
Inflationary three-point functions

L. Sriramkumar

Department of Physics, Indian Institute of Technology Madras, Chennai, India

The Primordial Universe After Planck

Institut d’Astrophysique de Paris, Paris

December 15–19, 2014

http://www.physics.iitm.ac.in/~sriram/


Introduction Plan

Plan of the talk

1 The status of inflationary models: Constraints from Planck

2 Some remarks on the computation of the power spectra during inflation

3 The Maldacena formalism for evaluating the scalar bispectrum

4 BINGO: An efficient code to numerically compute the bispectrum

5 Contributions to the scalar bispectrum during preheating

6 Evaluating the other three-point functions

7 The squeezed limit and the consistency relations

8 Summary

L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 2 / 44



Introduction Conventions and notations

Conventions and notations

F Units: c = ~ = 1, M
Pl

= (8πG)−1/2

F Background: Spatially flat FLRW metric described by the line-element

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
with t – cosmic time and η – conformal time

F Scale factor and Hubble parameter: a and H = ȧ/a

F Derivatives: ˙≡ d/dt, ′ ≡ d/dη

F E-folds: N
F Curvature perturbation and its Fourier mode: R and Rk

F Tensor perturbation and its Fourier mode: γij and γkij
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Introduction Conventions and notations

The latter part of this talk is based on. . .
J. Martin and L. Sriramkumar, The scalar bispectrum in the Starobinsky model:
The equilateral case, JCAP 1201, 008 (2012).

D. K. Hazra, J. Martin and L. Sriramkumar, Scalar bispectrum during preheating
in single field inflationary models, Phys. Rev. D 86, 063523 (2012).

D. K. Hazra, L. Sriramkumar and J. Martin, BINGO: A code for the efficient com-
putation of the scalar bispectrum, JCAP 1305, 026 (2013).

V. Sreenath, R. Tibrewala and L. Sriramkumar, Numerical evaluation of the three-
point scalar-tensor cross-correlations and the tensor bispectrum, JCAP 1312, 037
(2013).

J. Martin, L. Sriramkumar and D. K. Hazra, Sharp inflaton potentials and bi-
spectra: Effects of smoothening the discontinuity, JCAP 1409, 039 (2014).

V. Sreenath and L. Sriramkumar, Examining the consistency relations describing
the three-point functions involving tensors, JCAP 1410, 021 (2014).

V. Sreenath, D. K. Hazra and L. Sriramkumar, On the scalar consistency relation
away from slow roll, arXiv:1410.0252 [astro-ph.CO].
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The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

The scalar and tensor power spectra
The scalar and tensor power spectra P

S
(k) and P

T
(k) are defined as:

〈R̂k(ηe) R̂k′(ηe)〉 =
(2π)2

2 k3
PS(k) δ(3) (k + k′) ,

〈γ̂km1n1
(ηe) γ̂k

′

m2n2
(ηe)〉 =

(2π)2

8 k3
Πk
m1n1,m2n2

P
T

(k) δ3 (k + k′) ,

where ηe – conformal time towards the end of inflation and

Πk
m1n1,m2n2

=
∑
s

εsm1n1
(k) εs∗m2n2

(k)

with εsmn(k) – polarization tensor describing the gravitational waves.

When comparing with the observations, one often uses the following power
law, template scalar and tensor spectra:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

and P
T

(k) = A
T

(
k

k∗

)n
T

.
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The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

Constraints from cosmological data

Left: The CMB TT angular power spectrum from the Planck 2014 data (the blue dots
with error bars) and the theoretical, best fit ΛCDM model with a power law primordial
spectrum (the solid red curve)1.
Right: Joint constraints from the recent Planck data (and other cosmological data) on
the inflationary parameters nS and r = PT(k)/PS(k)2.

1From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec1_16h30_Efstathiou_Cosmology.pdf.
2From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h30_Finelli_InflationPlanck.pdf.

L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 6 / 44



The status of inflationary models: Constraints from Planck Comparison at the level of power spectra

Performance of inflationary models

The efficiency of the inflationary paradigm leads to a situation wherein, de-
spite the strong constraints, a variety of models continue to remain consistent
with the data3.

