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Introduction

Proliferation of inflationary models1

A partial list of ever-increasing number of inflationary models!
1From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Introduction References

This talk is largely based on

P. A. R. Ade et al., Planck 2013 results. XXII. Constraints on inflation,
arXiv:1303.5082 [astro-ph.CO].
P. A. R. Ade et al., Planck 2013 Results. XXIV. Constraints on primordial
non-Gaussianity, arXiv:1303.5084 [astro-ph.CO].
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The inflationary scenario Resolution of the horizon problem through inflation

Inflation resolves the horizon problem

Left: The radiation from the CMB arriving at us from regions separated by
more than the Hubble radius at the last scattering surface (which subtends
an angle of about 1◦ today) could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation
helps in resolving the horizon problem2.

2Images from W. Kinney, astro-ph/0301448.
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The inflationary scenario Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology
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A schematic diagram illustrating the behavior of the physical wavelength
λP ∝ a (the green lines) and the Hubble radius H−1 (the blue line) during
inflation and the radiation dominated epochs3.

3See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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The inflationary scenario Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation4.
Often, these potentials are classified as small field, large field and hybrid
models.

4Image from W. Kinney, astro-ph/0301448.
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Confronting inflationary power spectra with the CMB data Classification of the perturbations

The character of the perturbations
In a Friedmann universe, the perturbations in the metric and the matter can
be classified according to their behavior with respect to a local rotation of the
spatial coordinates on hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the
first order Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor
perturbations can be generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar
perturbations that are primarily responsible for the anisotropies in the CMB
and, eventually, the present day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 8 / 31



Confronting inflationary power spectra with the CMB data Classification of the perturbations

The character of the perturbations
In a Friedmann universe, the perturbations in the metric and the matter can
be classified according to their behavior with respect to a local rotation of the
spatial coordinates on hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the
first order Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor
perturbations can be generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar
perturbations that are primarily responsible for the anisotropies in the CMB
and, eventually, the present day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 8 / 31



Confronting inflationary power spectra with the CMB data Classification of the perturbations

The character of the perturbations
In a Friedmann universe, the perturbations in the metric and the matter can
be classified according to their behavior with respect to a local rotation of the
spatial coordinates on hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the
first order Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor
perturbations can be generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar
perturbations that are primarily responsible for the anisotropies in the CMB
and, eventually, the present day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 8 / 31



Confronting inflationary power spectra with the CMB data Classification of the perturbations

The character of the perturbations
In a Friedmann universe, the perturbations in the metric and the matter can
be classified according to their behavior with respect to a local rotation of the
spatial coordinates on hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the
first order Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor
perturbations can be generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar
perturbations that are primarily responsible for the anisotropies in the CMB
and, eventually, the present day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 8 / 31



Confronting inflationary power spectra with the CMB data Key definitions and observable quantities

The scalar and the tensor perturbation spectra
The dimensionless scalar power spectrum P

S
(k) is defined in terms of the

correlation function of the Fourier modes of the curvature perturbation R̂k as
follows:

〈0|R̂k(η) R̂p(η)|0〉 =
(2π)2

2 k3
PS(k) δ(3) (k + p) ,

where |0〉 is often referred to as the Bunch-Davies vacuum.

While comparing with the observations, for convenience, one often uses the
following power law, template scalar and the tensor spectra:

P
S
(k) = A

S

(
k

k∗

)n
S
−1

and P
T

(k) = A
T

(
k

k∗

)n
T

,

with the spectral indices n
S

and n
T

assumed to be constant.
The tensor-to-scalar ratio r is defined as

r(k) ≡ PT
(k)

P
S
(k)

and it is usual to further set r = −8n
T

, viz. the so-called consistency
relation, which is valid during slow roll inflation.
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Angular power spectrum from the WMAP 9-year data6

The WMAP 9-year data for the CMB TT angular power spectrum (the black
dots with error bars) and the theoretical, best fit ΛCDM model with a power
law primordial spectrum (the solid red curve).

