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Constraints on inflation from Planck Achieving inflation with scalar fields

Bringing the modes inside the Hubble radius

0 10 20 30 40 50

N

ln
λ

P
,

ln
|d

H
|

Inflation

ln |d
H
|

ln
λ P Radiation

domination

The physical wavelength λP ∝ a (in blue) and the Hubble radius dH = H−1 (in red) in the
inflationary scenario1. The scale factor is expressed in terms of e-folds N as a(N) ∝ eN .

1See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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Constraints on inflation from Planck Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation2. Often, these
potentials are classified as small field, large field and hybrid models.

2Image from W. Kinney, astro-ph/0301448.
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Constraints on inflation from Planck Generation of perturbations during inflation

The quadratic action governing the perturbations
One can show that, at the quadratic order, the action governing the curvature perturba-
tion R and the tensor perturbation γij are given by3

S2[R(η,x)] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
,

S2[γij(η,x)] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

Back to the cubic scalar action

These actions lead to the following equations of motion governing the scalar and tensor
modes, say, fk and hk: Back to the analytical solution

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

g′′k + 2
a′

a
g′k + k2 gk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll parameter.

3V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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Constraints on inflation from Planck Generation of perturbations during inflation

From inside the Hubble radius to super-Hubble scales
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The initial conditions are imposed in the sub-Hubble regime when the modes are well
inside the Hubble radius (viz. when k/(aH)� 1) and the power spectra are
evaluated when they sufficiently outside (i.e. as k/(aH)� 1).
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Constraints on inflation from Planck Generation of perturbations during inflation

Spectral indices and the tensor-to-scalar ratio

The scalar and tensor power spectra, viz. PS(k) and PT(k), can be expressed in terms of
the Fourier modes fk and gk as follows:

PS(k) =
k3

2π2
|fk(ηe)|2,

PT(k) = 8
k3

2π2
|gk(ηe)|2,

with ηe corresponding to suitably late times during inflation.

While comparing with the observations, for convenience, one often uses the following
power law, template scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1

, PT(k) = AT

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant. The tensor-to-scalar ratio r
is defined as

r(k) =
PT(k)

PS(k)
.
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Constraints on inflation from Planck Constraints on the primordial power spectra

CMB angular power spectrum from Planck
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The CMB TT angular power spectrum from the Planck 2018 data (red dots with error bars)
and the best fit ΛCDM model with a power law primordial spectrum (solid blue curve)4.

4Planck Collaboration (N. Aghanim et al.), Astron. Astrophys. 641, A6 (2020).
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Constraints on inflation from Planck Constraints on the primordial power spectra

Performance of inflationary models in the ns-r plane
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Joint constraints on ns and r0.002 from Planck in combination with other data sets, com-
pared to the theoretical predictions of some of the popular inflationary models5.

5Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A10 (2020).
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Constraints on inflation from Planck Does the primordial scalar power spectrum contain features?

Spectra leading to an improved fit to the CMB data
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Back to power spectrum in USR

The scalar power spectra (on the left) arising in different inflationary models (on the right)
that lead to a better fit to the CMB data than the conventional power law spectrum6.

6R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 10, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013).
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Enhancing power on small scales
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials admitting ultra slow roll inflation
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Potentials leading to ultra slow roll inflation (with x = φ/v, v being a constant)7:

USR1 : V (φ) = V0
6x2 − 4αx3 + 3x4

(1 + β x2)2
,

USR2 : V (φ) = V0

{
tanh

(
φ√

6M
Pl

)
+A sin

[
tanh

[
φ/
(√

6M
Pl

)]
fφ

]}2

.

7J. Garcia-Bellido and E. R. Morales, Phys. Dark Univ. 18, 47 (2017);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Potentials permitting punctuated inflation
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Potentials admitting punctuated inflation8:

PI1 : V (φ) = V0
(
1 +B φ4

)
, PI2 : V (φ) =

m2

2
φ2 − 2m2

3φ0
φ3 +

m2

4φ20
φ4,

PI3 : V (φ) = V0

[
c0 + c1 tanh

(
φ√

6αM
Pl

)
+ c2 tanh2

(
φ√

6αM
Pl

)
+ c3 tanh3

(
φ√

6αM
Pl

)]2
.