3J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403, 039 (2014).
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The status of inflationary models: Constraints from Planck The scalar bispectrum and the non-Gaussianity parameter – Definitions

The scalar bispectrum
The scalar bispectrum BRRR(k1,k2,k3) evaluated towards the end of inflation
at the conformal time ηe is defined as follows4:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BRRR(k1,k2,k3) δ(3) (k1 + k2 + k3) .

For convenience, we shall set

BRRR(k1,k2,k3) = (2π)
−9/2

GRRR(k1,k2,k3).

4D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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The status of inflationary models: Constraints from Planck The scalar bispectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is basically intro-
duced through the relation5

R(η,x) = RG(η,x)− 3 fNL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity.

Utilizing the above relation and Wick’s theorem, one can arrive at

〈R̂k1
R̂k2
R̂k3
〉 = −3 f

NL

10

(2π)5/2

k3
1 k

3
2 k

3
3

δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
,

so that one obtains6

f
NL

(k1,k2,k3) = −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
GRRR(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

5E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
6See, for example, J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

An illustration of the inflationary bispectrum

A typical scalar bispectrum encountered in slow roll inflation.

L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 10 / 44



The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

The observed CMB TTT angular bispectrum

Left: The CMB TTT angular bispectrum as observed by Planck, in 20137.
Right: The corresponding 2014 result8.

7P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
8From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec1_15h00_Wandelt_NG.pdf.
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

Template bispectra
For comparison with the observations, the scalar bispectrum is often expressed
in terms of the parameters f loc

NL
, f eq

NL
and forth

NL
as follows:

GRRR(k1,k2,k3) = f
loc

NL
G

loc
RRR(k1,k2,k3) + f

eq

NL
G

eq
RRR(k1,k2,k3) + f

orth

NL
G

orth
RRR(k1,k2,k3).

Illustration of the three template basis bispectra9.
9E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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The status of inflationary models: Constraints from Planck Constraints from Planck on the scalar bispectrum

Constraints on f
NL

The constraints on the primordial values of the non-Gaussianity parameters
from the Planck data are as follows10:

2013 results

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

2014 results

f loc
NL

= 0.71± 5.1,

f eq
NL

= −9.5± 44,

forth
NL

= −25± 22.

Note that the constraints on each of the f
NL

parameters have been arrived at
assuming that the other two parameters are zero.

We should also add that these constraints become less stringent if the primor-
dial spectra are assumed to contain features.

These constraints imply that slowly rolling single field models involving the
canonical scalar field which are favored by the data at the level of power spec-
tra are also consistent with the data at the level of non-Gaussianities.

10P. A. R. Ade et al., Astron. Astrophys. 571, A24 (2014);
From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h50_Bartolo_PSandBispectrum.pdf.
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Some remarks on the computation of the power spectra during inflation

Quantization and power spectra
On quantization, the operators R̂(η,x) and γ̂ij(η,x) can be expressed as11

R̂(η,x) =

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k (η) e−ik·x

]
,

γ̂ij(η,x) =
∑
s

∫
d3k

(2π)3/2

[
b̂sk ε

s
ij(k) gk(η) eik·x + b̂s†k εs∗ij (k) g∗k(η) e−ik·x

]
,

where the Fourier modes fk and gk satisfy the following equations of motion:

f ′′k + 2 (z′/z) f ′k + k2 fk = 0 and g′′k + 2 (a′/a) g′k + k2 gk = 0,

with z = aMPl

√
2 ε1 and ε1 = − d lnH/dN being the first slow roll parameter.

In the vacuum state annihilated by the operators âk and b̂sk, the power spectra are
given by the expressions

PS(k) =
k3

2π2
|fk|2 and PT(k) = 4

k3

2π2
|gk|2.

With the initial conditions imposed in the sub-Hubble domain, viz. when k/(aH)� 1,
these spectra are to be evaluated on super-Hubble scales, i.e. as k/(aH)� 1.

11See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Some remarks on the computation of the power spectra during inflation

From inside the Hubble radius to super-Hubble scales

log a(t)

lo
g
(l
e
n
g
th
)

H−1 ∼ constant

H
−1
∼
a
2

λ2
∼ aλ1

(>
λ2
) ∼

a

Behavior of Hubble
← radius in the absence

of inflation

| ← Inflation → | Radiation domination

A schematic diagram illustrating the behavior of the physical wavelength λP ∝
a (the blue lines) and the Hubble radius H−1 (the red line) during inflation and
the radiation dominated epochs12.

