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Whither inflation? Resolution of the horizon problem through inflation

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the
Hubble radius at the last scattering surface (which subtends an angle of about 1◦ today)
could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation helps in re-
solving the horizon problem1.

1Images from W. Kinney, astro-ph/0301448.
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Whither inflation? Resolution of the horizon problem through inflation

Bringing the modes inside the Hubble radius
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cosmology
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The behavior of the physical wavelength λP ∝ a (the green lines) and the Hubble radius
H−1 (the blue line) during inflation and the radiation dominated epochs2. Back to bounce

2See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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Whither inflation? Achieving inflation with scalar fields

A variety of potentials to choose from

A variety of scalar field potentials have been considered to drive inflation3. Often, these
potentials are classified as small field, large field and hybrid models.

3Image from W. Kinney, astro-ph/0301448.
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Whither inflation? Achieving inflation with scalar fields

Proliferation of inflationary models

A (partial?) list of ever-increasing number of inflationary models4. Actually, it may not even
be possible to rule out some of these models!

4
From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology,
Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Whither inflation? The scalar and tensor power spectra generated during inflation

The character of the perturbations

In a Friedmann universe, the perturbations in the metric and the matter can be classified
according to their behavior with respect to local rotation of the spatial coordinates on
hypersurfaces of constant time as follows5:

F Scalar perturbations – Density and pressure perturbations
F Vector perturbations – Rotational velocity fields
F Tensor perturbations – Gravitational waves

The metric perturbations are related to the matter perturbations through the first order
Einstein’s equations.

Inflation does not produce any vector perturbations, while the tensor perturbations can be
generated even in the absence of sources.

It is the fluctuations in the inflaton field φ that act as the seeds for the scalar perturbations
that are primarily responsible for the anisotropies in the CMB and, eventually, the present
day inhomogeneities.

5See, for instance, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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Whither inflation? The scalar and tensor power spectra generated during inflation

The quadratic action governing the perturbations
One can show that, at the quadratic order, the action governing the curvature perturbation
R and the tensor perturbation γij are given by6

S2[R] =
1

2

∫
dη

∫
d3x z2

[
R′2 − (∂R)2

]
,

S2[γij ] =
M2

Pl

8

∫
dη

∫
d3x a2

[
γ′ij

2 − (∂γij)
2
]
.

Back to the cubic action

These actions lead to the following equations of motion governing the scalar and tensor
modes, say, fk and hk:

f ′′k + 2
z′

z
f ′k + k2 fk = 0,

h′′k + 2
a′

a
h′k + k2 hk = 0,

where z = aM
Pl

√
2 ε1, with ε1 = −d lnH/dN being the first slow roll parameter.

6V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
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Whither inflation? The scalar and tensor power spectra generated during inflation

From inside the Hubble radius to super-Hubble scales

Radiation

radius in non−inflationary
cosmology
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The initial conditions are imposed in the sub-Hubble regime when the modes are well
inside the Hubble radius (viz. when k/(aH) � 1) and the power spectra are evaluated
when they sufficiently outside (i.e. as k/(aH)� 1).
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Whither inflation? The scalar and tensor power spectra generated during inflation

Typical evolution of the scalar modes
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Typical evolution of the real and the imaginary parts of the scalar modes during slow roll
inflation. The mode considered leaves the Hubble radius at about 18 e-folds7.

7Figure from V. Sreenath, Computation and characteristics of inflationary three-point functions, Ph.D. Thesis,
Indian Institute of Technology Madras, Chennai, India (2015).

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 12 / 56



Whither inflation? The scalar and tensor power spectra generated during inflation

Spectral indices and the tensor-to-scalar ratio

While comparing with the observations, for convenience, one often uses the following
power law, template scalar and the tensor spectra:

PS(k) = AS

(
k

k∗

)n
S
−1

, PT(k) = AT

(
k

k∗

)n
T

,

with the spectral indices nS and nT assumed to be constant.

The tensor-to-scalar ratio r is defined as

r(k) =
PT(k)

PS(k)
.
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Whither inflation? Constraints from Planck

Performance of models in the ns-r plane

Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combina-
tion with other data sets, compared to the theoretical predictions of selected inflationary
models8.

