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Introduction

Proliferation of inflationary models1

A partial list of ever-increasing number of inflationary models!
1From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in
The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and
S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Introduction

Non-Gaussianities – Pre-Planck status
If one assumes the bispectrum to be, say, of the so-called local form, the
WMAP 9-year data constrains the non-Gaussianity parameter fNL to be
37.2± 19.9, at 68% confidence level2.

If missions such as Planck indeed detect a large level of non-Gaussianity
as suggested by the above mean value of f

NL
, then it can result in a sub-

stantial tightening in the constraints on the various inflationary models.
For example, canonical scalar field models that lead to nearly scale in-
variant primordial spectra contain only a small amount of non-Gaussianity
and, hence, will cease to be viable3.
However, it is known that primordial spectra with features can lead to
reasonably large non-Gaussianities4. Therefore, if the non-Gaussianity
parameter f

NL
actually proves to be large, then either one has to reconcile

with the fact that the primordial spectrum contains features or we have
to turn our attention to non-canonical scalar field models such as, say,
D brane inflation models5.

2C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
3J. Maldacena, JHEP 05, 013 (2003).
4See, for instance, X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007).
5See, for example, X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Introduction

Constraints on non-Gaussianities from Planck6

The constraints from Planck on the local form of the non-Gaussianity
parameter fNL proves to be 2.7± 5.8.

In other words, preliminary investigations seem to suggest that inflation-
ary models that lead to rather large non-Gaussianities are likely to be
ruled out by the data.

6P. A. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Introduction Plan
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Introduction References

This talk is based on

J. Martin and L. Sriramkumar, The scalar bispectrum in the Starobinsky
model: The equilateral case, JCAP 1201, 008 (2012).
D. K. Hazra, L. Sriramkumar and J. Martin, BINGO: A code for the ef-
ficient computation of the scalar bispectrum, arXiv:1201.0926v2 [astro-
ph.CO].
D. K. Hazra, J. Martin and L. Sriramkumar, Scalar bispectrum during
preheating in single field inflationary models, Phys. Rev. D 86, 063523
(2012).
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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass
to be M2

Pl
= (8πG)−1.

F As is often done in the context of inflation, we shall assume the back-
ground to be described by the spatially flat, Friedmann line-element.

F We shall denote differentiation with respect to the cosmic and the confor-
mal times t and η by an overdot and an overprime, respectively.

F Further, N shall denote the number of e-folds.
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Some essential remarks on the evaluation of the scalar power spectrum

The curvature perturbation and the governing equation
On quantization, the operator corresponding to the curvature perturbation
R(η,x) can be expressed as

R̂(η,x) =

∫
d3k

(2π)3/2
R̂k(η) eik·x

=

∫
d3k

(2π)3/2

[
âk fk(η) eik·x + â†k f

∗
k(η) e−ik·x

]
,

where âk and â†k are the usual creation and annihilation operators that satisfy
the standard commutation relations.

The modes fk are governed by the differential equation

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll

parameter.
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Some essential remarks on the evaluation of the scalar power spectrum

The Bunch-Davies initial conditions
While studying the evolution of the curvature perturbation, it often proves to
be more convenient to work in terms of the so-called Mukhanov-Sasaki
variable vk, which is defined as vk = z fk. In terms of the variable vk, the
above equation of motion for fk reduces to the following simple form:

v′′k +

(
k2 − z′′

z

)
vk = 0.

The initial conditions on the perturbations are imposed when the modes are
well inside the Hubble radius during inflation.

Usually, it is the so-called Bunch-Davies initial conditions that are imposed
on the modes, which amounts to demanding that the Mukhanov-Sasaki
variable vk reduces to following Minkowski-like positive frequency form in the
sub-Hubble limit7:

lim
k/(aH)→∞

vk =
1√
2 k

e−i k η.

7T. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).
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Some essential remarks on the evaluation of the scalar power spectrum

The behavior of modes during inflation

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology
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A schematic diagram illustrating the behavior of the physical wavelength
λP ∝ a (the green lines) and the Hubble radius H−1 (the blue line) during
inflation and the radiation dominated epochs8.

8See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing
Company, New York, 1990), Fig. 8.4.
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Some essential remarks on the evaluation of the scalar power spectrum

The scalar power spectrum
The dimensionless scalar power spectrum P

S
(k) is defined in terms of the

correlation function of the Fourier modes of the curvature perturbation R̂k as
follows:

〈0|R̂k(η) R̂p(η)|0〉 =
(2π)2

2 k3
PS(k) δ(3) (k + p) ,

where |0〉 is the Bunch-Davies vacuum, defined as âk|0〉 = 0 ∀ k.
In terms of the quantities fk and vk, the power spectrum is given by

PS(k) =
k3

2π2
|fk|2 =

k3

2π2

(
|vk|
z

)2

and, analytically, the spectrum is evaluated in the super-Hubble limit,
i.e. when k/(aH)→ 0.
As is well known, numerically, the Bunch-Davies initial conditions are
imposed on the modes when they are well inside the Hubble radius, and the
power spectrum is evaluated at suitably late times when the modes are
sufficiently outside9.