12See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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The Maldacena formalism for evaluating the scalar bispectrum

The quadratic action governing the perturbations
The actions governing the perturbations at a given order can be arrived at
using the ADM formalism.

For instance, one can work in a gauge wherein, upon taking into account
the scalar and the tensor perturbations, the FLRW metric is described by the
line-element

ds2 = −dt2 + a2(t) e2R(t,x)
[
eγ(t,x)

]
ij

dxidxj .

One can show that, at the quadratic order, the actions governing R and γij
are given by13

S2
RR[R] =

1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)

2
]
,

and

S2
γγ [γij ] =

M2
Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

13V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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The Maldacena formalism for evaluating the scalar bispectrum

The action at the cubic order
It can be shown that the third order term in the action describing the curvature
perturbation is given by14

S3
RRR[R] = M2

Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F1(R)
δL2
RR
δR

]
,

where ε2 = d ln ε1/dN is the second slow roll parameter, L2
RR represents the

second order Lagrangian density governing the scalars, and ∂2χ = a ε1R′.

14J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The Maldacena formalism for evaluating the scalar bispectrum

Evaluating the scalar bispectrum
At the leading order in the perturbations, one then finds that the scalar three-
point correlation function in Fourier space is described by the integral15

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action and
ηi denotes a sufficiently early time when the initial conditions are imposed on
the modes.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are to be evaluated
in the perturbative vacuum.

15See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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The Maldacena formalism for evaluating the scalar bispectrum

The resulting bispectrum
The quantity GRRR(k1,k2,k3) evaluated towards the end of inflation at the conformal
time ηe can be written as16

GRRR(k1,k2,k3) ≡
7∑

C=1

G(C)

RRR(k1,k2,k3)

≡ M2
Pl

6∑
C=1

{
[fk1(ηe) fk2(ηe) fk3(ηe)] G(C)

RRR(k1,k2,k3)

+ complex conjugate

}
+G

(7)
RRR(k1,k2,k3),

where the quantities G(C)

RRR(k1,k2,k3) with C = (1, 6) correspond to the six terms in
the interaction Hamiltonian.
The additional, seventh term G

(7)
RRR(k1,k2,k3) arises due to a field redefinition, and

its contribution to GRRR(k1,k2,k3) is given by

G
(7)
RRR(k1,k2,k3) =

ε2(ηe)

2

(
|fk2(ηe)|2 |fk3(ηe)|2 + two permutations

)
.

16J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The Maldacena formalism for evaluating the scalar bispectrum

The integrals involved
The quantities G(C)

RRR(k1,k2,k3) with C = (1, 6) are described by the integrals

G(1)
RRR(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f∗k1 f

′∗
k2 f

′∗
k3 + two permutations

)
,

G(2)
RRR(k1,k2,k3) = − 2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1 f

∗
k2 f

∗
k3 ,

G(3)
RRR(k1,k2,k3) = − 2 i

∫ ηe

ηi

dη a2 ε21

[(
k1 · k2

k2
2

)
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

]
,

G(4)
RRR(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f∗k1 f

∗
k2 f

′∗
k3 + two permutations

)
,

G(5)
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

[(
k1 · k2

k2
2

)
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

]
,

G(6)
RRR(k1,k2,k3) =

i

2

∫ ηe

ηi

dη a2 ε31

{[
k2

1 (k2 · k3)

k2
2 k

2
3

]
f∗k1 f

′∗
k2 f

′∗
k3

+ two permutations

}
.

L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 20 / 44



The Maldacena formalism for evaluating the scalar bispectrum

The analytical scalar bispectrum in slow roll inflation

The inflationary scalar bispectrum (actually, the non-Gaussianity parameter fNL ) in the
case of the conventional quadratic potential, arrived at analytically using the slow roll
approximation17.

Note that fNL ∼ ε1 in canonical models involving a single scalar field, while fNL ∼
ε1/c

2
S

in non-canonical models, where cS denotes the speed of the scalar perturba-
tions18. The most recent results imply that cS ≥ 0.02419.

