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Introduction References

This talk is based on. . .

F S. Balaji, H. V. Ragavendra, S. K. Sethi, J. Silk and L. Sriramkumar, Observing nulling
of primordial correlations via the 21-cm signal, Phys. Rev. Lett. 129, 261301 (2022)
[arXiv:2206.06386 [astro-ph.CO]].
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Need for inflation

Inflation can seed the primordial perturbations

Formation of the first stars: cosmic dawn
Theory

time redshift

? Origin (?)

4 × 105 y Small fluctuations (initial conditions)∼ 1100

∼ 1010 y Large-scale structure0

Gravitational instability

Observations

∼ 109 y ∼ 6

∼ 108 y ∼ 15

Tirthankar Roy Choudhury 19

Inflation provides the mechanism for the generation of the primordial perturbations1.
1Slide from talk by T. R. Choudhury (SKA-related science activities in India and future prospects) in this workshop.
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Need for inflation Resolution of the horizon problem through inflation

The horizon problem

The radiation from the CMB arriving at us from regions separated by more than the Hubble
radius at the surface of last scattering, which subtends an angle of about 1◦ today, could
not have interacted before decoupling.
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Need for inflation Resolution of the horizon problem through inflation

Resolution of the horizon problem in the inflationary scenario

Illustration of the horizon problem (on the left) and its resolution (on the right) through an
early and sufficiently long epoch of inflation2.

2Images from W. Kinney, astro-ph/0301448.
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Need for inflation Resolution of the horizon problem through inflation

Behavior of the comoving wave number and Hubble radius

Behavior of the comoving wave number k (horizontal lines in different colors) and the
comoving Hubble radius dH/a = (aH)−1 (in green) across different epochs3.

3Md. R. Haque, D. Maity, T. Paul and L. Sriramkumar, Phys. Rev. D 104, 063513 (2021).
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Need for inflation Achieving inflation with scalar fields

The inflationary attractor
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Back to USR inflation

The evolution of the scalar field in the popular Starobinsky model, which leads to slow roll
inflation, is indicated (as circles, in blue and red) at regular intervals of time (on the left).
Illustration of the behavior of the scalar field in phase space (on the right)4.

4Figure credit H. V. Ragavendra.
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Need for inflation Achieving inflation with scalar fields

Proliferation of inflationary models

A (partial?) list of ever-increasing number of inflationary models5. Actually, it may not even
be possible to rule out some of these models!

5
From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology,
Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Need for inflation Generation of perturbations during inflation

The quadratic action governing the perturbations
One can show that, at the quadratic order, the action governing the curvature perturba-
tion R and the tensor perturbation γij are given by6

S2[R(η,x)] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
,

S2[γij(η,x)] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

These actions lead to the following equations of motion governing the scalar and tensor
modes, say, fk and hk:

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

g′′k + 2
a′

a
g′k + k2 gk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll parameter.

6V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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Need for inflation Generation of perturbations during inflation

Spectral indices and the tensor-to-scalar ratio

The scalar and tensor power spectra, viz. PS(k) and PT(k), can be expressed in terms of
the Fourier modes fk and gk as follows:

PS(k) =
k3

2π2
|fk(ηe)|2,

PT(k) =
8

M2
Pl

k3

2π2
|gk(ηe)|2,

with ηe corresponding to suitably late times during inflation.

While comparing with the observations, for convenience, one often uses the following
power law, template scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1
, PT(k) = AT

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant. The tensor-to-scalar ratio r
is defined as

r(k) =
PT(k)

PS(k)
.
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Constraints on inflation from the CMB data Constraints on the primordial power spectra

Performance of inflationary models in the ns-r plane
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Joint constraints on ns and r0.002 from Planck in combination with other data sets, com-
pared to the theoretical predictions of some of the popular inflationary models7.

7Planck Collaboration (Y. Akrami et al.), Astron. Astrophys. 641, A10 (2020).
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Constraints on inflation from the CMB data Does the primordial scalar power spectrum contain features?

Spectra leading to an improved fit to the CMB data
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The scalar power spectra (on the left) arising in different inflationary models (on the right)
that lead to a better fit to the CMB data than the conventional power law spectrum8.

8R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 01, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 10, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, Phys. Rev. D 87, 083526 (2013);
For a recent discussion, see H. V. Ragavendra, D. Chowdhury and L. Sriramkumar, Phys. Rev. D 106, 043535 (2022).
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Enhancing the amplitude of scalar perturbations on small scales
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Enhancing the amplitude of scalar perturbations on small scales Did LIGO see primordial black holes?

Coalescence of compact binaries observed by LIGO

The third Gravitational Wave Transient Catalog of mergers involving black holes and neu-
tron stars observed by the LIGO-Virgo-KAGRA collaboration9.

9Image from https://www.ligo.caltech.edu/LA/image/ligo20211107a.
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Enhancing the amplitude of scalar perturbations on small scales Did LIGO see primordial black holes?

