Primordial black holes and scalar-induced, secondary gravitational waves

L. Sriramkumar

Centre for Strings, Gravitation and Cosmology, Department of Physics, Indian Institute of Technology Madras, Chennai, India

> Early Universe from Home February 25–28, 2025

Plan of the talk

Inflation, reheating, and constraints from the CMB

Generation of PBHs and secondary GWs by enhanced scalar perturbations 2

NANOGrav 15-year data and the stochastic GW background 3

Summary

This talk is based on...

- M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, Generating PBHs and small-scale GWs in two-field models of inflation, JCAP 08, 001 (2020) [arXiv:2005.02895 [astro-ph.CO]].
- H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, *Primordial black holes and secondary gravitational waves from ultra slow roll and punctuated inflation*, Phys. Rev. D 103, 083510 (2021) [arXiv:2008.12202 [astro-ph.CO]].
- H. V. Ragavendra and L. Sriramkumar, Observational imprints of enhanced scalar power on small scales in ultra slow roll inflation and associated non-Gaussianities, Galaxies 11, 34 (2023) [arXiv:2301.08887 [astro-ph.CO]].
- S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, *Constraining the history of reheating with the NANOGrav 15-year data*, JCAP 01, 118 (2025) [arXiv:2403.16963 [astro-ph.CO]].

Plan of the talk

- Inflation, reheating, and constraints from the CMB
- 2 Generation of PBHs and secondary GWs by enhanced scalar perturbations
- 3 NANOGrav 15-year data and the stochastic GW background
- 4 Summary

Bringing the modes inside the Hubble radius

The physical wavelength $\lambda_{\rm P} \propto a$ (in blue) and the Hubble radius $d_{\rm H} = H^{-1}$ (in red) in the inflationary scenario¹. The scale factor is expressed in terms of e-folds N as $a(N) \propto e^{N}$.

¹See, for example, E. W. Kolb and M. S. Turner, *The Early Universe* (Addison-Wesley Publishing Company, New York, 1990), Fig. 8.4.

L. Sriramkumar (IIT Madras, Chennai)

The inflationary attractor

Evolution of the scalar field in the popular Starobinsky model, which leads to slow roll inflation, is indicated (as circles, in blue and red) at regular intervals of time (on the left). Illustration of the behavior of the scalar field in phase space (on the right)².

²Figure from H. V. Ragavendra, *Observational imprints of non-trivial inflationary dynamics over large and small, scales*, Ph.D. Thesis, Indian Institute of Technology Madras, Chennai, India (2022).

L. Sriramkumar (IIT Madras, Chennai)

Spectral indices and tensor-to-scalar ratio

While comparing with the observations, for convenience, one often uses the following power law template for the primordial scalar and the tensor spectra:

$$\mathcal{P}_{\mathrm{s}}(k) = A_{\mathrm{s}} \left(\frac{k}{k_{*}}\right)^{n_{\mathrm{s}}-1}, \qquad \mathcal{P}_{\mathrm{T}}(k) = A_{\mathrm{T}} \left(\frac{k}{k_{*}}\right)^{n_{\mathrm{T}}}$$

with the spectral indices $n_{\rm s}$ and $n_{\rm T}$ assumed to be constant.

The tensor-to-scalar ratio r is defined as

$$r(k) = \frac{\mathcal{P}_{\mathrm{T}}(k)}{\mathcal{P}_{\mathrm{S}}(k)}$$

and it is usual to further set $r = -8 n_T$, viz. the so-called consistency relation, which is valid during slow roll inflation.

Performance of inflationary models in the n_s -r plane

Joint constraints on n_s and $r_{0.002}$ from Planck in combination with other data sets, compared to the theoretical predictions of some of the popular inflationary models³.

³Planck Collaboration (Y. Akrami *et al.*), Astron. Astrophys. **641**, A10 (2020).

L. Sriramkumar (IIT Madras, Chennai)

Latest constraints on the tensor-to-scalar ratio r

Latest constraints on the tensor-to-scalar ratio r from the BICEP/Keck telescopes⁴

⁴BICEP/Keck Collaboration (P. A. R. Ade *et al.*), arXiv:2203.16556 [astro-ph.CO].

L. Sriramkumar (IIT Madras, Chennai)

Plan of the talk

- Inflation, reheating, and constraints from the CMB
- 2 Generation of PBHs and secondary GWs by enhanced scalar perturbations
- 3 NANOGrav 15-year data and the stochastic GW background
- Summary

Coalescence of compact binaries observed by LIGO

The third GW Transient Catalog of mergers involving black holes and neutron stars observed by the LIGO-Virgo-KAGRA collaboration⁵.

⁵Image from https://www.ligo.caltech.edu/LA/image/ligo20211107a.

L. Sriramkumar (IIT Madras, Chennai)

Formation of primordial black holes (PBHs)

BHs can form in the primordial universe when perturbations with significant amplitudes on small scales reenter the Hubble radius during the radiation dominated epoch⁶.