9See, for example, D. S. Salopek, J. R. Bond and J. M. Bardeen, Phys. Rev. D 40, 1753 (1989);
C. Ringeval, Lect. Notes Phys. 738, 243 (2008).
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The scalar bispectrum and the non-Gaussianity parameter – Definitions

The scalar bispectrum

The scalar bispectrum B
S
(k1,k2,k3) is related to the three point correlation

function of the Fourier modes of the curvature perturbation, evaluated
towards the end of inflation, say, at the conformal time ηe, as follows10:

〈R̂k1(ηe) R̂k2(ηe) R̂k3(ηe)〉 = (2π)
3 BS(k1,k2,k3) δ(3) (k1 + k2 + k3) .

In our discussion below, for the sake of convenience, we shall set

BS(k1,k2,k3) = (2π)
−9/2

G(k1,k2,k3).

10D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011);
E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011).
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The scalar bispectrum and the non-Gaussianity parameter – Definitions

The non-Gaussianity parameter f
NL

The observationally relevant non-Gaussianity parameter fNL is introduced
through the relation11

R(η,x) = R
G

(η,x)− 3 f
NL

5

[
R2

G
(η,x)−

〈
R2

G
(η,x)

〉]
,

where RG denotes the Gaussian quantity, and the factor of 3/5 arises due to
the relation between the Bardeen potential and the curvature perturbation
during the matter dominated epoch.

Utilizing the above relation and Wick’s theorem, one can arrive at the three
point correlation function of the curvature perturbation in Fourier space in
terms of the parameter f

NL
. It is found to be

〈R̂k1 R̂k2 R̂k3〉 = −3 fNL

10
(2π)5/2

(
1

k3
1 k

3
2 k

3
3

)
δ(3)(k1 + k2 + k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]
.

11E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
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The scalar bispectrum and the non-Gaussianity parameter – Definitions

The relation between f
NL

and the bispectrum

Upon making use of the above expression for the three point function of the
curvature perturbation and the definition of the bispectrum, we can, in turn,
arrive at the following relation12:

f
NL

(k1,k2,k3) = −10

3
(2π)1/2

(
k3

1 k
3
2 k

3
3

)
B

S
(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1

= −10

3

1

(2π)4

(
k3

1 k
3
2 k

3
3

)
G(k1,k2,k3)

×
[
k3

1 PS
(k2) P

S
(k3) + two permutations

]−1
.

Note that, in the equilateral limit, i.e. when k1 = k2 = k3, this expression for
fNL simplifies to

f eq
NL

(k) = −10

9

1

(2π)4

k6 G(k)

P2
S
(k)

.

12See, for instance, S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010).
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The Maldacena formalism for evaluating the bispectrum

The action at the cubic order
It can be shown that, the third order term in the action describing the
curvature perturbation is given by13

S3[R] = M2
Pl

∫
dη

∫
d3x

[
a2 ε21RR′2 + a2 ε21R (∂R)2

− 2 a ε1R′ (∂iR) (∂iχ) +
a2

2
ε1 ε
′
2R2R′ + ε1

2
(∂iR) (∂iχ) (∂2χ)

+
ε1
4

(∂2R) (∂χ)2 + F
(
δL2

δR

)]
,

where F(δL2/δR) denotes terms involving the variation of the second order
action with respect to R, while χ is related to the curvature perturbation R
through the relation

∂2χ = a ε1R′.

13J. Maldacena, JHEP 0305, 013 (2003);
D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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The Maldacena formalism for evaluating the bispectrum

Evaluating the bispectrum
At the leading order in the perturbations, one then finds that the three point
correlation in Fourier space is described by the integral14

〈R̂k1(ηe) R̂k2
(ηe) R̂k3

(ηe)〉

= −i
∫ ηe

ηi

dη a(η)
〈[
R̂k1(ηe) R̂k2(ηe) R̂k3(ηe), ĤI(η)

]〉
,

where ĤI is the Hamiltonian corresponding to the above third order action,
while ηi denotes a sufficiently early time when the initial conditions are
imposed on the modes, and ηe denotes a very late time, say, close to when
inflation ends.

Note that, while the square brackets imply the commutation of the operators,
the angular brackets denote the fact that the correlations are evaluated in the
initial vacuum state (viz. the Bunch-Davies vacuum in the situation of our
interest).