17D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013).
18See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);

X. Chen, Adv. Astron. 2010, 638979 (2010).
19From http://www.cosmos.esa.int/documents/387566/387653/Ferrara_Dec3_14h50_Bartolo_PSandBispectrum.pdf.
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BINGO: An efficient code to numerically compute the bispectrum

The various times of interest20

The exact behavior of the physical wavelengths and the Hubble radius plotted
as a function of the number of e-folds in the case of the archetypical quadratic
potential, which allows us to illustrate the various times of our interest, viz.
ηi, ηs and ηe.

20D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013).
L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 22 / 44



BINGO: An efficient code to numerically compute the bispectrum

An estimate of the super-Hubble contribution to f eq
NL

In power law inflation of the form a(η) = a1 (η/η1)γ+1, one can show that the
super-Hubble contribution to f

NL
in the equilateral limit is given by

feq (se)
NL

(k) =
5

72π

[
12− 9 (γ + 2)

γ + 1

]
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1) (γ + 2)

× (γ + 1)−2 (γ+1) sin (2π γ)

[
1− Hs

He
e−3 (Ne−Ns)

] (
k

as Hs

)−(2 γ+1)

,

where we have set η1 to be ηs.

For γ = −(2 + ε), where ε ' 10−2, the above estimate for f
NL

reduces to

f eq (se)
NL

(k) . −5 ε2

9

(
ks

asHs

)3

' −10−19,

where, in obtaining the final value, we have set ks/(asHs) = 10−5.
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BINGO: An efficient code to numerically compute the bispectrum

Implementation of the cut-off in the sub-Hubble limit

 1e-21

 1e-20

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 0.001  0.01  0.1  1

k
6
 |
G

n
(k

)|

κ

The various contributions to the bispectrum, with the sub-Hubble cut-off introduced as
exp− κ k/(aH), have been plotted as a function of the parameter κ for a given mode
and a fixed upper limit in the case of the quadratic inflationary potential21. The solid,
dashed and the dotted lines correspond to integrating from k/(aH) of 102, 103 and
104, respectively. Clearly, κ = 0.1 seems to be an optimal value22.

21X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008).
22D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026, (2013).
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BINGO: An efficient code to numerically compute the bispectrum

Results from BINGO23

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the numerical results from the code BIspectra and Non-
Gaussianity Operator or, simply, BINGO (on the right) for a generic triangular
configuration of the wavevectors in the case of the standard quadratic poten-
tial. The maximum difference between the numerical and the analytic results
is found to be about 5%.

23D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026, (2013).
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BINGO: An efficient code to numerically compute the bispectrum

Inflationary models permitting deviations from slow roll

0.0 0.5 1.0 1.5 2.0 2.5
φ/M

pl

0.0

0.5

1.0

1.5

2.0

V
(φ
)/
M

4
Axion monodromy model

Punctuated inflation

Quadratic potential with a step

Illustration of potentials that admit departures from slow roll.
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BINGO: An efficient code to numerically compute the bispectrum

Spectra leading to an improved fit to the CMB data

10−5 10−4 10−3 10−2 10−1 100

k

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

P s
(k
)

Axion monodromy model

Punctuated inflation

Quadratic potential with a step

10−3 10−2

10−10

10−9

10−8

10−4 10−3 10−2 10−1

k [Mpc−1]

10
9
P R

(k
)

2

3

Left: The scalar power spectra in different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum24.
Right: A set of spectra with features considered by the Planck team25.

24R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).

25P. A. R. Ade et al., Astron. Astrophys. 571, A22 (2014).
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BINGO: An efficient code to numerically compute the bispectrum

f
NL

in models with features26
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The scalar non-Gaussianity parameter f
NL

in the punctuated inflationary sce-
nario (on the left), quadratic potential with a step (in the middle) and the axion
monodromy model (on the right).

