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Introduction Conventions and notations

A few words on the conventions and notations

F We shall work in units such that c = ~ = 1, and define the Planck mass to be M
Pl

=
(8πG)−1/2.

F We shall assume the background universe to be described by the following spatially
flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-element:

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
,

where t is the cosmic time, a(t) is the scale factor and η =
∫

dt/a(t) denotes the
conformal time coordinate.

F We shall denote differentiation with respect to the cosmic and the conformal times t
and η by an overdot and an overprime, respectively.

F Further, as usual, H = ȧ/a shall denote the Hubble parameter associated with the
FLRW universe.
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Whither inflation?

Proliferation of inflationary models

A (partial?) list of ever-increasing number of inflationary models1. Actually, it may not even
be possible to rule out some of these models!

1
From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology,
Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).
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Whither inflation?

Performance of inflationary models against the data

The efficiency of the inflationary paradigm leads to a situation wherein, despite the strong
constraints, a variety of models continue to remain consistent with the data2.

2J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403, 039 (2014).
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Whither inflation?

Can inflation be falsified?

The difficulty with the inflationary paradigm

A theory that predicts everything predicts nothinga.
aP. J. Steinhardt, Sci. Am. 304, 36 (2011).
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Bouncing scenarios An alternative to inflation

Bouncing scenarios as an alternative paradigm3

F Bouncing models correspond to situations wherein the universe initially goes through
a period of contraction until the scale factor reaches a certain minimum value before
transiting to the expanding phase.

F They offer an alternative to inflation to overcome the horizon problem, as they permit
well motivated, Minkowski-like initial conditions to be imposed on the perturbations at
early times during the contracting phase.

F However, matter fields will have to violate the null energy condition near the bounce in
order to give rise to such a scale factor. Also, there exist (genuine) concerns whether
such an assumption about the scale factor is valid in a domain where general relativity
can be supposed to fail and quantum gravitational effects are expected to take over.

3See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).
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Bouncing scenarios Resolving the horizon problem

The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the
Hubble radius at the last scattering surface (which subtends an angle of about 1◦ today)
could not have interacted before decoupling.

Right: An illustration of how an early and sufficiently long epoch of inflation helps in resolv-
ing the horizon problem4.

4Images from W. Kinney, astro-ph/0301448.
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Bouncing scenarios Resolving the horizon problem

Bringing the modes inside the Hubble radius

Radiation Radiation
dominateddominated

radius in non−inflationary
cosmology
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The behavior of the physical wavelength λP ∝ a (the green lines) and the Hubble radius
H−1 (the blue line) during inflation and the radiation dominated epochs5.

5See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.
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Bouncing scenarios Resolving the horizon problem

Overcoming the horizon problem in bouncing models
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Evolution of the physical wavelength and the Hubble radius in a bouncing scenario6.
6Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 13 / 51



Bouncing scenarios Nature of sources driving bounces

Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

Ḣ = − 4πG (ρ+ p) .

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses
zero at the bounce and is positive thereafter.

It can be shown that, if the modes of cosmological interest have to be inside the Hubble
radius at early times during the contracting phase, the universe needs to undergo non-
accelerated contraction.

In such cases, one finds that Ḣ will be positive near the bounce, which implies that (ρ+ p)
has to be negative in this domain. In other words, the null energy condition needs to be
violated in order to achieve such bounces.
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Bouncing scenarios Nature of sources driving bounces

Classical bounces and sources
Consider for instance, bouncing models of the form

a(η) = a0

(
1 +

η2

η2
0

)q
= a0

(
1 + k2

0 η
2
)q
,

where a0 is the value of the scale factor at the bounce (i.e. when η = 0), η0 = 1/k0

denotes the time scale of the duration of the bounce and q > 0. We shall assume that the
scale k0 associated with the bounce is of the order of the Planck scale M

Pl
.

The above scale factor can be achieved with the help of two fluids with constant equation
of state parameters w1 = (1−q)/(3 q) and w2 = (2−q)/(3 q). The energy densities of these
fluids behave as ρ1 = M1/a

(2 q+1)/q and ρ2 = M2/a
2 (1+q)/q, where M1 = 12 k2

0 M
2
Pl
a

1/q
0

and M2 = −M1 a
1/q
0 .

Note that, when q = 1, during very early times wherein η � −η0, the scale factor behaves
as in a matter dominated universe (i.e. a ∝ η2). Therefore, the q = 1 case is often
referred to as the matter bounce scenario. In such a case, ρ1 = 12 k2

0 M
2
Pl
a0/a

3 and
ρ2 = −12 k2

0 M
2
Pl
a2

0/a
4.
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Bouncing scenarios Nature of sources driving bounces

E-N -folds

The conventional e-fold N is defined N = log (a/ai) so that a(N) = ai expN . However,
the function eN is a monotonically increasing function of N .