14See, for example, D. Seery and J. E. Lidsey, JCAP 0506, 003 (2005);
X. Chen, Adv. Astron. 2010, 638979 (2010).
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The Maldacena formalism for evaluating the bispectrum

The resulting bispectrum
The quantity G(k1,k2,k3) evaluated towards the end of inflation at the
conformal time η = ηe can be written as15

G(k1,k2,k3) ≡
7∑

C=1

G
C

(k1,k2,k3)

≡ M2
Pl

6∑
C=1

{
[fk1

(ηe) fk2
(ηe) fk3

(ηe)] G
C

(k1,k2,k3)

+
[
f∗k1

(ηe) f∗k2
(ηe) f∗k3

(ηe)
]
G∗

C
(k1,k2,k3)

}
+G7(k1,k2,k3),

where the quantities G
C

(k1,k2,k3) with C = (1, 6) correspond to the six
terms in the interaction Hamiltonian.
The additional, seventh term G7(k1,k2,k3) arises due to a field redefinition,
and its contribution to G(k1,k2,k3) is given by

G7(k1,k2,k3) =
ε2(ηe)

2

(
|fk2(ηe)|2 |fk3(ηe)|2 + two permutations

)
.

15J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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The Maldacena formalism for evaluating the bispectrum

The integrals involved

The quantities GC (k1,k2,k3) with C = (1, 6) are described by the integrals

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f∗k1

f ′∗k2
f ′∗k3

+ two permutations
)
,

G2(k1,k2,k3) = − 2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1
f∗k2

f∗k3
,

G3(k1,k2,k3) = − 2 i

∫ ηe

ηi

dη a2 ε21

[(
k1 · k2

k22

)
f∗k1

f ′∗k2
f ′∗k3

+ five permutations

]
,

G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f∗k1

f∗k2
f ′∗k3

+ two permutations
)
,

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

[(
k1 · k2

k22

)
f∗k1

f ′∗k2
f ′∗k3

+ five permutations

]
,

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

{[
k21 (k2 · k3)

k22 k
2
3

]
f∗k1

f ′∗k2
f ′∗k3

+ two permutations

}
,

where ε2 is the second slow roll parameter that is defined with respect to the first as
follows: ε2 = d ln ε1/dN .
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BINGO: An efficient code to numerically compute the bispectrum Understanding the integrals involved

Evolution of fk on super-Hubble scales
During inflation, when the modes are on super-Hubble scales, it is well
known that the solution to fk can be written as

fk ' Ak +Bk

∫ η dη̃

z2(η̃)
,

where Ak and Bk are k-dependent constants which are determined by the
initial conditions imposed on the modes in the sub-Hubble limit.

Therefore, on super-Hubble scales, the mode fk simplifies to

fk ' Ak.

Moreover, the leading non-zero contribution to its derivative is determined by
the decaying mode, and is given by

f ′k '
Bk

z2
=

B̄k

a2 ε1
,

where we have set B̄k = Bk/(2 M2
Pl

).
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BINGO: An efficient code to numerically compute the bispectrum Understanding the integrals involved

Splitting the integrals
To begin with, we shall divide each of the integrals G

C
(k1,k2,k3), where

C = (1, 6), into two parts as follows16:

G
C

(k1,k2,k3) = Gis
C

(k1,k2,k3) + Gse
C

(k1,k2,k3).

The integrals in the first term Gis
C

(k1,k2,k3) run from the earliest time (i.e. ηi)
when the smallest of the three wavenumbers k1, k2 and k3 is sufficiently
inside the Hubble radius [typically corresponding to k/(aH) ' 100] to the
time (say, ηs) when the largest of the three wavenumbers is well outside the
Hubble radius [say, when k/(aH) ' 10−5].

Then, evidently, the second term Gse
C

(k1,k2,k3) will involve integrals which
run from the latter time ηs to the end of inflation at ηe.

16D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v2 [astro-ph.CO].
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BINGO: An efficient code to numerically compute the bispectrum Understanding the integrals involved

The various times of interest

The exact behavior of the physical wavelengths and the Hubble radius
plotted as a function of the number of e-folds in the case of the archetypical
quadratic potential, which allows us to illustrate the various times of our
interest, viz. ηi, ηs and ηe.
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BINGO: An efficient code to numerically compute the bispectrum The super-Hubble contributions to the bispectrum

Contributions due to the fourth and the seventh terms
Upon using the form of the mode fk and its derivative on super-Hubble
scales, the integral appearing in the fourth term can be trivially carried out
with the result that the corresponding contribution to the bispectrum can be
expressed as

Gse
4 (k1,k2,k3) ' iM2

Pl
[ε2(ηe)− ε2(ηs)]

×
[
|Ak1
|2 |Ak2

|2
(
Ak3

B̄∗k3
−A∗k3

B̄k3

)
+ two permutations

]
.

The Wronskian corresponding to the equation of motion for fk and the
standard Bunch-Davies initial conditions can then be utilized to arrive at the
following simpler expression:

Gse
4 (k1,k2,k3) ' −1

2
[ε2(ηe)− ε2(ηs)]

[
|Ak1
|2 |Ak2

|2 + two permutations
]
.

The first of these terms involving the value of ε2 at ηe exactly cancels the
contribution G7(k1,k2,k3) (with fk set to Ak).