8D. Roberts, A. R. Liddle and D. H. Lyth, Phys. Rev. D 51, 4122 (1995);
R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Reconstructing scenarios of ultra slow roll and punctuated inflation
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Behavior of the first slow roll parameter ε1(N) leading to ultra slow roll and punctuated inflation9

RSI : εI1(N) = [ε1a (1 + ε2aN)]

[
1− tanh

(
N −N1

∆N1

)]
+ ε1b + exp

(
N −N2

∆N2

)
,

RSII : εII1 (N) = εI1(N) + cosh−2
(
N −N1

∆N1

)
.

9H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021);
H. V. Ragavendra and L. Sriramkumar, Galaxies 11, 34 (2023).
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Enhancing power on small scales Models leading to ultra slow roll and punctuated inflation

Power spectra in the inflationary models and reconstructed scenarios
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The scalar and the tensor power spectra arising in the various inflationary models (in red
and blue on the left) and the reconstructed scenarios (in blue, green and orange, on the
right)10.

10H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Formation of PBHs and generation of secondary GWs

f
PBH

(M) in ultra slow roll and punctuated inflation
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The fraction of PBHs contributing to the dark matter density today fPBH(M) has been
plotted for the various models and scenarios of interest, viz. USR2 and RS1 (on top, in
red and blue) and PI3 and RS2 (at the bottom, in red and blue)11.

11H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Formation of PBHs and generation of secondary GWs

Ω
GW

(f) in ultra slow roll and punctuated inflation
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The dimensionless density parameter ΩGW arising in the models and reconstructed sce-
narios of USR2 and RS1 (in red and blue, on top) as well as PI3 and RS2 (in red and blue,
at the bottom) have been plotted as a function of the frequency f12.

12H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation
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Non-Gaussianities generated in ultra slow roll and punctuated inflation The scalar bispectrum and the associated non-Gaussianity parameter

The scalar bispectrum and the non-Gaussianity parameter f
NL

The scalar bispectrum B(k1,k2,k3) is related to the three point correlation function of the
Fourier modes of the curvature perturbation, evaluated towards the end of inflation, say,
at the conformal time ηe, as follows13:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)3 B(k1,k2,k3) δ(3) (k1 + k2 + k3) .

The observationally relevant non-Gaussianity parameter fNL(k1,k2,k3) is related to the
scalar bispectrum through the relation14

fNL(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
B(k1,k2,k3)

×
[
k3

1 PS(k2) PS(k3) + two permutations
]−1

.

13D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).

14J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Computing the scalar bispectrum

The cubic order action governing the perturbations
At the cubic order, the action describing the curvature perturbation R can be obtained to be15

S3[R(η,x)] = M2
Pl

∫ ηe

ηi

dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2 − 2 a ε1R′ (∂R) (∂χ)

+
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂R) (∂χ) ∂2χ+

ε1
4
∂2R (∂χ)2 + 2F(R)

δL2

δR

]
,

where L2 denotes the Lagrangian density at the second order, while ∂2χ = a ε1R′, and these bulk
terms are supplemented by the following temporal boundary terms16:

SB
3 [R(η,x)] = M2

Pl

∫ ηe

ηi

dη

∫
d3x

d

dη

{
−9 a3HR3 +

a

H
(1− ε1)R (∂R)2 − 1

4 aH3
(∂R)2 ∂2R

− a ε1
H
RR′2 − a ε2

2
R2 ∂2χ+

1

2 aH2
R
(
∂i∂jR ∂i∂jχ− ∂2R ∂2χ

)
− 1

2 aH
R
[
∂i∂jχ∂i∂jχ− (∂2χ)2

]}
.

The quadratic action

Back to the loop contributions

15J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 06, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 01, 002 (2007).

16F. Arroja and T. Tanaka, JCAP 05, 005 (2011).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Computing the scalar bispectrum

The shape of the slow roll bispectrum

The non-Gaussianity parameter fNL , evaluated in the slow roll approximation (analytically
on the left and numerically on the right), has been plotted as a function of k3/k1 and k2/k1

for the case of the popular quadratic potential17. Note that the non-Gaussianity parameter
peaks in the equilateral limit wherein k1 = k2 = k3. In slow roll scenarios involving the
canonical scalar field, the largest value of fNL is found to be of the order of the first slow
roll parameter ε1.