⁶Figure from G. Franciolini, arXiv:2110.06815 [astro-ph.CO].

L. Sriramkumar (IIT Madras, Chennai)

Amplitude required to form significant number of PBHs

In order to form significant number of black holes, the amplitude of the perturbations on small scales has to be large enough such that the dimensionless amplitude of the scalar perturbation is close to unity^{\prime}.

⁷Figure credit G. Franciolini.

Single-field models admitting ultra slow roll inflation

Potentials leading to ultra slow roll inflation (with $x = \phi/v$, v being a constant)⁸:

$$\begin{split} \mathbf{M1} : V(\phi) \ &= \ V_0 \ \frac{6 \, x^2 - 4 \, \alpha \, x^3 + 3 \, x^4}{(1 + \beta \, x^2)^2}, \\ \mathbf{M4} : V(\phi) \ &= \ V_0 \ \left\{ \tanh\left(\frac{\phi}{\sqrt{6} \, M_{_{\mathrm{Pl}}}}\right) + A \, \sin\left[\frac{\tanh\left[\phi/\left(\sqrt{6} \, M_{_{\mathrm{Pl}}}\right)\right]}{f_{\phi}}\right] \right\} \end{split}$$

⁸C. Germani and T. Prokopec, Phys. Dark Univ. 18, 6 (2017);
 I. Dalianis, A. Kehagias and G. Tringas, JCAP 01, 037 (2019).

L. Sriramkumar (IIT Madras, Chennai)

 $\mathbf{2}$

Power spectra in different models leading to ultra slow roll inflation

Scalar (in red) and the tensor (in blue) power spectra arising in various single field models that permit a period of ultra slow roll inflation⁹.

⁹H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D **103**, 083510 (2021); Also see H. V. Ragavendra and L. Sriramkumar, Galaxies **11**, 34 (2023).

L. Sriramkumar (IIT Madras, Chennai)

Behavior of the background in a two-field model

Behavior of the two scalar fields ϕ and χ (in blue and red, on the left) and the first slow roll parameter ϵ_1 (on the right) in the two field model of our interest¹⁰. Note that there arises a turn in the field space around N = 70, when the first slow roll parameter begins to decrease before increasing again, leading to the termination of inflation.

¹⁰M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).

Enhanced power on small scales in the two-field model

The scalar (on top) and the tensor (at the bottom) power spectra evaluated at the end of inflation have been plotted for a few different sets of initial conditions for the fields and a range of values of the parameter b_1^{11} .

¹¹M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).

$f_{\rm PBH}(M)$ in ultra slow roll and punctuated inflation

The fraction of PBHs contributing to the cold dark matter density today $f_{PBH}(M)$ has been plotted for different models, viz. USR2 (on top, in red) and PI3 (at the bottom, in red)¹².

¹²H. V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Phys. Rev. D 103, 083510 (2021).

L. Sriramkumar (IIT Madras, Chennai)

$f_{\rm PBH}(M)$ in the two-field model

The fraction of PBHs contributing to the dark matter density today $f_{PBH}(M)$ in the two-field model of our interest¹³.

¹³M. Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).

L. Sriramkumar (IIT Madras, Chennai)

$\Omega_{_{\rm GW}}(f)$ in ultra slow roll inflation

The dimensionless spectral density of scalar-induced, secondary GWs $\Omega_{_{GW}}(f)$ in different single-field models of inflation that permit a period of ultra slow roll¹⁴.

¹⁴H. V. Ragavendra and L. Sriramkumar, Galaxies **11**, 34 (2023).

L. Sriramkumar (IIT Madras, Chennai)

$\Omega_{ m gw}(f)$ in the two-field model

The dimensionless spectral density of GWs $\Omega_{GW}(f)$ arising in the two-field model has been plotted for a set of initial conditions for the background fields as well as a range of values of the parameter b_1^{15} .

¹⁵M. Braglia, n D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar and A. A. Starobinsky, JCAP 08, 001 (2020).

Plan of the talk

- Inflation, reheating, and constraints from the CMB
- 2 Generation of PBHs and secondary GWs by enhanced scalar perturbations
- 3 NANOGrav 15-year data and the stochastic GW background
 - Summary

Pulsar timing arrays (PTAs)

The PTAs monitor an array of millisecond pulsars¹⁶.

¹⁶See https://ipta.github.io/mock_data_challenge/.

L. Sriramkumar (IIT Madras, Chennai)

Hellings-Downs curve

Separation Angle Between Pulsars, ξ_{ab} [degrees]

The inter-pulsar correlations measured from 2,211 distinct pairings in the 67-pulsar array of the NANOGrav 15-year data. The dashed black line shows the Hellings-Downs correlation pattern¹⁷.