Note that the remaining term is essentially the same as the one due to the
field redefinition, but which is now evaluated on super-Hubble scales (i.e.
at ηs) rather than at the end of inflation.
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BINGO: An efficient code to numerically compute the bispectrum The super-Hubble contributions to the bispectrum

The contribution due to the second term
Upon making use of the behavior of the mode fk on super-Hubble scales in
the corresponding integral, one obtains the contribution to the bispectrum
due to Gse

2 (k1,k2,k3) to be

Gse
2 (k1,k2,k3) = − 2 iM2

Pl
(k1 · k2 + two permutations)

× |Ak1
|2 |Ak2

|2 |Ak3
|2 [I2(ηe, ηs)− I∗2 (ηe, ηs)] ,

where the quantity I2(ηe, ηs) is described by the integral

I2(ηe, ηs) =

∫ ηe

ηs

dη a2 ε21.

Note that, due to the quadratic dependence on the scale factor, actually,
I2(ηe, ηs) is a rapidly growing quantity at late times.

However, the complete super-Hubble contribution to the bispectrum vanishes
identically since the integral I2(ηe, ηs) is a purely real quantity17.

17D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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BINGO: An efficient code to numerically compute the bispectrum The super-Hubble contributions to the bispectrum

The contributions due to the remaining terms
On super-Hubble scales, one can easily show that the contributions due to the first
and the third terms can be written as

Ges
1 (k1,k2,k3) +Ges

3 (k1,k2,k3) = 2 iM2
Pl

[(
1− k1 · k2

k22
− k1 · k3

k23

)
|Ak1 |

2

×
(
Ak2 B̄

∗
k2
Ak3B̄

∗
k3
−A∗k2

B̄k2 A
∗
k3
B̄k3

)
+ two permutations

]
I13(ηe, ηs),

while the corresponding contributions due to the fifth and the sixth terms are given by

Gse
5 (k1,k2,k3) +Gse

6 (k1,k2,k3) =
iM2

Pl

2

[(
k1 · k2

k22
+

k1 · k3

k23
+
k21 (k2 · k3)

k22 k
2
3

)
× |Ak1 |

2 (Ak2B̄
∗
k2
Ak3B̄

∗
k3
−A∗k2

B̄k2 A
∗
k3
B̄k3

)
+ two permutations

]
I56(ηe, ηs),

where the quantities I13(ηe, ηs) and I56(ηe, ηs) are described by the integrals

I13(ηe, ηs) =

∫ ηe

ηs

dη

a2
and I56(ηe, ηs) =

∫ ηe

ηs

dη

a2
ε1.
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BINGO: An efficient code to numerically compute the bispectrum The super-Hubble contribution to the non-Gaussianity parameter

The complete super-Hubble contribution to f eq
NL

To arrive at the complete super-Hubble contribution to the non-Gaussianity
parameter f

NL
, let us restrict ourselves to the equilateral limit for simplicity.

In such a case, the sum of the super-Hubble contributions due to the first, the
third, the fifth and the sixth terms to f eq

NL
is found to be

f eq (se)
NL

(k) ' −
5 iM2

Pl

18

(
A2

k B̄
∗
k

2 −A∗k2 B̄2
k

|Ak|2

) [
12 I13(ηe, ηs)−

9

4
I56(ηe, ηs)

]
,

where we have made use of the fact that fk ' Ak at late times in order to
arrive at the power spectrum.
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BINGO: An efficient code to numerically compute the bispectrum The super-Hubble contribution to the non-Gaussianity parameter

An estimate of the super-Hubble contribution to f eq
NL

Consider power law inflation of the form a(η) = a1 (η/η1)γ+1, where a1 and η1

are constants, while γ is a free index. For such an expansion, the first slow
roll parameter is a constant, and is given by ε1 = (γ + 2)/(γ + 1).

In such a case, one can easily obtain that

feq (se)
NL

(k) =
5

72π

[
12− 9 (γ + 2)

γ + 1

]
Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1) (γ + 2)

× (γ + 1)−2 (γ+1) sin (2π γ)

[
1− Hs

He
e−3 (Ne−Ns)

] (
k

asHs

)−(2 γ+1)

.

and, in arriving at this expression, for convenience, we have set η1 to be ηs.