17D. K. Hazra, L. Sriramkumar and J. Martin, JCAP 05, 026, (2013).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Constraints on non-Gaussianities from the CMB

Template bispectra
For comparison with the observations, the scalar bispectrum is often expressed in terms
of the parameters f loc

NL
, f eq

NL
and forth

NL
as follows:

B(k1,k2,k3) = f loc
NL
Bloc(k1,k2,k3) + f eq

NL
Beq(k1,k2,k3) + forth

NL
Borth(k1,k2,k3).

Illustration of the three template basis bispectra18.
18E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Constraints on non-Gaussianities from the CMB

Constraints on the scalar non-Gaussianity parameters
The constraints on the primordial values of the non-Gaussianity parameters from the
Planck data are as follows19:

f loc
NL

= −0.9± 5.1,

f eq
NL

= −26± 47,

fortho
NL

= −38± 24.

These constraints imply that slowly rolling single field models involving the canonical scalar
field which are favored by the data at the level of power spectra are also consistent with
the data at the level of non-Gaussianities.

19Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A9 (2020).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Amplitude and shape of non-Gaussianities on small scales

The scalar bispectrum in ultra slow roll and punctuated inflation
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The amplitude of the dimensionless scalar bispectra has been plotted in the equilateral (on
top) and squeezed limits (at the bottom) for the models USR2 (in red) and PI3 (in blue).
The bispectra have approximately the same shape as the corresponding power spectra20.

20H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Amplitude and shape of non-Gaussianities on small scales

f
NL

in ultra slow roll and punctuated inflation
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The scalar non-Gaussianity parameter fNL has been plotted in the equilateral (on top) and
the squeezed (at the bottom) limits for the models of USR2 and PI3 (in red, on the left and
the right) and the reconstructed scenarios RS1 and RS2 (in blue and green, on the left
and the right).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Amplitude and shape of non-Gaussianities on small scales

Modifications to the scalar power spectrum due to non-Gaussianities
The scalar non-Gaussianity parameter fNL is usually introduced through the relation21

R(η,x) = RG(η,x)− 3

5
fNL R2

G
(η,x),

where RG denotes the Gaussian contribution. Upon using this expression and evaluating
the corresponding two-point correlation function in Fourier space, one obtains that

〈R̂k R̂k′〉 =
2π2

k3
δ(3)(k + k′)

[
PS(k) +

(
3

5

)2 k3

2π
f2

NL

∫
d3p
PS(p)

p3

PS (|k − p|)
|k − p|3

]
,

where PS(k) is the original scalar power spectrum defined in the Gaussian limit, while the
second term represents the leading non-Gaussian correction. The non-Gaussian correc-
tion to the scalar power spectrum, say, PC(k), can be expressed as follows22:

PC(k) =

(
12

5

)2

f2
NL

∫ ∞
0

ds

∫ 1

0

dd

(s2 − d2)2
PS [k (s+ d)/2]PS [k (s− d)/2].

21E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
22R.-g. Cai, S. Pi and M. Sasaki, Phys. Rev. Lett. 122, 201101 (2019);

C. Unal, Phys. Rev. D 99, 041301 (2019).
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Non-Gaussianities generated in ultra slow roll and punctuated inflation Amplitude and shape of non-Gaussianities on small scales

The modified scalar power spectrum
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The original scalar power spectrum PS(k) (in solid red) and the modified spectrum PS(k)+
PC(k) (in dashed blue) arrived at upon including the non-Gaussian corrections, have been
plotted for the models of USR2 (on top) and PI3 (at the bottom)23.