¹⁷NANOGrav Collaboration (G. Agazie *et al.*), Astrophys. J. Lett. **951**, 1 (2023).

Stochastic GW background observed by the PTAs

The Bayesian evidence for a variety of astrophysical and cosmological sources for the stochastic GW background suggested by the observations of the PTAs¹⁸.

¹⁸NANOGrav Collaboration (G. Agazie et al.), Astrophys. J. Lett. 951, 1 (2023).

L. Sriramkumar (IIT Madras, Chennai)

Form of the inflationary scalar power spectrum

We assume that the inflationary scalar power spectrum is given by¹⁹

$$\mathcal{P}_{\mathcal{R}}(k) = A_{\rm s} \left(\frac{k}{k_*}\right)^{n_{\rm s}-1} + A_0 \begin{cases} \left(\frac{k}{k_{\rm peak}}\right)^4 & k \le k_{\rm peak} \\ \left(\frac{k}{k_{\rm peak}}\right)^{n_0} & k \ge k_{\rm peak} \end{cases},$$

where A_s and n_s are the amplitude and spectral index of the power spectrum at the CMB pivot scale of $k_* = 0.05 \,\mathrm{Mpc}^{-1}$.

We set the reheating temperature to the rather low value of $T_{\rm re} = 50 \,{\rm MeV}$.

We shall assume that the threshold value of the density contrast for the formation of PBHs is given by²⁰

$$\delta_{\rm c}^{\rm an} = \frac{3\,(1+w_{\rm re})}{5+3\,w_{\rm re}}\,\sin^2\left(\frac{\pi\,\sqrt{w_{\rm re}}}{1+3\,w_{\rm re}}\right)$$

¹⁹For other forms of spectra, see G. Domènech, S. Pi, A. Wang and J. Wang, arXiv:2402.18965 [astro-ph.CO].
 ²⁰In this context, see T. Harada, C.-M. Yoo, and K. Kohri, Phys. Rev. D 88, 084051 (2013).

Constraints on the epoch of reheating

Constraints on the parameters in the models R3pB (on the left) and R2pB (on the right), arrived at upon comparison with the NANOGrav 15-year data²¹.

²¹S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, JCAP **01**, 118 (2025).

L. Sriramkumar (IIT Madras, Chennai)

Generation of secondary GWs during the epoch of reheating

The dimensionless spectral energy density of the secondary GWs today $\Omega_{GW}(f)$ is plotted for a given reheating temperature and the best-fit values of the parameters in the different models²².

²²S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, JCAP 01, 118 (2025).

Power spectra and the extent of PBHs formed

Scalar power spectra (on the left) and the extent of PBHs formed (on the right). We have assumed a specific reheating temperature and have plotted the fraction of PBHs that constitute the dark matter density today, viz. $f_{\rm PBH}(M)$, for the best-fit values of the parameters in the different models²³.

²³S. Maity, N. Bhaumik, Md. R. Haque, D. Maity and L. Sriramkumar, JCAP 01, 118 (2025).

L. Sriramkumar (IIT Madras, Chennai)

Bayesian evidence

Model X	Model Y	$BF_{Y,X}$		
		$\delta_{\rm c}=0.5\delta_{\rm c}^{\rm an}$	$\delta_{\rm c} = \delta_{\rm c}^{\rm an}$	$\delta_{\rm c} = 1.5\delta_{\rm c}^{\rm an}$
SMBHB	R2pB	$1.7\pm.06$	260.04 ± 19.21	350.61 ± 27.36

The Bayesian factors $BF_{Y,X}$ for the model R2pB that invokes primordial physics as the source of the stochastic GW background observed by the NANOGrav 15-year data, when compared to the astrophysical SMBHB model.

Bayesian factors $BF_{Y,X}$ that far exceed unity indicate strong evidence for the model Y with respect to the model X.

Clearly, when $\delta_c = \delta_c^{an}$ and $\delta_c = 1.5 \delta_c^{an}$, the NANOGrav 15-year data strongly favors the model R2pB when compared to the astrophysical SMBHB model.

Plan of the talk

- 1) Inflation, reheating, and constraints from the CMB
- 2 Generation of PBHs and secondary GWs by enhanced scalar perturbations
- 3 NANOGrav 15-year data and the stochastic GW background
- Summary

Summary

- The amplitude of the scalar power spectrum can be enhanced significantly on small scales if there arise strong departures from slow roll inflation. Specifically, such an enhancement can be achieved with the aid of a brief phase of ultra slow roll inflation during which the first slow roll parameter decreases rapidly.
- In addition to producing significant levels of PBHs, the enhanced scalar power on small scales also induce secondary GWs of strengths that are, in principle, detectable by ongoing and forthcoming GW observatories.
- Under certain conditions, the scalar-induced secondary GWs generated in models of USR inflation can explain the stochastic GW background observed by the PTAs.

Thank you for your attention