For γ = −(2 + ε), where ε ' 10−2, the above estimate for fNL reduces to

f eq (se)
NL

(k) . −5 ε2

9

(
ks

asHs

)3

' −10−19,

where, in obtaining the final value, we have set ks/(asHs) = 10−5.
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BINGO: An efficient code to numerically compute the bispectrum Robustness of the approach

Convergence on the upper limit
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Quadratic potential

Focusing on the equilateral limit, the quantities k6 times the absolute values of
G1 +G3 (in green), G2 (in red), G4 +G7 (in blue) and G5 +G6 (in purple), evaluated
numerically, have been plotted as a function of the upper limit of the integrals involved
for a given mode in the case of the conventional, quadratic inflationary potential.
Evidently, the integrals converge rapidly once the mode leaves the Hubble radius.
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BINGO: An efficient code to numerically compute the bispectrum Robustness of the approach

Implementation of the cut-off in the sub-Hubble limit

 1e-21
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k
6
 |
G

n
(k

)|

κ

The various contributions to the bispectrum, obtained numerically, have been plotted
(with the same choice of colors as in the previous figure) as a function of the cut-off
parameter κ for a given mode and a fixed upper limit [corresponding to
k/(aH) = 10−5] in the case of the quadratic inflationary potential. The solid, dashed
and the dotted lines correspond to integrating from k/(aH) of 102, 103 and 104,
respectively. Clearly, κ = 0.1 seems to be an optimal value.
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

The spectral dependence in power law inflation
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The different non-zero contributions to the bispectrum, viz. the quantities k6 times the
absolute values of G1 +G3 (in green), G2 (in red) and G5 +G6 (in purple), in power
law inflation (on the left) and the corresponding contributions to the non-Gaussianity
parameter feq

NL
(on the right), arrived at using BINGO (BIspectra and Non-Gaussianity

Operator), have been plotted as solid lines for two different values of γ (above and
below). The dots on the lines represent the analytical results.
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

The Starobinsky model

The Starobinsky model involves the canonical scalar field which is described
by the potential18

V (φ) =

{
V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0.

18A. A. Starobinsky, Sov. Phys. JETP Lett. 55, 489 (1992).
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

Evolution of the slow roll parameters

The evolution of the first (on the left) and the second (on the right) slow roll
parameters ε1 and ε2 in the Starobinsky model. While the solid blue curves
describe the numerical results, the dotted red curves (which lie right below
the blue curves and hence not very evident!) represent the corresponding
analytical expressions.
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

The scalar power spectrum in the Starobinsky model

The scalar power spectrum in the Starobinsky model19. While the solid blue
curve denotes the analytic result, the red dots represent the scalar power
spectrum that has been obtained through a complete numerical integration
of the background as well as the perturbations.

19J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012).
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

Comparison in the case of the Starobinsky model

 1e-28
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k6
 |
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n
(k

)|

k/k0

 
 
 
 
 
 
 

Starobinsky model 

A comparison of the analytical expressions (the solid curves) with the corresponding
results from BINGO (the dashed curves) in the case of the Starobinsky model. While
the contribution due to the term G4 +G7 appears in blue, we have chosen the same
colors to denote the other contributions to the bispectrum as in the earlier figure20.

20See, J. Martin and L. Sriramkumar, JCAP 1201, 008 (2012);
In this context, also see, F. Arroja, A. E. Romano and M. Sasaki, Phys. Rev. D 84, 123503 (2011);
F. Arroja and M. Sasaki, JCAP 1208, 012 (2012).
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BINGO: An efficient code to numerically compute the bispectrum Comparison with the analytical results

Comparison for an arbitrary triangular configuration

A comparison of the analytical results (on the left) for the non-Gaussianity
parameter fNL with the results from BINGO (on the right) for a generic
triangular configuration of the wavevectors in the case of the standard
quadratic potential. It should be mentioned that the contributions due to the
first, the second, the third and the seventh terms (i.e. G1, G2, G3 and G7)
have been taken into account in arriving at these results. The maximum
difference between the numerical and the analytic results is found to be
about 5%.
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Constraints from Planck on non-Gaussianities

Template bispectra
For comparison with the observations, the bispectrum is often expressed as follows21:

G(k1,k2,k3) = f loc
NL

Gloc(k1,k2,k3) + feq
NL
Geq(k1,k2,k3) + forth

NL
Gorth(k1,k2,k3),

where f loc
NL

, feq
NL

and forth
NL

are free parameters that are to be estimated, and the local,
the equilateral, and the orthogonal template bispectra are given by:

Gloc(k1,k2,k3) =
6

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
k
3
1 PS

(k2)P
S

(k3) + two permutations
)
,

Geq(k1,k2,k3) =
3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

) (
6 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 3 k

3
3 PS

(k1)P
S

(k2)

−2 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
,

Gorth(k1,k2,k3) =
3

5

[ (
2π2

)2
k31 k

3
2 k

3
3

] (
18 k2 k

2
3 PS

(k1)P2/3

S
(k2)P1/3

S
(k3)− 9 k

3
3 PS

(k1)P
S

(k2)

−8 k1 k2 k3 P2/3

S
(k1)P2/3

S
(k2)P2/3

S
(k3) + five permutations

)
.

The basis (f loc
NL
, feq

NL
, forth

NL
) for the three-point function is considered to be large

enough to encompass a range of interesting models.
21C. L. Bennett et al., arXiv:1212.5225v1 [astro-ph.CO].
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Constraints from Planck on non-Gaussianities

Illustration of the template bispectra

An illustration of the three template basis bispectra, viz. the local (top left),
the equilateral (bottom) and the orthogonal (top right) forms for a generic
triangular configuration of the wavevectors22.