8Planck Collaboration (P. A. R. Ade et al.), Astron. Astrophys. 594, A20 (2016).
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Bouncing scenarios An alternative to inflation

Bouncing scenarios as an alternative paradigm9

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields will have to violate the null energy condition near the bounce in
order to give rise to such a scale factor. Also, there exist (genuine) concerns whether
such an assumption about the scale factor is valid in a domain where general relativity
can be supposed to fail and quantum gravitational effects are expected to take over.

9See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 16 / 56



Bouncing scenarios An alternative to inflation

Bouncing scenarios as an alternative paradigm9

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields will have to violate the null energy condition near the bounce in
order to give rise to such a scale factor. Also, there exist (genuine) concerns whether
such an assumption about the scale factor is valid in a domain where general relativity
can be supposed to fail and quantum gravitational effects are expected to take over.

9See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 16 / 56



Bouncing scenarios An alternative to inflation

Bouncing scenarios as an alternative paradigm9

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields will have to violate the null energy condition near the bounce in
order to give rise to such a scale factor. Also, there exist (genuine) concerns whether
such an assumption about the scale factor is valid in a domain where general relativity
can be supposed to fail and quantum gravitational effects are expected to take over.

9See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 16 / 56



Bouncing scenarios An alternative to inflation

Overcoming the horizon problem in bouncing models
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Behavior in inflation

Evolution of the physical wavelength and the Hubble radius in a bouncing scenario10.
10Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
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Bouncing scenarios Nature of sources driving bounces

Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

It can be shown that, if the modes of cosmological interest have to be inside the Hubble
radius at early times during the contracting phase, the universe needs to undergo non-
accelerated contraction.

In such cases, one finds that Ḣ will be positive near the bounce, which implies that (ρ+ p)
has to be negative in this domain. In other words, the null energy condition needs to be
violated in order to achieve such bounces.
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Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

It can be shown that, if the modes of cosmological interest have to be inside the Hubble
radius at early times during the contracting phase, the universe needs to undergo non-
accelerated contraction.
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Bouncing scenarios Nature of sources driving bounces

Classical bounces and sources
Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0

denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k2

0 M
2
Pl
a

1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k2

0 M
2
Pl
a0/a

3 and
ρ2 = −12 k2

0 M
2
Pl
a2

0/a
4.
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Bouncing scenarios Nature of sources driving bounces

E-N -folds

The conventional e-fold N is defined N = log (a/ai) so that a(N) = ai expN . However,
the function eN is a monotonically increasing function of N .

In completely symmetric bouncing scenarios, an obvious choice for the scale factor seems
to be11

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the differential
equation governing the background as well as the perturbations.

We shall refer to the variable N as e-N -fold since the scale factor grows roughly by the
amount eN between N and (N + 1).

11L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Bouncing scenarios Nature of sources driving bounces

Behavior of Ḣ and ρ in a matter bounce
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The behavior of Ḣ (on the left) and the total energy density ρ (on the right) in a symmetric
matter bounce scenario has been plotted as a function ofN . Note that the maximum value
of ρ is much smaller than M4

Pl
, which suggests that the bounce can be treated completely

classically. Back to scalar perturbations
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Bouncing scenarios Duality invariance and scale invariant spectra

Duality between de Sitter inflation and matter bounce
It is known that the solutions to the equations of motion governing the scalar and ten-
sor perturbations are invariant under a certain transformation referred to as the duality
transformation12.

For instance, recall that the Mukhanov-Sasaki variable corresponding to the tensor per-
turbations [which is defined as uk = (M

Pl
/
√

2) a hk] satisfies the differential equation

u′′k +

(
k2 − a′′

a

)
uk = 0.

Given a scale factor a, the corresponding dual, say, ã, which leads to the same equation
for the variable uk is given by

a(η)→ ã(η) = C a(η)

η∫

η∗

dη̄

a2(η̄)
,

where C and η∗ are constants.
It is straightforward to show that the dual solution to de Sitter inflation corresponds to the
matter bounce. Both these cases lead to scale invariant spectra.

12D. Wands, Phys. Rev. D 60, 023507 (1999).
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The tensor power spectrum in a symmetric matter bounce

Plan of the talk

1 Whither inflation?

2 Bouncing scenarios

3 The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce

5 The tensor-to-scalar ratio in a matter bounce scenario

6 Generating spectral tilt

7 The tensor bi-spectrum in a matter bounce

8 Summary
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms
of the conformal time coordinate η by the relation

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)
.