Formation of primordial black holes (PBHs)

BHs can form in the primordial universe when perturbations with significant amplitudes on
small scales re-enter the Hubble radius during the epoch of radiation dominated epoch10.

10Figures from G. Franciolini, arXiv:2110.06815 [astro-ph.CO].
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Enhancing the amplitude of scalar perturbations on small scales Models leading to ultra slow roll inflation

Single-field models admitting ultra slow roll inflation
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Inflationary attractor

Potentials which contain a point of inflection lead to ultra slow roll (USR) inflation11.
11See, for example, J. Garcia-Bellido and E. R. Morales, Phys. Dark Univ. 18, 47 (2017);

I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).
Figures credits, H. V. Ragavendra and S. Maity.
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Enhancing the amplitude of scalar perturbations on small scales Models leading to ultra slow roll inflation

Power spectra in models permitting USR inflation
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The scalar (in red) and the tensor (in blue) power spectra arising in various single field
models that permit a period of ultra slow roll inflation12.

12H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
Also see H. V. Ragavendra and L. Sriramkumar, Galaxies 11, 34 (2023).
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Enhancing the amplitude of scalar perturbations on small scales Formation of PBHs and generation of secondary gravitational waves

f
PBH

(M) and Ω
GW

(f) in models leading to USR inflation
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The fraction of PBHs contributing to the cold dark matter density today fPBH(M) and the
dimensionless spectral density of GWs ΩGW(f) arising in the models of ultra slow roll
inflation13.

13H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).
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Imprints of USR inflation in the HI 21-cm signal
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Imprints of USR inflation in the HI 21-cm signal The fall and the rise in the inflationary power spectrum

Constraints from spectral distortions
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Constraints on the scalar power spectrum from spectral distortions in the CMB14.
14S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, arXiv:2403.16963 [astro-ph.CO].
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Imprints of USR inflation in the HI 21-cm signal Sharp dips and imprints on the HI signal

Scalar power spectra with a sharp dip
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Power spectra from two inflationary models (ST and CH) that are consistent with the con-
straints on spectral distortions from FIRAS. The inset highlights the dip at k = 7.6 Mpc−1,
where the HI signal is expected to be most sensitive to the primordial power spectrum15.

15S. Balaji, H. V. Ragavendra, S. K. Sethi, J. Silk and L. Sriramkumar, Phys. Rev. Lett. 129, 261301 (2022).
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Imprints of USR inflation in the HI 21-cm signal Sharp dips and imprints on the HI signal

Corresponding inflationary bispectra
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Scalar bispectra arising in the two inflationary models have been illustrated in the equilat-
eral (eq), squeezed (sq) and flattened (fl) limits. The bispectra also exhibit a sharp dip at
the same location as the power spectra16.

16S. Balaji, H. V. Ragavendra, S. K. Sethi, J. Silk and L. Sriramkumar, Phys. Rev. Lett. 129, 261301 (2022).
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Imprints of USR inflation in the HI 21-cm signal Sharp dips and imprints on the HI signal

Resulting HI power spectrum
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The HI intensity power spectra arising from the two inflationary models have been plotted
at the redshifts of z = 27 and z = 50. We have also included the power spectra due to
Poisson fluctuations (PF) at the corresponding redshifts17.

17S. Balaji, H. V. Ragavendra, S. K. Sethi, J. Silk and L. Sriramkumar, Phys. Rev. Lett. 129, 261301 (2022).
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Imprints of USR inflation in the HI 21-cm signal Sharp dips and imprints on the HI signal

Resulting HI bispectrum
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HI intensity bispectra arising from the two inflationary models have been illustrated in
the equilateral, squeezed and the flattened limits. The associated PF have also been
indicated18.

18S. Balaji, H. V. Ragavendra, S. K. Sethi, J. Silk and L. Sriramkumar, Phys. Rev. Lett. 129, 261301 (2022).
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Outlook

Outlook

F In the models we have considered, the sharp dips arise over the scales 1 . k .
10 Mpc−1. The strength of the HI signal at such scales is of the order of 10–1000 (mK)2

in the frequency range 25–50 MHz for the redshift range z ' 25–50.
F While the signal at z ' 25 is accessible to SKA-Low19, we expect the signal at z ' 50

to be more pristine (i.e. less contaminated by astrophysical processes close to the
era of cosmic dawn) and dominant.

F Such a signal could be explored by planned lunar missions20. Under suitable as-
sumptions, these missions can achieve the brightness temperature sensitivity of 1–
10 (mK)2 over the scales of interest21.

19L. V. E. Koopmans et al., PoS AASKA14, 001 (2015).
20S. Furlanetto et al., arXiv:1903.06212 [astroph.CO];

P. S. Cole and J. Silk, Mon. Not. Roy. Astron. Soc. 501, 2627 (2021);
L. V. E. Koopmans et al., Exper. Astron. 51, 1641 (2021).

21S. Paul et al., Astrophys. J. 833, 213 (2016);
S. R. Furlanetto, S. P. Oh, and E. Pierpaoli, Phys. Rev. D 74, 103502 (2006).
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Thank you for your attention
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