22E. Komatsu, Class. Quantum Grav. 27, 124010 (2010).
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Constraints from Planck on non-Gaussianities

Constraints on f
NL

The constraints on the non-Gaussianity parameters from the recent Planck
data are as follows23:

f loc
NL

= 2.7± 5.8,

f eq
NL

= −42± 75,

forth
NL

= −25± 39.

It should be stressed here that these are constraints on the primordial values.

Also, the constraints on each of the fNL parameters have been arrived at
assuming that the other two parameters are zero.

23P. A. R. Ade et al., arXiv:1303.5084 [astro-ph.CO].
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Constraints from Planck on non-Gaussianities

Post-inflationary dynamics and non-linearities

Post-inflationary dynamics, such as the curvaton and the modulated re-
heating scenarios can also lead to non-Gaussianities24. The strong con-
straints on f loc

NL
from Planck suggests that the primordial non-Gaussianities

are unlikely to have been generated post-inflation.
Also, non-linear evolution, leading to and immediately after the epoch of
decoupling, have been to shown to result in non-Gaussianities at the level
of O(f

NL
) ∼ 1− 525.

Clearly, these contributions need to be understood satisfactorily before the
observational limits can be used to arrive at constraints on inflationary
models.

24See, for instance, D. Langlois and T. Takahashi, arXiv:1301.3319v1 [astro-ph.CO].
25C. Pitrou, J.-P. Uzan and F. Bernardeau, JCAP 1007, 003 (2010);

S.-C. Su, E. A. Lim and E. P. S. Shellard, arXiv:1212.6968v1 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

Punctuated inflation
Punctuated inflation is a scenario wherein a brief period of rapid roll inflation
or even a departure from inflation is sandwiched between two epochs of slow
roll inflation26.

Such a scenario can be achieved in inflaton potentials such as27

V (φ) =
(
m2/2

)
φ2 −

(√
2λ (n− 1)m/n

)
φn + (λ/4) φ2(n−1),

where n > 2 is an integer. This potential contains a point of inflection located
at

φ0 =

[
2m2

(n− 1)λ

] 1
2 (n−2)

,

and it is the presence of this inflection point that admits punctuated inflation.

These scenarios can lead to a sharp drop in power on large scales and
result in an improved fit to the data at the low multipoles.

26R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
R. K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, Phys. Rev. D 82, 023509 (2010).

27R. Allahverdi, K. Enqvist, J. Garcia-Bellido, A. Jokinen and A. Mazumdar, JCAP 0706, 019 (2007).
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Discriminating power of the non-Gaussianity parameter

Inflaton potentials with a step
Given a potential V (φ), one can introduce the step in the following fashion28:

Vstep(φ) = V (φ)

[
1 + α tanh

(
φ− φ0

∆φ

)]
,

where, evidently, α, φ0 and ∆φ denote the height, the location, and the width
of the step, respectively.

Such a step in potentials V (φ) which otherwise only result in slow roll lead to
oscillatory features in the scalar power spectrum that provide a better fit to
the outliers near ` = 20 and ` = 4429.

28J. A. Adams, B. Cresswell and R. Easther, Phys. Rev. D 64, 123514 (2001).
29L. Covi, J. Hamann, A. Melchiorri, A. Slosar and I. Sorbera, Phys. Rev. D 74, 083509 (2006);

M. J. Mortonson, C. Dvorkin, H. V. Peiris and W. Hu, Phys. Rev. D 79, 103519 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010).
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Discriminating power of the non-Gaussianity parameter

Oscillating inflation potentials
Potentials containing oscillatory terms are encountered in string theory. A
popular example is the axion monodromy model, which is described by the
potential30

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
.

Interestingly, such a potential leads to non-local features – i.e. a certain
characteristic and repeated pattern that extends over a wide range of scales
– in the primordial spectrum which result in an improved fit to the data31.

Another potential that has been considered in this context is the conventional
quadratic potential which is superposed by sinusoidal oscillations as
follows32:

V (φ) =
1

2
m2 φ2

[
1 + α sin

(
φ

β
+ δ

)]
.

30R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, JCAP 1006, 009 (2010).
31M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
32C. Pahud, M. Kamionkowski and A. R. Liddle, Phys. Rev. D 79, 083503 (2009).

L. Sriramkumar (IIT Madras, Chennai) Scalar bispectrum during inflation and preheating April 15, 2013 41 / 55



Discriminating power of the non-Gaussianity parameter

Oscillating inflation potentials
Potentials containing oscillatory terms are encountered in string theory. A
popular example is the axion monodromy model, which is described by the
potential30

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
.

Interestingly, such a potential leads to non-local features – i.e. a certain
characteristic and repeated pattern that extends over a wide range of scales
– in the primordial spectrum which result in an improved fit to the data31.