6C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Angular power spectrum from the Planck data7
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The CMB TT angular power spectrum from the Planck data (the red dots with
error bars) and the theoretical, best fit ΛCDM model with a power law
primordial spectrum (the solid green curve).

7P. A. R. Ade et al., arXiv:1303.5075 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Constraints from the WMAP data8

Joint constraints from the recent WMAP 9-year and other cosmological data
on the inflationary parameters n

S
and r for large field models with potentials

of the form V (φ) ∝ φn.

8G. Hinshaw et al., arXiv:1212.5226v1 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data The universe according to WMAP and Planck

Constraints from Planck9
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9P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Does the primordial power spectrum contain features?
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Left: Reconstructed primordial spectra, obtained upon assuming the
concordant background ΛCDM model. Recovered spectra improve the fit to
the WMAP 9-year data by ∆χ2

eff ' 300, with respect to the best fit power law
spectrum10.
Right: Three different spectra with features that lead to an improved fit (of
∆χ2

eff ' 10) to the Planck data11.

10D. K. Hazra, A. Shafieloo and T. Souradeep, arXiv:1303.4143v1 [astro-ph.CO].
11P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Inflationary models permitting deviations from slow roll

Illustration of potentials that admit departures from slow roll.
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Confronting inflationary power spectra with the CMB data Does the primordial power spectrum contain features?

Spectra leading to an improved fit to the WMAP data
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The scalar power spectra in the different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum12.

12R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
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Evaluation of the scalar bispectrum during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The scalar bispectrum

The scalar bispectrum B
S
(k1,k2,k3) is related to the three point correlation

function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows13:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BS(k1,k2,k3) δ(3) (k1 + k2 + k3) .

13D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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Evaluation of the scalar bispectrum during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is introduced
through the relation14

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due to
the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k3
1 k

3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

14E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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Evaluation of the scalar bispectrum during inflation The scalar bispectrum and the non-Gaussianity parameter – Definitions

The relation between f
NL

and the bispectrum

Upon making use of the above expression for the three point function of the
curvature perturbation and the definition of the bispectrum, we can, in turn,
arrive at the following relation15:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
B

S
(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

15See, for instance, S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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Evaluation of the scalar bispectrum during inflation The Maldacena formalism for evaluating the bispectrum

The action at the cubic order
It can be shown that, the third order term in the action describing the
curvature perturbation is given by16

S3[R] = M2
Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F
(
δL2

δR

)]
,

where F(δL2/δR) denotes terms involving the variation of the second order
action with respect to R, while χ is related to the curvature perturbation R
through the relation

∂2χ = a ε1R′.

16J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).

L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 20 / 31



Evaluation of the scalar bispectrum during inflation The Maldacena formalism for evaluating the bispectrum

Evaluating the bispectrum
At the leading order in the perturbations, one then finds that the three point
correlation in Fourier space is described by the integral17

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are
imposed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are evaluated in the
initial vacuum state (viz. the Bunch-Davies vacuum in the situation of our
interest).

17See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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Evaluation of the scalar bispectrum during inflation BINGO: An efficient code to numerically compute the bispectrum

Comparison for an arbitrary triangular configuration

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the numerical results (on the right) from the BIspectra
and Non-Gaussianity Operator (BINGO) code for a generic triangular
configuration of the wavevectors in the case of the standard quadratic
potential18. The maximum difference between the numerical and the analytic
results is found to be about 5%.

18D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v2 [astro-ph.CO].
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Constraints from Planck on non-Gaussianities

Template bispectra
For comparison with the observations, the bispectrum is often expressed as follows19:

G(k1,k2,k3) = f loc
NL

Gloc(k1,k2,k3) + feq
NL

Geq(k1,k2,k3) + forth
NL

Gorth(k1,k2,k3),

where f loc
NL

, feq
NL

and forth
NL

are free parameters that are to be estimated, and the local,
the equilateral, and the orthogonal template bispectra are given by:

Gloc(k1,k2,k3) =
6

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
k
3
1 PS

(k2)P
S

(k3) + two permutations
)
,

Geq(k1,k2,k3) =
3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

) (
6 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 3 k

3
3 PS

(k1)P
S

(k2)

−2 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
,

Gorth(k1,k2,k3) =
3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
18 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 9 k

3
3 PS

(k1)P
S

(k2)

−8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
.