As we had discussed earlier, at very early times, viz. when η � −η0, the scale factor
behaves as in a matter dominated epoch13.

The quantity a′′/a corresponding to the above scale factor is given by

a′′

a
=

2 k2
0

1 + k2
0 η

2
,

which is essentially a Lorentzian profile.

13See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The behavior of a′′/a
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The behavior of the quantity a′′/a has been plotted as a function of N for the matter
bounce scenario of interest. Note that the maximum value of a′′/a is of the order of k2

0.
Evolution of hk , sans the details
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 26 / 56



The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 26 / 56



The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 26 / 56



The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.

L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 26 / 56



The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The modes in the second domain
Let us now consider the behavior of the modes in the domain −αη0 < η < β η0, where,

say, β ' 102. Since we are interested in scales much smaller than k0, we shall assume
that ηk � −αη0, which corresponds to k � k0/α.

In such a case, upon ignoring the k2 term, the equation governing hk can be immediately
integrated to yield

hk(η) ' hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
,

where η∗ is a suitably chosen time and the scale factor a(η) is given by the complete
expression.

If we choose η∗ = −αη0, we can make use of the solution in the first domain to determine
the constants and express the solution in the second domain as follows:

hk = Ak + Bk f(k0 η),

where the function f(k0 η) is given by Back to scalar perturbations

f(k0 η) =
k0 η

1 + k2
0 η

2
+ tan−1 (k0 η) .
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

Evolution of the tensor modes across the bounce
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Tensor power spectrum, sans the details

Comparison of the numerical results (in solid red) with the analytical results (in dashed
cyan) for the amplitude of the tensor mode |hk| corresponding to k/k0 = 10−20. We have
set k0/(a0MPl

) = 3.3× 10−8 and have chosen α = 105 for plotting the analytical results14.
14D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor power spectrum after the bounce

The quantities Ak and Bk are given by

Ak =

√
2

M
Pl

1√
2 k

1

a0 α2

(
1 +

i k0

αk

)
ei α k/k0 + Bk f(α),

Bk =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(

3 i k0

α2 k
+

3

α
− i k

k0

)
ei α k/k0 .

If we evaluate the tensor power spectrum after the bounce at η = β η0, we find that it can
be expressed as

PT(k) = 4
k3

2π2
|Ak + Bk f(β)|2.
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The tensor power spectrum in a symmetric matter bounce Evolution of the tensor modes and power spectrum

The tensor power spectrum
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The behavior of the tensor power spectrum has been plotted as a function of k/k0 for a
wide range of wavenumbers. In plotting this figure, we have set k0/(a0MPl

) = 3.3× 10−8,
α = 105 and β = 102. Note that the power spectrum is scale invariant for k � k0/α.
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A new model for the completely symmetric matter bounce
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A new model for the completely symmetric matter bounce Modeling the matter bounce with scalar fields

A new model for the completely symmetric matter bounce
As we had discussed, the matter bounce scenario described by the scale factor

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)

can be driven with the aid of two fluids, one which is matter and another fluid which be-
haves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, φ
and χ, that are governed by the following action15:

S[φ, χ] = −
∫

d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ) + U0

(
−1

2
∂µχ∂

µχ

)2
]
,

where U0 is a constant and the potential V (φ) is given by

V (φ) =
6M2

Pl
(k2

0/a
2
0)

cosh6[φ/(
√

12M
Pl

)]
.

15R. N. Raveendran, D. Chowdhury and L. Sriramkumar, arXiv:1703.10061v1 [gr-qc].
L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 32 / 56



A new model for the completely symmetric matter bounce Modeling the matter bounce with scalar fields

A new model for the completely symmetric matter bounce
As we had discussed, the matter bounce scenario described by the scale factor

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)

can be driven with the aid of two fluids, one which is matter and another fluid which be-
haves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, φ
and χ, that are governed by the following action15:

S[φ, χ] = −
∫

d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ) + U0

(
−1

2
∂µχ∂

µχ

)2
]
,

where U0 is a constant and the potential V (φ) is given by

V (φ) =
6M2

Pl
(k2

0/a
2
0)

cosh6[φ/(
√

12M
Pl

)]
.