Another potential that has been considered in this context is the conventional
quadratic potential which is superposed by sinusoidal oscillations as
follows32:

V (φ) =
1

2
m2 φ2

[
1 + α sin

(
φ

β
+ δ

)]
.

30R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, JCAP 1006, 009 (2010).
31M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
32C. Pahud, M. Kamionkowski and A. R. Liddle, Phys. Rev. D 79, 083503 (2009).

L. Sriramkumar (IIT Madras, Chennai) Scalar bispectrum during inflation and preheating April 15, 2013 41 / 55



Discriminating power of the non-Gaussianity parameter

Oscillating inflation potentials
Potentials containing oscillatory terms are encountered in string theory. A
popular example is the axion monodromy model, which is described by the
potential30

V (φ) = λ

[
φ+ α cos

(
φ

β
+ δ

)]
.

Interestingly, such a potential leads to non-local features – i.e. a certain
characteristic and repeated pattern that extends over a wide range of scales
– in the primordial spectrum which result in an improved fit to the data31.

Another potential that has been considered in this context is the conventional
quadratic potential which is superposed by sinusoidal oscillations as
follows32:

V (φ) =
1

2
m2 φ2

[
1 + α sin

(
φ

β
+ δ

)]
.

30R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, JCAP 1006, 009 (2010).
31M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].
32C. Pahud, M. Kamionkowski and A. R. Liddle, Phys. Rev. D 79, 083503 (2009).
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Discriminating power of the non-Gaussianity parameter

The various models of interest

Illustration of the potentials in the different inflationary models of our interest.
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Discriminating power of the non-Gaussianity parameter

Inflationary models leading to features
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Axion monodromy model

The scalar power spectra in the different inflationary models that lead to a
better fit to the CMB data than the conventional power law spectrum33.

33R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009);
D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep, JCAP 1010, 008 (2010);
M. Aich, D. K. Hazra, L. Sriramkumar and T. Souradeep, arXiv:1106.2798v2 [astro-ph.CO].

L. Sriramkumar (IIT Madras, Chennai) Scalar bispectrum during inflation and preheating April 15, 2013 43 / 55



Discriminating power of the non-Gaussianity parameter

f eq
NL

in punctuated inflation
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The contributions to the bispectrum due to the various terms (on the left), and the
absolute value of feq

NL
due to the dominant contribution (on the right), in the

punctuated inflationary scenario34. The absolute value of feq
NL

in a Starobinsky model
that closely resembles the power spectrum in punctuated inflation has also been
displayed. The large difference in feq

NL
between punctuated inflation and the

Starobinsky model can be attributed to the considerable difference in the background
dynamics.

34D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

f eq
NL

in models with a step
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The contributions due to the various terms (on the left) and feq
NL

due to the dominant
contribution (on the right) when a step has been introduced in the popular chaotic
inflationary model involving the quadratic potential35. The feq

NL
that arises in a small

field model with a step has also been illustrated36. The background dynamics in these
two models are very similar, and hence they lead to almost the same feq

NL
.

35X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007); JCAP 0804, 010 (2008);
P. Adshead, W. Hu, C. Dvorkin and H. V. Peiris, Phys. Rev. D 84, 043519 (2011);
P. Adshead, C. Dvorkin, W. Hu and E. A. Lim, Phys. Rev. D 85, 023531 (2012).

36D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v2 [astro-ph.CO].
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Discriminating power of the non-Gaussianity parameter

f eq
NL

in the axion monodromy model
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The contributions due to the various terms (on the left) and f eq
NL

due to the
dominant contribution (on the right) in the axion monodromy model37. The
modulations in the potential give rise to a certain resonant behavior, leading
to a large f eq

NL

38.

In contrast, the quadratic potential with superposed oscillations does not lead
to such a large level of non-Gaussianity.

37D. K. Hazra, L. Sriramkumar and J. Martin, arXiv:1201.0926v1 [astro-ph.CO].
38S. Hannestad, T. Haugbolle, P. R. Jarnhus and M. S. Sloth, JCAP 1006, 001 (2010);

R. Flauger and E. Pajer, JCAP 1101, 017 (2011).
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Contributions to the scalar bispectrum during preheating The evolution of the background and the curvature perturbation

Behavior of the field in a quadratic potential

The behavior of the scalar field during the epochs of inflation and preheating
have been plotted as a function of the number of e-folds for the case of the
conventional chaotic inflationary model described by the quadratic potential.
The blue curve denotes the numerical result, while the dotted red curve in
the inset represents the analytical result.
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Contributions to the scalar bispectrum during preheating The evolution of the background and the curvature perturbation

Evolution of the slow roll parameters

The evolution of the first (on the left) and the second (on the right) slow roll
parameters ε1 and ε2 as the field is oscillating about the quadratic minimum.
As in the previous figure, the blue curves represent the numerical result,
while the dashed red curves denote the analytical result during preheating.
Note that, for the choice parameters and initial conditions that we have
worked with, ε1 turns unity at the e-fold of Ne ' 28.3, indicating the
termination of inflation at the point.
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Contributions to the scalar bispectrum during preheating The evolution of the background and the curvature perturbation

The curvature perturbation during preheating
Though the modes of cosmological interest are well outside the Hubble
radius at late times, the conventional super-Hubble solutions to the modes fk
during inflation do not a priori hold at the time of preheating.