The basis (f loc
NL

, feq
NL

, forth
NL

) for the three-point function is considered to be large
enough to encompass a range of interesting models.

19C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Constraints from Planck on non-Gaussianities

Illustration of the template bispectra

An illustration of the three template basis bispectra, viz. the local (top left),
the equilateral (bottom) and the orthogonal (top right) forms for a generic
triangular configuration of the wavevectors20.

20E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Constraints from Planck on non-Gaussianities

Constraints on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck
data are as follows21:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at
assuming that the other two parameters are zero.

21P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Constraints from Planck on non-Gaussianities

Post-inflationary dynamics and non-linearities

Post-inflationary dynamics, such as the curvaton and the modulated re-
heating scenarios can also lead to non-Gaussianities22. The strong con-
straints on f loc

NL
from Planck suggests that the primordial non-Gaussianities

are unlikely to have been generated post-inflation.
Also, non-linear evolution, leading to and immediately after the epoch of
decoupling, have been to shown to result in non-Gaussianities at the level
of O(f

NL
) ∼ 1− 523.

Clearly, these contributions need to be understood satisfactorily before the
observational limits can be used to arrive at constraints on inflationary
models.

22See, for instance, D. Langlois and T. Takahashi, arXiv:1301.3319v1 [astro-ph.CO].
23C. Pitrou, J.-P. Uzan and F. Bernardeau, JCAP 1007, 003 (2010);

S.-C. Su, E. A. Lim and E. P. S. Shellard, arXiv:1212.6968v1 [astro-ph.CO].
L. Sriramkumar (IIT Madras, Chennai) The early universe: Through the ‘eyes’ of Planck April 17, 2013 26 / 31



Constraints from Planck on non-Gaussianities Are features in the power spectrum consistent with small non-Gaussianities?
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The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit when a step has
been introduced in the chaotic inflationary model24 involving the quadratic potential
(in blue). The f loc

NL
that arises in a small field model with a step25 has also been

illustrated (in red).
24X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008);

P. Adshead, W. Hu, C. Dvorkin and H. V. Peiris, Phys. Rev. D 84, 043519 (2011);
P. Adshead, C. Dvorkin, W. Hu and E. A. Lim, Phys. Rev. D 85, 023531 (2012).

25D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
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The non-Gaussianity parameter f loc
NL

evaluated in the equilateral limit in the
axion monodromy model26. The modulations in the potential give rise to a
certain resonant behavior27, leading to a large f loc

NL
.

26D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
27S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010);

R. Flauger and E. Pajer, JCAP 1101, 017 (2011).
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Topics not touched upon in this talk

In this talk, I have not had the time to discuss constraints on:

Models based on multiple scalar fields
Non-canonical scalar field models
Models involving non-minimal coupling
The curvaton scenario
Non-vacuum initial states
Non-standard bispectral shapes
The trispectrum
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Outlook

Outlook

The strong constraints on the non-Gaussianity parameter f
NL

from Planck
suggests that inflationary and post-inflationary scenarios that lead to rather
large non-Gaussianities are very likely to be ruled out by the data.

In contrast, various analyses seem to point to the fact that the scalar
power spectrum may contain features28.
The possibility of such features can provide a strong handle on constrain-
ing inflationary models.
Else, one may need to carry out a systematic search involving the scalar
and the tensor power spectra29, the scalar and the tensor bispectra and
the cross correlations.

28P. A. R. Ade et al., arXiv:1303.5082 [astro-ph.CO].
29In this context, see, J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787 [astro-ph.CO].
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Thank you for your attention
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