15R. N. Raveendran, D. Chowdhury and L. Sriramkumar, arXiv:1703.10061v1 [gr-qc].
L. Sriramkumar (IIT Madras, Chennai) Viable near-matter bounces April 7, 2018 32 / 56



The tensor-to-scalar ratio in a matter bounce scenario
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

The scalar perturbations
When the scalar perturbations are taken into account, the FLRW line element can be
written as

ds2 = −(1 + 2A) dt2 + 2 a(t) (∂iB) dt dxi + a2(t) [(1− 2ψ) δij + 2 (∂i ∂jE)] dxi dxj ,

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.

The gauge invariant curvature and isocurvature perturbations R and S can be defined
in terms of the above metric perturbations and the perturbations δφ and δχ in the scalar
fields as follows16:

R =
H

φ̇2 − U0 χ̇4

(
φ̇ δφ− U0 χ̇

3 δχ
)
, S =

H
√
α χ̇2

φ̇2 − U0 χ̇4

(
χ̇ δφ− φ̇ δχ

)
.

The quantities δφ and δχ denote the gauge invariant versions of the perturbations in the
scalar fields, and are given by

δφ = δφ+
φ̇ ψ

H
, δχ = δχ+

χ̇ ψ

H
.

16R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

The scalar perturbations
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

Equations governing the curvature and isocurvature perturbations

We obtain the equations of motion describing the gauge invariant perturbations Rk and
Sk in our model to be

R′′k +
2
(
7 + 9 k2

0 η
2 − 6 k4

0 η
4
)

η (1− 3 k2
0 η
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(1 + k2
0 η
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R′k −

k2
(
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0 η
2
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3 (1− 3 k2
0 η

2)
Rk

=
4
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5 + 12 k2

0 η
2
)

√
3 η (1− 3 k2

0 η
2)
√

1 + k2
0 η

2
S ′k −

4
[
5− 22 k2

0 η
2 − 24 k4

0 η
4 + k2 η2

(
1 + k2

0 η
2
)2]

√
3 η2 (1 + k2

0 η
2)

3/2
(1− 3 k2

0 η
2)

Sk,

S ′′k −
2
(
9 + 7 k2

0 η
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0 η
4
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η (1− 3 k2
0 η

2) (1 + k2
0 η

2)
S ′k

− 18− 85 k2
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2 − 25 k4
0 η

4 − 6 k6
0 η

6 + k2 η2
(
3− k2
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2
) (

1 + k2
0 η

2
)2

η2 (1− 3 k2
0 η

2) (1 + k2
0 η

2)
2 Sk

=
4
√

3
(
3− 2 k2

0 η
2
)

η
√

1 + k2
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2 (1− 3 k2
0 η

2)
R′k +

4 k2
√

1 + k2
0 η

2

√
3 (1− 3 k2

0 η
2)
Rk. Behavior of Ḣ

However, some of the coefficients diverge when Ḣ and/or H vanish.
Evolution ofRk and Sk , sans the details
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The tensor-to-scalar ratio in a matter bounce scenario Equations of motion for the scalar perturbations

The uniform-χ gauge
The issue of diverging coefficients can be avoided by working in a gauge wherein δχ = 017.

In this gauge, the equations of motion for the metric perturbations Ak and ψk can be
obtained to be

A′′k + 4HA′k +

(
k2

3
− 20 a2

0 k
2
0

a2

)
Ak = −3Hψ′k +

4 k2

3
ψk,

ψ′′k − 2Hψ′k + k2 ψk = 2HA′k −
20 a2

0 k
2
0

a2
Ak,

where H = a′/a. These equations prove to be helpful in evolving the scalar perturbations
across the bounce.

Also, in the uniform-χ gauge, the curvature and isocurvature perturbations simplify to be

Rk = ψk +
2HM2

Pl

φ̇2 − U0 χ̇4

(
ψ̇k +H Ak

)
, Sk =

2HM2
Pl

√
U0 χ̇4

(
φ̇2 − U0 χ̇4

)
φ̇

(
ψ̇k +H Ak

)
.

17L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Solutions for Rk and Sk in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after
the bounce at η = β η0. Also, to arrive at the analytical approximations, as earlier, we shall
divide period of interest into two domains, viz. −∞ < η < −αη0 and −αη0 < η < β η0.