23H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Loop contributions to the power spectrum
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Loop contributions to the power spectrum The in-in formalism

The in-in formalism

In the in-in formalism, given the interaction Hamiltonian, say, Hint, the expectation value
of the operator Ô is given by

〈Ô(η)〉 =
〈
T
{

ei
∫

dη1Ĥint(η1) Ô(η) e−i
∫

dη2 Hint(η2)
}〉

= 〈Ô(η)〉0 − i
∫

dη1 〈T [Ô(η), Ĥint(η1)]〉

+

∫
dη1

∫
dη2 〈T [[Ô(η), Ĥint(η1)], Hint(η2)]〉+ · · · ,

where 〈Ô(η)〉0 indicates the Gaussian contribution, and T indicates time ordering24.

Since we are interested in calculating the loop corrections to the power spectrum, we have

Ô = ζ̂k ζ̂k′ ,

where ζk is the Fourier mode associated with the curvature perturbation.
24S. Weinberg, Phys. Rev. D 72, 043514 (2005);

S. Weinberg, Phys. Rev. D 74, 023508 (2006).
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Loop contributions to the power spectrum The in-in formalism

The contributions due to the cubic order Hamiltonian

Given the Hamiltonian at the third order, say, H(3)
int , the leading order correction is given by

〈Ô(η)〉1 = −i
∫

dη1〈T [Ô(η), Ĥ
(3)
int (η1)]〉,

which vanishes for Ô = ζ̂k ζ̂k′ .

Therefore, the dominant loop contributions due to H(3)
int can be written as25

〈Ô(η)〉C = 〈Ô(η)〉(0,2) + 〈Ô(η)〉(2,0) + 〈Ô(η)〉(1,1),

where

〈Ô(η)〉(2,0) = 〈Ô†(η)〉(0,2) = −
∫ η

−∞
dη1

∫ η

−∞
dη2 〈Ĥ(3)

int (η1) Ĥ
(3)
int (η2) Ô(η)〉,

〈Ô(η)〉(1,1) =

∫ η

−∞
dη1

∫ η

−∞
dη2 〈Ĥ(3)

int (η1) Ô(η) Ĥ
(3)
int (η2)〉.

25J. Kristiano and J. Yokoyama, arXiv:2211.03395 [hep-th].
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Loop contributions to the power spectrum The in-in formalism

Feynman diagrams corresponding to the third order Hamiltonian

The Feynman diagrams that correspond to the third order Hamiltonian.
L. Sriramkumar (IIT Madras, Chennai) Loop contributions to the scalar power spectrum October 5, 2023 34 / 57



Calculating the loop contributions
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Calculating the loop contributions Background, Fourier modes and power spectra

Modeling the background

We shall consider a scenario wherein a phase of ultra slow roll (USR) is sandwiched
between two domains of slow roll (SR) inflation.

We shall assume that the first slow roll parameter ε1 during the three phases is given by

ε1(η) =


ε1i in phase I during η < η1,

ε1i (η/η1)6 in phase II during η1 < η < η2,

ε1f in phase III during η > η2.

In such a case, the second slow roll parameter behaves as

ε2(η) =


0 in phase I during η < η1,

−6 in phase II during η1 < η < η2,

0 in phase III during η > η2.

so that, at the transitions, at η1 and η2, we have Back to smoothing the transitions Back to loop contributions

ε′2 = −6 δ(1)(η − η1), ε′2 = 6 δ(1)(η − η2).
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Calculating the loop contributions Background, Fourier modes and power spectra

Analytical solution for the Mukhanov-Sasaki variable I
The Mukhanov-Sasaki variable vk = z fk satisfies the differential equation Equation of motion

v′′k +

(
k2 − z′′

z

)
vk = 0.

The quantity z′′/z can be expressed as26

z′′

z
= a2H2

(
2− ε1 +

3 ε2
2

+
ε22
4
− ε1 ε2

2
+
ε2 ε3

2

)
.

During SR [(ε1, ε2, ε3)� 1] as well as USR (ε1 � 1, ε2 ' −6, ε3 ' 0), we have z′′/z ' 2/η2.

The solution to vk in the region I (i.e. during first SR phase), satisfying the Bunch-Davies
initial condition, is given by

vI
k(η) =

1√
2 k

(
1− i

k η

)
e−i k η.