In completely symmetric bouncing scenarios, an obvious choice for the scale factor seems
to be7

a(N ) = a0 exp (N 2/2),

with N being the new time variable that we shall consider for integrating the differential
equation governing the background as well as the perturbations.

We shall refer to the variable N as e-N -fold since the scale factor grows roughly by the
amount eN between N and (N + 1).

7L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).
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Bouncing scenarios Nature of sources driving bounces

Behavior of Ḣ and ρ in a matter bounce
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The behavior of Ḣ (on the left) and the total energy density ρ (on the right) in a symmetric
matter bounce scenario has been plotted as a function ofN . Note that the maximum value
of ρ is much smaller than M4

Pl
, which suggests that the bounce can be treated completely

classically.
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Bouncing scenarios Duality invariance and scale invariant spectra

Duality between de Sitter inflation and matter bounce
It is known that the solutions to the equations of motion governing the scalar and ten-
sor perturbations are invariant under a certain transformation referred to as the duality
transformation8.

For instance, recall that the Mukhanov-Sasaki variable corresponding to the tensor per-
turbations satisfies the differential equation

u′′k +

(
k2 − a′′

a

)
uk = 0.

Given a scale factor a, the corresponding dual, say, ã, which leads to the same equation
for the variable uk is given by

a(η)→ ã(η) = C a(η)

η∫

η∗

dη̄

a2(η̄)
,

where C and η∗ are constants.
It is straightforward to show that the dual solution to de Sitter inflation corresponds to the
matter bounce. Both these cases lead to scale invariant spectra.

8D. Wands, Phys. Rev. D 60, 023507 (1999).
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The tensor power spectrum in a symmetric matter bounce Quantization and power spectrum
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The tensor power spectrum in a symmetric matter bounce Quantization and power spectrum

Equation governing the tensor perturbations
Upon quantization, the tensor perturbations can be written in terms of the corresponding
modes, say, hk, as follows:

γ̂ij(η,x) =

∫
d3k

(2π)3/2
γ̂kij(η) eik·x

=
∑

s

∫
d3k

(2π)3/2

(
b̂sk ε

s
ij(k)hk(η) eik·x + b̂s†k εs∗ij (k)h∗k(η) e−ik·x

)
,

where b̂sk and b̂sk
† are the usual creation and annihilation operators that satisfy the standard

commutation relations, while εsij(k) represents the transverse and traceless polarization
tensor describing gravitational waves.

The modes hk are governed by the differential equation

h′′k + 2H h′k + k2 hk = 0

where H = a′/a and, in terms of the variable uk = M
Pl
a hk/

√
2, the above equation

reduces to
u′′k +

(
k2 − a′′

a

)
uk = 0.
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The tensor power spectrum in a symmetric matter bounce Quantization and power spectrum

The tensor power spectrum: Definition

The tensor power spectrum PT(k) is defined through the relation

〈γ̂km1n1
γ̂pm2n2

〉 =
(2π)2

8 k3
Πk
m1n1,m2n2

PT(k) δ3 (k + p) ,

where
Πk
m1n1,m2n2

=
∑

s

εsm1n1
(k) εs∗m2n2

(k).

In terms of the quantities hk and uk, the tensor power spectrum PT(k) in the Bunch-Davies
vacuum is given by

PT(k) = 4
k3

2π2
|hk|2 =

8

M2
Pl

k3

2π2

( |uk|
a

)2

,

with the right hand side being evaluated at suitably late times9.

9See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms
of the conformal time coordinate η by the relation

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)
.

As we had discussed earlier, at very early times, viz. when η � −η0, the scale factor
behaves as in a matter dominated epoch10.

The quantity a′′/a corresponding to the above scale factor is given by

a′′

a
=

2 k2
0

1 + k2
0 η

2
,

which is essentially a Lorentzian profile.

10See, for example, R. Brandenberger, arXiv:1206.4196.
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The behavior of a′′/a

−4 −2 0 2 4

N
0.0

0.5

1.0

1.5

2.0

(a
′′ /

a
)
η

2 0

The behavior of the quantity a′′/a has been plotted as a function of N for the matter
bounce scenario of interest. Note that the maximum value of a′′/a is of the order of k2

0.
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which
corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition
−∞ < η < −αη0, where α is a relatively large number, which we shall set to be, say, 105.

In the first domain, we can assume that the scale factor behaves as a(η) ' a0 k
2
0 η

2, so
that a′′/a ' 2/η2. Since the condition k2 = a′′/a corresponds to, say, ηk = −

√
2/k, the

initial conditions can be imposed when η � ηk.

The modes hk can be easily obtained in such a case and the positive frequency modes
that correspond to the vacuum state at early times are given by

hk(η) =

√
2

M
Pl

1√
2 k

1

a0 k2
0 η

2

(
1− i

k η

)
e−i k η.
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The modes in the second domain

Let us now consider the behavior of the modes in the domain −αη0 < η < β η0, where,
say, β ' 102. Since we are interested in scales much smaller than k0, we shall assume
that ηk � −αη0, which corresponds to k � k0/α.

