg Res )
27 5/2
- - (4 ks')k3 (ng — 1) Py (k1) Pg(ks) 53(k1 + ko),
13
<Rka1 Rico '3/7’:1?;713 >k3 = <<Rkn,1 Rics >k3 f%’;%n3 >
__(2m)? (ng—4
= T g ) Pelk)Prlks)
X H'rljlsgng,ij TALli ﬁlj 63(’{)1 + k2),
<7Azk',1 ’3’7’10122712 ;Y::fo,ng, >k1 = <7€k:1 <;y71:122n2 ’AY::{;’)’L()' >k1 >
(2 n K 3
- 4k3 k3 TTPS(kl)PT(kQ)H"?2n2,M3n36 (k2 + ks3),
<’S/’fl:llln1 ’3/?”:"122712 ﬁ'ﬁm‘éng >k3 = < <'Ay§111n1 ,%’;22712 >k3 ,%lzg,sn?’ >
(2 7.()5/2

_ nT_3
- 4k?k§ ( 39 )PT(kl)PT(k3)

ki k3
X Hmlnl,m2n2 Hm3n37ij

N14 N1 (53(’61 + kg).
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The squeezed limit and the consistency relations

Consistency relations in the squeezed limit

Upon making use of the above expressions for the three-point functions in the defini-
tions for the non-Gaussianity parameters, we can express the consistency relations in

the squeezed limit as follows®:

. 5
Jimy fo O~k k) = 5 (k)= 1],
4 —1
lim C]Z]zL (kv _k7 k3) = {%} (H:fzsgng,m'ﬁ) H:chs na,ij i ’flj,
ks —0 4 3M3,%]
klllglo C;L (k1, k, —k) = T2 (HmQ’rLQ,ms’na) Hm2n27m3n37
klslgo hNL(kv 7k7 k3) = {%} <2 Hm1n1,m2n2 Hm33n3,ﬁm

—1
k ks k ks
+ Hm1n1,fnﬁ Hmsns,m2'ﬂ2 + Hmﬁ7m2n2 Hm3n3,m1n1>

x 1% ks

miny,mang mang,ij 10 T

32, Maldacena, JHEP 0305, 013 (2003);
P. Creminelli and M. Zaldarriaga, JCAP 0410, 006 (2004);
D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108, 251301 (2012);
S. Kundu, JCAP 1404, 016 (2014);
V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll |
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The behavior of the quantities f, (on top) and h, (at the bottom) in the squeezed
limit has been plotted as a function of the wavenumber in the case of the punctuated
inflationary scenario (on the left), the quadratic potential with a step (in the middle)
and the axion monodromy model (on the right). The solid blue curves represent the
numerical results obtained from the three-point functions, while the red dashed curves
denote those arrived at using the consistency relations®.

33V, Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.COJ;
V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll Il
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The behavior of the quantities C (on top) and C7, (at the bottom) in the squeezed
limit has been plotted as a function of the wavenumber for the three models of interest
as in the previous figure. Evidently, the good match between the solid blue curves and
the red dashed ones indicate the validity of the consistency relations even in situations
involving strong departures from slow roll as in punctuated inflation.
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Summary

Summary

@ The strong constraints on the non-Gaussianity parameter f,, from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.

@ In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features®*. The possibility of such features
can provide a strong handle on constraining inflationary models. Else,
one may need to carry out a systematic search involving the scalar and
the tensor power spectra®, the scalar and the tensor bispectra and the
cross correlations to arrive at a small subset of viable inflationary mod-
els®.

@ Interestingly, we find that, in single field inflationary models, the consis-
tency conditions governing the three-point functions remain valid even in
situations involving sharp departures from slow roll. Observational evi-
dence of deviations from the consistency conditions can provide a pow-
erful constraint, possibly ruling out all single field inflationary models.

34p A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
35| this context, see J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
36 R. Fergusson, H. F. Gruetjen, E. P. S. Shellard and M. Liguori, arXiv:1410.5114 [astro-ph.CO].
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