In the first domain, we find that the solution to the curvature perturbation can be arrived at
as in the case of tensors and is given by

Rk(η) ' 1√
6 kM

Pl
a0 k2

0 η
2

(
1− i

k η

)
e−i k η.

Using this solution, it is straightforward to obtain the following solution for the isocurvature
perturbation at early times:

Sk(η) ' 1

9
√

2 k3 a0 k3
0 MPl

η4

(
−12 i (1 + i k η) e−i k η +

9

31/4
k k0 η

2 e−i k η/
√

3

+ 4 k2 η2 e−i k η/
√

3
{
π + iEi

[
e−i (3−

√
3) k η/3

]})
.
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Solutions for ψk and Ak in the second domain

In the second domain, upon ignoring the k2 dependent terms, one finds that the combina-
tion Ak + ψk satisfies the same equation of motion as the tensor modes.

This feature helps us obtain the solutions for Ak and ψk, and they are given by

Ak(η) + ψk(η) ' Ck
2 a2

0

f(k0 η) +Dk,

Ak(η) ' Ck k0 η

4 a2
0 (1 + k2

0 η
2)

+ Ek e−2
√

5 tan−1(k0 η) + Fk e2
√

5 tan−1(k0 η),

where f(k0 η) is the same function that we had encountered earlier in the case of tensors,
and Ck, Dk, Ek and Fk are four constants of integration. Function f(k0 η)

The four constants, viz. Ck, Dk, Ek and Fk, are determined by matching the above solutions
with the solutions for Rk and Sk in the first domain at η = −αη0.
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The tensor-to-scalar ratio in a matter bounce scenario Evolution of the scalar modes across the bounce

Evolution of Rk, Sk and hk
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The evolution of the curvature, isocurvature and tensor perturbations, viz. Rk (in blue
and orange), Sk (in green and magenta) and hk (in red and cyan) across the bounce
for the modes k/k0 = 10−20 (on the left) and k/k0 = 10−25 (on the right). We have set
k0/(a0MPl

) = 3.3×10−8, α = 105 and β = 102. The solid lines denote the results obtained
numerically, while the dashed lines represent the analytical approximations.
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The tensor-to-scalar ratio in a matter bounce scenario The power spectra in the matter bounce scenario

The scalar and tensor power spectra in the matter bounce
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The scalar (curvature as blue and isocurvature as green) and tensor (as red) power spec-
tra have been plotted before (as dotted lines) as well as after (as solid lines) the bounce18.

18R. N. Raveendran, D. Chowdhury and L. Sriramkumar, arXiv:1703.10061v1 [gr-qc].
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The tensor-to-scalar ratio in a matter bounce scenario The power spectra in the matter bounce scenario

The evolution of the tensor-to-scalar ratio
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The evolution of the tensor-to-scalar ratio r across the symmetric matter bounce for a typ-
ical mode of cosmological interest. The solid (in red) and dashed (in cyan) lines represent
the numerical and analytical results, respectively.
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Generating spectral tilt

Near matter bounces

Near-matter bounces can be described by the scale factor

a(η) = a0

(
1 + k2

0 η
2
)(1+λ)

and, one finds that the index λ leads to a tilt in the power spectra.

Such a scale factor can also be achieved with the aid of two scalar fields, say, φ and χ,
governed by the action19

S[φ, χ] = −
∫

d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ) + U0

(
−1

2
∂µχ∂

µχ

)α]
,

where U0 is a constant, α = (2 + λ)/(1 + λ) and the potential V (φ) is given by

V (φ) =
2 (3 + 4λ)

1 + λ

(
M

Pl
k0 (1 + λ)

a0

)2

cosh−2 (3+2λ)

(
φ

2
√

(1 + λ) (3 + 2λ)M
Pl

)
.

19R. N. Raveendran and L. Sriramkumar, in preparation.
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Generating spectral tilt

Red-tilted scalar and tensor power spectra in a near-matter bounce
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The scalar (curvature as blue and isocurvature as green) and tensor (as red) power spec-
tra for λ ' 10−2 (corresponding to a scalar spectral tilt of nS = 0.96) have been plotted
before (as dotted lines, on the left) and after (as solid lines, on the right) the bounce20.