This is due to the fact that, though k/(aH) is small, because of the
oscillating scalar field, the quantity z′′/z itself can vanish during preheating.
In fact, when the values of the parameters fall in certain domains known as
the resonant bands, the modes display an instability39.

However, for the case of quadratic minima associated with mass, say, m, it
can be shown that, the conventional, inflationary, super-Hubble solutions
indeed apply provided the following two conditions are satisfied:(

k

aH

)2
H2

m2
� 1 and

(
k

aH

)2
H

3m
� 1.

Given that, H < m immediately after inflation, it is evident that the first of the
above two conditions will be satisfied if the second is40.

39F. Finelli and R. Brandenberger, Phys. Rev. Lett. 82, 1362 (1999).
40K. Jedamzik, M. Lemoine and J. Martin, JCAP 1009, 034 (2010); JCAP 1004 021 (2010).
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Contributions to the scalar bispectrum during preheating The evolution of the background and the curvature perturbation

Analytic solution during preheating
Up to the order k2, the dominant, super-Hubble, inflationary solution to the
mode fk is given by

fk(η) ' Ak

[
1− k2

∫ η dη̄

z2(η̄)

∫ η̄

dη̃ z2(η̃)

]
.

The solutions for the background available when the potential around the
minimum behaves quadratically allows us to actually evaluate the above
integrals in a closed form.

We find that, during this epoch, the growing mode of the curvature
perturbation can be written as

fk = Ak

[
1− 1

5

(
k

aH

)2
H

m
tan (mt+ ∆)

]
,

where ∆ is a constant of integration41.

41R. Easther, R. Flauger and J. B. Gilmore, JCAP 1104, 027 (2011).
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Contributions to the scalar bispectrum during preheating The evolution of the background and the curvature perturbation

Comparison with the numerical result

The behavior of the curvature perturbation during preheating. The blue curve
denotes the numerical result, while the dashed red curve represents the
super-Hubble analytical solution. We have chosen to work with a very small
scale mode that leaves the Hubble radius at about two e-folds before the
end of inflation.
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Contributions to the scalar bispectrum during preheating The evolution of the bispectrum

An illustration of the accuracy of the analytical result

The behavior of the quantity G2(k1,k2,k3) in the equilateral limit for a mode
that leaves the Hubble radius at about 20 e-folds before the end of inflation.
The blue curve represents the numerical result, while the dashed red curve
denotes the analytical result42.

42D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Contributions to the scalar bispectrum during preheating The evolution of the bispectrum

An estimate of the contribution to f eq
NL

during preheating
Upon assuming inflation to be of the power law form, the contribution to the
non-Gaussianity parameter f

NL
during preheating can be obtained to be

feq
NL

(k) =
115 ε1
288π

Γ2

(
γ +

1

2

)
22 γ+1 (2 γ + 1)2 sin (2π γ) |γ + 1|−2 (γ+1)

×
[
1− e−3 (Nf−Ne)/2

] [(π2 g∗
30

)−1/4

(1 + zeq)1/4
ρ
1/4
cri

Trh

]−(2 γ+1)

×
(

k

a0H0

)−(2 γ+1)

,

where g∗ denotes the effective number of relativistic degrees of freedom at
reheating, Trh the reheating temperature and zeq the redshift at the epoch of
equality. Also, ρcri, a0 and H0 represent the critical energy density, the scale
factor and the Hubble parameter today, respectively.

For a model with γ ' −2 and a reheating temperature of Trh ' 1010 GeV, one
obtains that f

NL
≈ 10−60 for the modes of cosmological interest (i.e. for k

such that k/a0 ' H0), a value which is completely unobservable43.
43D. K. Hazra, J. Martin and L. Sriramkumar, Phys. Rev. D 86, 063523 (2012).
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Summary

Summary

We have developed an efficient and robust procedure (and implemented
it in BINGO) for numerically evaluating the scalar bispectrum in single
field inflationary models.

We find that the numerical results from BINGO match the spectral depen-
dence in power law inflation as well as the analytical results available in
the case of the Starobinsky model and slow roll inflation very well.
As an immediate application, we had investigated the power of the non-
Gaussianity parameter f

NL
to be able to discriminate between different

inflationary models that lead to deviations from slow roll and result in
similar features in the scalar power spectrum. We find that certain dif-
ferences in the background dynamics – reflected in the behavior of the
slow roll parameters – can lead to a reasonably large difference in the
f eq
NL

generated by the competing models.
Further, we have shown that, in single field inflationary potentials with a
quadratic minimum, the contributions to the bispectrum during preheating
proves to be completely negligible.
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Thank you for your attention
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