26See, for example, J. Martin and L. Sriramkumar, JCAP 01, 008 (2012).
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Calculating the loop contributions Background, Fourier modes and power spectra

Analytical solution for the Mukhanov-Sasaki variable II

In regions II and III (i.e. during the USR and SR phases), we can write

vII
k (η) =

γk√
2 k

(
1− i

k η

)
e−i k η +

δk√
2 k

(
1 +

i

k η

)
ei k η,

vIII
k (η) =

αk√
2 k

(
1− i

k η

)
e−i k η +

βk√
2 k

(
1 +

i

k η

)
ei k η,

where the quantities (γk, δk, αk, βk) are given by

γk = 1 +
3 i

2 k η1
+

3 i

2 k3 η3
1

, δk =

(
− 3 i

2 k η1
− 3

k2 η2
1

+
3 i

2 k3 η3
1

)
e−2 i k η1 ,

αk =

(
1− 3 i

2 k η2
− 3 i

2 k3 η3
2

)
γk −

(
3 i

2 k η2
− 3

k2 η2
2

− 3 i

2 k3 η3
2

)
δk e2 i k η2 ,

βk =

(
1 +

3 i

2 k η2
+

3 i

2 k3 η3
2

)
δk +

(
3 i

2 k η2
+

3

k2 η2
2

− 3 i

2 k3 η3
2

)
γk e−2 i k η2 .

which are obtained by matching the solutions at η1 and η2.
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Calculating the loop contributions Background, Fourier modes and power spectra

Power spectra in USR inflation
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The scalar power spectrum arising due to an early (on the left) and late (on the right) onset
of ultra slow roll inflation27. Power spectrum in punctuated inflation

27R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Loop contributions due to the Hamiltonian at the cubic order

When there arise deviations from slow roll, the dominant term in the Hamiltonian at the
cubic order in the perturbations is given by Action at the cubic order

H
(3)
int = −M

2
Pl

2

∫
d3x a2 ε1 ε

′
2 ζ
′ζ2.

It has been argued that instantaneous transitions across the three phases leads to large
loop contributions due to above the third order term, indicating the breakdown of pertur-
bation theory28.

It is expected that, if the transitions are not sharp, the loop contributions may not be large
enough to cause a breakdown of perturbation theory.

We should mention that, in these cases, the corrections to the power spectrum turn out to
be positive.

28J. Kristiano and J. Yokoyama, arXiv:2211.03395 [hep-th].
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Dominant term in the action at the quartic order
At the quartic order, the dominant term in the action describing the scalar perturbations is
given by29

S4[δφ(t,x)] = − 1

24

∫
dt

∫
d3x a3 Vφφφφ δφ

4,

where δφ denotes the perturbations in the scalar field, and Vφφφφ = d4V/dφ4.
We can express the above action in terms of SR parameters as follows:

S4[δφ(η,x)] =
1

288M4
Pl

∫
dη

∫
d3x

a4

ε1

[
−48 ε31 + 16 ε41 + 72 ε21 ε2 − 56 ε31 ε2 − 9 ε1 ε

2
2

+ 39 ε21 ε
2
2 − 3 ε1 ε

3
2 − 24 ε1 ε2 ε3 + 32 ε21 ε2 ε3 −

35

2
ε1 ε

2
2 ε3 −

3

2
ε22 ε3 −

1

2
ε32 ε3

− 9 ε1 ε2 ε
2
3 + 3 ε2 ε

2
3 +

3

2
ε22 ε

2
3 + ε2 ε

3
3 − 9 ε1 ε2 ε3 ε4 + 3 ε2 ε3 ε4 +

1

2
ε22 ε3 ε4

+ 3 ε2 ε
2
3 ε4 + ε2 ε3 ε

2
4 + ε2 ε3 ε4 ε5

]
V δφ4

and it is the last term (in blue) that leads to the dominant contribution.
29See, for instance, E. Dimastrogiovanni and N. Bartolo, JCAP 11, 016 (2008).
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Feynman diagrams for the Hamiltonian at the quartic order

The Feynman diagrams that correspond to the Hamiltonian at the quartic order.
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Smoothing the transitions

We smooth the transitions by replacing the delta functions we encounter by a Gaussian
as follows: ε2 in the SR-USR-SR scenario

δ(1)(η − η̃) =
1√
π∆η

e
− (η−η̃)2

∆η2 ,

where η̃ is the point of transition and ∆η denote the sharpness of transition.