20R. N. Raveendran, and L. Sriramkumar, in preparation.
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The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

Tensor bi-spectrum and non-Gaussianity parameter

The tensor bi-spectrum, evaluated at the conformal time, say, ηe, is defined as

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)3 Bm1n1m2n2m3n3
γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3)

and, for convenience, we shall set

Bm1n1m2n2m3n3
γγγ (k1,k2,k3) = (2π)−9/2 Gm1n1m2n2m3n3

γγγ (k1,k2,k3).

As in the scalar case, one can define a dimensionless non-Gaussianity parameter to char-
acterize the amplitude of the tensor bi-spectrum as follows21:

h
NL

(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT

(k1) P
T

(k2) + five permutations
]−1

.

21V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
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The tensor bi-spectrum in a matter bounce The tensor bi-spectrum

The third order action and the tensor bi-spectrum
The third order action that leads to the tensor bi-spectrum is given by22 The quadratic action

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The tensor bi-spectrum calculated in the perturbative vacuum using the Maldacena formalism, can
be written in terms of the modes hk as follows:

Gm1n1m2n2m3n3
γγγ (k1,k2,k3)

= M2
Pl

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3

m3n3,lj
− 1

2
Πk1
m1n1,ij

Πk2

m2n2,ml
Πk3
m3n3,ij

)
k1m k1l

+ five permutations

]

×
[
hk1(ηe)hk2(ηe)hk3(ηe)Gγγγ(k1,k2,k3) + complex conjugate

]
,

where Gγγγ(k1,k2,k3) is described by the integral

Gγγγ(k1,k2,k3) = − i
4

∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 ,

with ηi denoting the time when the initial conditions are imposed on the perturbations.

22J. Maldacena, JHEP 0305, 013 (2003).
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The contributions due to the three domains
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10−16

h
N
L
(k
)

The contributions to the non-Gaussianity parameter hNL in the equilateral limit from the
first (in green), the second (in red) and the third (in blue) domains have been plotted as
a function of k/k0 for k � k0/α. Clearly, the third domain gives rise to the maximum
contribution to hNL

23. Skip the discussion on the squeezed limit

23D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength tensor
mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW metric can be
written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation transforms
as24

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

24S. Kundu, JCAP 1404, 016 (2014).
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the presence of
a long wavelength mode denoted by, say, the wavenumber k, can be written as

〈γ̂k1
m1n1

γ̂k2
m2n2
〉k =

(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
PT(k1) δ(3)(k1 + k2)

×
[
1−

(
nT − 3

2

)
γB
ij n̂1i n̂1j

]
,

where n̂1i = k1i/k1.

One can also show that, in the presence of a long wavelength mode, the tensor bi-
spectrum can be written as25

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 = − (2π)5/2

4 k3
1 k

3
3

(
nT − 3

32

)
PT(k1)PT(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2).

25V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The tensor bi-spectrum in a matter bounce The squeezed limit and the consistency relation

The complete contribution to h
NL

10−50 10−47 10−44 10−41 10−38 10−35 10−32 10−29 10−26 10−23 10−20 10−17 10−14 10−11

k/k0
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10−50
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10−38

10−32

10−26

10−20

10−14

h
N
L
(k
)

The behavior of h
NL

in the equilateral (in blue) and the squeezed (in red) limits plotted as a function
of k/k0 for k � k0/α. The resulting h

NL
is considerably small when compared to the values that

arise in de Sitter inflation wherein 3/8 . h
NL

. 1/2. Moreover, we find that h
NL

behaves as k2 in
the equilateral and the squeezed limits, with similar amplitudes26.

26D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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Summary

Plan of the talk

1 Whither inflation?

2 Bouncing scenarios

3 The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce

5 The tensor-to-scalar ratio in a matter bounce scenario

6 Generating spectral tilt

7 The tensor bi-spectrum in a matter bounce
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Summary

Summary

F Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be
large in symmetric bounces.

In this work, we have been able to construct a completely symmetric matter bounce
scenario that leads to nearly scale invariant spectra and a tensor-to-scalar ratio that
is consistent with the observations.
It is also important to examine if the non-Gaussianities generated in such models are
in agreement with the recent constraints from Planck.
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Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios27?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations28?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models29?

27L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
28Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
29J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
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Collaborators

Collaborators: current and former students

Rathul Nath Raveendran Debika Chowdhury V. Sreenath
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Thank you for your attention
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