26D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 1305, 026 (2013);
V. Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.CO].
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Contributions to the scalar bispectrum during preheating

Evolution during preheating

Left: The evolution of the curvature perturbation associated with a very small
scale mode during preheating in a quadratic minimum.
Right: The behavior of the corresponding G2(k1,k2,k3) in the equilateral limit.
The blue curves represent the numerical results, while the dashed red curves
denote the analytical results.
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Contributions to the scalar bispectrum during preheating

An estimate of the contribution to f eq
NL

during preheating
Upon assuming inflation to be of the power law form, the contribution to the
non-Gaussianity parameter f

NL
during preheating can be obtained to be

feq
NL

(k) =
115 ε1
288π

Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2π γ) |γ + 1|−2 (γ+1)

×
[
1− e−3 (Nf−Ne)/2

] [(π2 g∗
30

)−1/4

(1 + zeq)1/4 ρ
1/4
cri

Trh

]−(2 γ+1)

×
(

k

a0 H0

)−(2 γ+1)

,

where g∗ denotes the effective number of relativistic degrees of freedom at
reheating, Trh the reheating temperature and zeq the redshift at the epoch of
equality. Also, ρcri, a0 and H0 represent the critical energy density, the scale
factor and the Hubble parameter today, respectively.

For a model with γ ' −2 and a reheating temperature of Trh ' 1010 GeV, one
obtains that f

NL
≈ 10−60 for the modes of cosmological interest (i.e. for k such

that k/a0 ' H0), a value which is completely unobservable27.
27D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The cross-correlations and the tensor bispectrum
The cross-correlations involving two scalars and a tensor and a scalar and
two tensors are defined as

〈R̂k1
(ηe) R̂k2

(ηe) γ̂k3
m3n3

(ηe) 〉 = (2π)
3 Bm3n3

RRγ (k1,k2,k3) δ(3) (k1 + k2 + k3) ,

〈R̂k1
(ηe) γ̂k2

m2n2
(ηe) γ̂k3

m3n3
(ηe)〉 = (2π)

3 Bm2n2m3n3

Rγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

while the tensor bispectrum is given by

〈γ̂k1
m1n1

(ηe) γ̂k2
m2n2

(ηe) γ̂k3
m3n3

(ηe)〉 = (2π)
3 Bm1n1m2n2m3n3

γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3) .

As in the pure scalar case, we shall set

BABC(k1,k2,k3) = (2π)
−9/2

GABC(k1,k2,k3),

where each of (A,B,C) can be either a R or a γ.
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

Introducing additional non-Gaussianity parameters
Extending the original argument for introducing the parameter f

NL
, one can

introduce dimensionless non-Gaussianity parameters, say, CR
NL

, Cγ
NL

and h
NL

,
to characterize the other three-point functions as follows28:

R(η,x) = R
G

(η,x)− 3 fNL

5

[
R2

G
(η,x)− 〈R2

G
(η,x)〉

]
−CR

NL
R

G
(η,x) γG

m̄n̄(η,x)

and

γij(η,x) = γG
ij(η,x)− h

NL

[
γG
ij(η,x) γG

m̄n̄(η,x)− 〈γG
ij(η,x) γG

m̄n̄(η,x)〉
]

−Cγ
NL
γG
ij(η,x) R

G
(η,x),

where RG and γG
ij denote the Gaussian quantities.

28V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

Expressions for the non-Gaussianity parameters
One finds that the non-Gaussianity parameters CR

NL
, Cγ

NL
and hNL can be expressed in

terms of the scalar-scalar-tensor and the scalar-tensor-tensor cross-correlations and
the tensor bispectrum as29

CR
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m3n3
RRγ (k1,k2,k3)

]
×
(

Πk3
m3n3,m̄n̄

)−1
{[
k3

1 PS(k2) + k3
2 PS(k1)

]
PT(k3)

}−1

,

Cγ
NL

= − 4

(2π2)2

[
k3

1 k
3
2 k

3
3 G

m2n2m3n3
Rγγ (k1,k2,k3)

]
×
{
PS(k1)

[
Πk2
m2n2,m3n3

k3
3 PT(k2) + Πk3

m3n3,m2n2
k3

2 PT(k3)
]}−1

,

hNL = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]
×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT(k1) PT(k2) + five permutations

]−1

.