In such a case, we can express the time-derivative of the second SR parameter ε2 as

ε′2 =


εII2√
π∆η

e
− (η−η1)2

∆η2 around η1,

− εII2√
π∆η

e
− (η−η2)2

∆η2 around η2.

The higher order SR parameters ε3, ε4 and ε5 can then be obtained to be

ε3 = ∓ η√
π∆η

e
−

(η−η1,2)2

∆η2 , ε4 = −1 +
2 η (η − η1,2)

∆η2
, ε5 =

2 η (2 η − η1,2)

∆η2 − 2 η (η − η1,2)
.
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

The interaction Hamiltonian due to the dominant term

We can express the quartic action in terms of the following gauge invariant variable ζ:

ζ =
H

φ̇
δφ = − δφ

M
Pl

√
2 ε1

.

In such a case, the dominant term in the action at the quartic order is given by30

S(4)[ζ(η,x)] =
1

72

∫
dη

∫
d3x a4 ε1 ε2 ε3 ε4 ε5 V ζ

4.

The corresponding interaction Hamiltonian can be determined to be

H
(4)
int = − 1

72

∫
d3x a4 ε1 ε2 ε3 ε4 ε5 V ζ

4.

30E. Dimastrogiovanni and N. Bartolo, JCAP 11, 016 (2008).
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Corrections to power spectrum due to the dominant term

In the in-in formalism, at the leading order, the two point correlation function due to the
interaction Hamiltonian H(4)

int is given by the expression

〈ζ̂k(ηe) ζ̂k′(ηe)〉 = 〈ζ̂k(ηe) ζ̂k′(ηe)〉 − i 〈[ζ̂k(ηe) ζ̂k′(ηe),

∫
dη T {Ĥ(4)

int (η)}]〉.

In the vacuum, the dominant loop contribution can be written as as

〈ζ̂k(ηe) ζ̂k′(ηe)〉C ' δ(3)(k + k′)

{
i

6
fk(ηe) fk′(ηe)

∫
dη a4 ε1 ε2 ε3 ε4 ε5 V f

∗
k (η) f∗k′(η)

×
∫

d3q

(2π)3
|fq(η)|2 + complex conjugate

}
so that the correction to the scalar power spectrum is given by

P(4)
C

(k) =
i

6

(
k3

2π2

)
f2
k (ηe)

∫
dη a4 ε1 ε2 ε3 ε4 ε5 V [f∗k (η)]2

∫
d ln qPS(q, η)

+ complex conjugate.
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Loop contributions in the case of slow roll inflation I

In SR inflation, the leading correction to the scalar power spectrum can be written as

P(4)
C

(k) = − i
8
ε2 ε3 ε4 ε5

(
P0

S

)2 ∫ dη

k η2

(
1 +

i

kη

)2

e2 i k η

∫
d ln q (1 + q2η2)

+ complex conjugate,

where P0
S

= H2/(8π2M2
Pl
ε1) ' 2.1 × 10−9 is the standard, nearly scale invariant, COBE

normalized power spectrum.

If we assume that ε1 ' ε2 ' ε3 ' ε4 ' ε5, after carrying out the integration over the internal
momenta q, we obtain

P(4)
C

(k) = − i
8
ε41
(
P0

S

)2 ∫ xe

xi

dx

x2

(
1 +

i

x

)2

e2 i x

[
c1 +

c2(k)

2
x2

]
+ complex conjugate,

where x = k η, and

c1 = ln

(
kmax

kmin

)
= ln

(
ηi

ηe

)
' 70, c2(k) =

(k2
max − k2

min)

k2
'
(
kmax

k

)2

' 1042.
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Loop contributions in the case of slow roll inflation II

After integrating over time, we obtain that31

P(4)
C

(k) ' 1

8
ε41
(
P0

S

)2 {[28

9
− 4 γ

3
− 4

3
ln (−2xe)

]
c1 + 3 c2(k)

}
,

where γ = 0.577 is Euler-Mascheroni constant.

Upon ignoring the contributions from the sub-Hubble modes (i.e. upon setting c2 = 0), we
arrive at (for ε1 ' 10−3)

P(4)
C

(k) ' −1

6
ε41
(
P0

S

)2
c1 ln

(
2 k∗
kmax

)
' 10−28,

where k∗ denotes the pivot scale.

31S. Maity, H. V. Ragavendra, S. K. Sethi and L. Sriramkumar, arXiv:2307.13636 [astro-ph.CO].
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Loop contributions in the SR-USR-SR scenario I

Upon using the form of the SR parameters and, after integrating over time, we obtain the
contributions from the two transitions to be Form of ε′2

P(4)
C

(k) = i
M2

Pl

H2
I

ε1i εII
2

∆η2

k3 f2
k (ηe)

2π2

{
[f∗k (η1)]2

η1

∫ k1

kmin

d ln qPS(q, η1)

−
(
η2

η1

)6 [f∗k (η2)]2

η2

∫ k2

kmin

d ln qPS(q, η2)

}
+ complex conjugate.
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Calculating the loop contributions Loop contributions due to the Hamiltonian at the quartic order

Loop contributions in the SR-USR-SR scenario II

After integrating over momentum, we arrive at

P(4)
C

(k) ' i

4

(
H2

I

8π2M2
Pl
ε1f

)2
εII
2

k3 η2 b∆η2
F2(αk, βk, ηe)

×
(

[F∗(1, 0, η1)]2
(
k1

k2

)7 [
ln

(
k1

kmin

)
+

1

2

(
1− k2

min

k2
1

)]

− [F∗(αk, βk, η2)]2
{(

k1

k2

)6 [
ln

(
k2

kmin

)
− 1

10

(
1− k2

min

k2
2

)]

−
[

2

5

(
k1

k2

)
−
(
k1

k2

)4
][

1−
(
kmin

k2

)2
]})

+ complex conjugate,

where the quantity F(αk, βk, η) is given by

F(αk, βk, η) = αk (k η − i) e−i k η + βk (k η + i) ei k η.
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Calculating the loop contributions Illustration of the loop contributions

Typical loop contributions to the power spectrum
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The power spectrum at the first order PS(k) (in red) and the loop contributions P(4)
C

(k) (in
blue) have been illustrated for the following parameters: HI = 1.3 × 10−5M

Pl
, ε1i = 10−3,

εII
2 = −6, ∆η = 10−3 Mpc, k1 = 104 Mpc−1, ∆N = 2.5, kmin = 10−6 Mpc−1, and kmax =

1020 Mpc−1. We have also indicated the domains where P(4)
C

(k) negative (in cyan).
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Calculating the loop contributions Illustration of the loop contributions

Loop contributions for late onset of USR
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The power spectrum at the first order PS(k) and the loop contributions P(4)
C

(k) have been
illustrated for different values of k1 (on the left) and different values of ∆η (on the right).
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Calculating the loop contributions Illustration of the loop contributions

Loop contributions for intermediate and early onsets of USR
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The power spectrum at the first order PS(k) and the loop contributions P(4)
C

(k) have been
illustrated for intermediate (on the left) and early (on the right) onsets of USR. Note that,
as the USR sets in earlier and earlier, the contributions from the loops prove to be larger
and larger.
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Calculating the loop contributions Illustration of the loop contributions

Contributions for early USR: Effects of duration and sharpness
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We find that the earlier is the phase of USR and the sharper is the transition, the larger
are the loop contributions to the scalar power spectrum32. These raise the specter of the
breakdown of perturbation theory!

32S. Maity, H. V. Ragavendra, S. K. Sethi and L. Sriramkumar, arXiv:2307.13636 [astro-ph.CO].
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Summary

Summary

F Inflationary models permitting an epoch of ultra slow roll lead to enhanced power on
small scales, resulting in significant production of PBHs and increased strength of
secondary GWs. The non-Gaussianity parameter fNL in such single field models is of
order unity near the peaks in the power spectrum.

F When the contributions due to the loops are taken into account, there seem to exist
a range in the parameter space wherein the contributions due to the loops become
significant suggesting the breakdown of perturbation theory.

F Counter-intuitively, we find that the leading quartic term in the interaction Hamiltonian
leads to significant loop contributions on large scales.
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