29V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions The other three-point functions and non-Gaussianity parameters

The actions governing the other three point functions
The actions that lead to the correlations involving two scalars and one tensor,
one scalar and two tensors and three tensors are given by30

S3
RRγ [R, γij ] = M2

Pl

∫
dη

∫
d3x

[
a2 ε1 γij ∂iR ∂jR+

1

4
∂2γij ∂iχ∂jχ

+
a ε1
2

γ′ij ∂iR ∂jχ+ F2
ij(R)

δL2
γγ

δγij
+ F3(R, γij)

δL2
RR
δR

]
,

S3
Rγγ [R, γij ] =

M2
Pl

4

∫
dη

∫
d3x

[
a2 ε1

2
R γ′ij γ′ij +

a2 ε1
2
R ∂lγij ∂lγij

− a γ′ij ∂lγij ∂lχ+ F4
ij(R, γmn)

δL2
γγ

δγij

]
,

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The quantities L2
RR and L2

γγ are the second order Lagrangian densities com-
prising of two scalars and tensors which lead to the equations of motion.

30J. Maldacena, JHEP 0305, 013 (2003).
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Evaluating the other three-point functions Computation of the three-point functions

Comparison between analytical and numerical results
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A comparison of the analytical results (at the bottom) for the non-Gaussianity
parameters CR

NL
(on the left), Cγ

NL
(in the middle) and h

NL
(on the right) with

the numerical results (on top) for a generic triangular configuration of the
wavevectors in the case of the standard quadratic potential31. As in the case
of the scalar bispectrum, the maximum difference between the numerical and
the analytic results is about 5%.

31V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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Evaluating the other three-point functions Three point functions in models with deviations from slow roll

Three point functions for models with features
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Density plots of the non-Gaussianity parameters CR
NL

(on top), Cγ
NL

(in the
middle) and h

NL
(at the bottom) evaluated numerically for an arbitrary triangu-

lar configuration of the wavevectors for the case of the punctuated inflationary
scenario (on the left), the quadratic potential with the step (in the middle)
and the axion monodromy model (on the right).
L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 36 / 44



The squeezed limit and the consistency relations

The effect of the long wavelength modes
Since the amplitude of a scalar or a tensor mode is a constant when they are
well outside the Hubble radius, a long wavelength perturbation can be treated
as a background as far as the smaller wavelength modes are concerned.

Let us denote the constant amplitude (i.e. as far as their time dependence is
concerned) of the long wavelength scalar and tensor modes as, say, RB and
γB
ij , respectively.

In the presence of such modes, the background FLRW metric will take the
form

ds2 = −dt2 + a2(t) e2RB

[eγ
B

]ij dxi dxj ,

i.e. the long wavelength modes lead to modified spatial coordinates.

Such a modification is completely equivalent to a spatial transformation of the
form x′ = Λx, with the components of the matrix Λ being given by

Λij = eR
B
[
eγ

B /2
]
ij
.
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The squeezed limit and the consistency relations

The behavior of the two-point functions
One finds that the scalar and the tensor two-point functions in the presence of
a long wavelength mode denoted by, say, the wavenumber k, can be written
as

〈R̂k1
R̂k2
〉k =

(2π)2

2 k3
1

P
S
(k1) δ(3)(k1 + k2)

×
[
1− (n

S
− 1)RB −

(
n

S
− 4

2

)
γB
ij n̂1i n̂1j

]
,

〈γ̂k1
m1n1

γ̂k2
m2n2

〉k =
(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
P

T
(k1) δ(3)(k1 + k2)

×
[
1− nT RB −

(
n

T
− 3

2

)
γB
ij n̂1i n̂1j

]
,

where n̂1i = k1i/k1.
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The squeezed limit and the consistency relations

The behavior of the three-point functions
One can also show that, in the presence of a long wavelength mode, the three-point
functions can be written as

〈 R̂k1 R̂k2 R̂k3 〉k3 ≡ 〈 〈 R̂k1 R̂k2 〉k3 R̂k3 〉

= − (2π)5/2

4 k3
1 k

3
3

(nS − 1) PS(k1)PS(k3) δ3(k1 + k2),

〈 R̂k1 R̂k2 γ̂
k3
m3n3

〉k3 ≡ 〈 〈R̂k1 R̂k2 〉k3 γ̂k3
m3n3

〉

= − (2π)5/2

4 k3
1 k

3
3

(
nS − 4

8

)
PS(k1)PT(k3)

×Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2),

〈 R̂k1 γ̂
k2
m2n2

γ̂k3
m3n3

〉k1 ≡ 〈 R̂k1 〈 γ̂k2
m2n2

γ̂k3
m3n3

〉k1 〉

= − (2π)5/2

4 k3
1 k

3
2

nT

4
PS(k1)PT(k2) Πk2

m2n2,m3n3
δ3(k2 + k3),

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 ≡ 〈 〈 γ̂k1
m1n1

γ̂k2
m2n2

〉k3 γ̂k3
m3n3

〉

= − (2π)5/2

4 k3
1 k

3
3

(
nT − 3

32

)
PT(k1)PT(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2).
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The squeezed limit and the consistency relations

Consistency relations in the squeezed limit
Upon making use of the above expressions for the three-point functions in the defini-
tions for the non-Gaussianity parameters, we can express the consistency relations in
the squeezed limit as follows32:

lim
k3→0

fNL(k,−k,k3) =
5

12
[nS(k)− 1] ,

lim
k3→0

CR
NL

(k,−k,k3) =

[
nS(k)− 4

4

] (
Πk3
m3n3,m̄n̄

)−1

Πk3
m3n3,ij

n̂i n̂j ,

lim
k1→0

Cγ
NL

(k1,k,−k) =
nT(k)

2

(
Πk
m2n2,m3n3

)−1

Πk
m2n2,m3n3

,

lim
k3→0

hNL(k,−k,k3) =

[
nT(k)− 3

2

] (
2 Πk

m1n1,m2n2
Πk3
m3n3,m̄n̄

+ Πk
m1n1,m̄n̄ Πk3

m3n3,m2n2
+ Πk

m̄n̄,m2n2
Πk3
m3n3,m1n1

)−1

×Πk
m1n1,m2n2

Πk3
m3n3,ij

n̂i n̂j .

32J. Maldacena, JHEP 0305, 013 (2003);
P. Creminelli and M. Zaldarriaga, JCAP 0410, 006 (2004);
D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108, 251301 (2012);
S. Kundu, JCAP 1404, 016 (2014);
V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll I
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The behavior of the quantities fNL (on top) and hNL (at the bottom) in the squeezed
limit has been plotted as a function of the wavenumber in the case of the punctuated
inflationary scenario (on the left), the quadratic potential with a step (in the middle)
and the axion monodromy model (on the right). The solid blue curves represent the
numerical results obtained from the three-point functions, while the red dashed curves
denote those arrived at using the consistency relations33.

33V. Sreenath, D. K. Hazra and L. Sriramkumar, arXiv:1410.0252 [astro-ph.CO];
V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The squeezed limit and the consistency relations

Consistency relations away from slow roll II
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The behavior of the quantities CR
NL

(on top) and Cγ
NL

(at the bottom) in the squeezed
limit has been plotted as a function of the wavenumber for the three models of interest
as in the previous figure. Evidently, the good match between the solid blue curves and
the red dashed ones indicate the validity of the consistency relations even in situations
involving strong departures from slow roll as in punctuated inflation.

L. Sriramkumar (IIT Madras, Chennai, India) Inflationary three-point functions December 16, 2014 42 / 44



Summary

Summary

The strong constraints on the non-Gaussianity parameter f
NL

from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.
In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features34. The possibility of such features
can provide a strong handle on constraining inflationary models. Else,
one may need to carry out a systematic search involving the scalar and
the tensor power spectra35, the scalar and the tensor bispectra and the
cross correlations to arrive at a small subset of viable inflationary mod-
els36.
Interestingly, we find that, in single field inflationary models, the consis-
tency conditions governing the three-point functions remain valid even in
situations involving sharp departures from slow roll. Observational evi-
dence of deviations from the consistency conditions can provide a pow-
erful constraint, possibly ruling out all single field inflationary models.

34P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
35In this context, see J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
36J. R. Fergusson, H. F. Gruetjen, E. P. S. Shellard and M. Liguori, arXiv:1410.5114 [astro-ph.CO].
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Thank you for your attention
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