In such a case, upon ignoring the k2 term, the equation governing hk can be immediately
integrated to yield

hk(η) ' hk(η∗) + h′k(η∗) a
2(η∗)

∫ η

η∗

dη̃

a2(η̃)
,

where η∗ is a suitably chosen time and the scale factor a(η) is given by the complete
expression.

If we choose η∗ = −αη0, we can make use of the solution in the first domain to determine
the constants and express the solution in the second domain as follows:

hk = Ak + Bk f(k0 η),

where
f(k0 η) =

k0 η

1 + k2
0 η

2
+ tan−1 (k0 η) .
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

Evolution of the tensor modes across the bounce

−15 −10 −5 0 5 10 15
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|h
k
(N

)|

A comparison of the numerical results (in blue) with the analytical results (in red) for the
amplitude of the tensor mode |hk| corresponding to the wavenumber k/k0 = 10−20. We
have set a0 = 105, and we have chosen α = 105 for plotting the analytical results11.

11D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The tensor power spectrum after the bounce

The quantities Ak and Bk are given by

Ak =

√
2

M
Pl

1√
2 k

1

a0 α2

(
1 +

i k0

αk

)
ei α k/k0 + Bk f(α),

Bk =

√
2

M
Pl

1√
2 k

1

2 a0 α2

(
1 + α2

)2
(

3 i k0

α2 k
+

3

α
− i k

k0

)
ei α k/k0 .

If we evaluate the tensor power spectrum after the bounce at η = β η0, we find that it can
be expressed as

PT(k) = 4
k3

2π2
|Ak + Bk f(β)|2.
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The tensor power spectrum in a symmetric matter bounce Evolution of the modes and power spectrum

The tensor power spectrum
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The behavior of the tensor power spectrum has been plotted as a function of k/k0 for a
wide range of wavenumbers. In plotting this figure, we have set k0/MPl

= 1, a0 = 105,
α = 105 and β = 102. Note that the power spectrum is scale invariant for k � k0/α.
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A new model for the completely symmetric matter bounce

Modeling the matter bounce with scalar fields
As we had discussed, the matter bounce scenario described by the scale factor

a(η) = a0

(
1 + η2/η2

0

)
= a0

(
1 + k2

0 η
2
)

can be driven with the aid of two fluids, one which is matter and another fluid which be-
haves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, φ
and χ, that are governed by the following action12:

S[φ, χ] = −
∫

d4x
√−g

[
−1

2
∂µφ∂

µφ+ V (φ) + V
(
−1

2
∂µχ∂

µχ

)2
]
,

where V is a constant and the potential V (φ) is given by

V (φ) =
6M2

Pl
k2

0/a
2
0

cosh6(
√

12φ/M
Pl

)
.

12R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

The scalar perturbations
When the scalar perturbations are taken into account, the FLRW line element can be
written as

ds2 = −(1 + 2A) dt2 + 2 a(t) (∂iB) dt dxi + a2(t) [(1− 2ψ) δij + 2 (∂i ∂jE)] dxi dxj ,

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.

The gauge invariant curvature and isocurvature perturbations R and S can be defined
in terms of the above metric perturbations and the perturbations δφ and δχ in the scalar
fields as follows13:

R =
H

φ̇2 − α χ̇4

(
φ̇ δφ− α χ̇3 δχ

)
, S =

H
√
α χ̇2

φ̇2 − α χ̇4

(
χ̇ δφ− φ̇ δχ

)
.

The quantities δφ and δχ denote the gauge invariant versions of the perturbations in the
scalar fields, and are given by

δφ = δφ+
φ̇ ψ

H
, δχ = δχ+

χ̇ ψ

H
.

13R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

Equations governing the curvature and isocurvature perturbations

We obtain the equations of motion describing the gauge invariant perturbations R and S
in our model to be

R′′ + 2
(
7 + 9 k2

0 η
2 − 6 k4

0 η
4
)

η (1− 2 k2
0 η

2 − 3 k4
0 η

4)
R′ + k2

(
5 + 9 k2

0 η
2
)

(−3 + 9 k2
0 η

2)
R

= − 4
(
5 + 12 k2

0 η
2
)

η (−1 + 3 k2
0 η

2)
√

3 + 3 k2
0 η

2
S ′ −

4
[
5− 22 k2

0 η
2 − 24 k4

0 η
4 + k2 η2

(
1 + k2

0 η
2
)2]

√
3 η2 (1 + k2

0 η
2)

3/2
(−1 + 3 k2

0 η
2)

S,

S ′′ + 2
(
9 + 7 k2

0 η
2 + 6 k4

0 η
4
)

η (−1 + 2 k2
0 η

2 + 3 k4
0 η

4)
S ′

+
−18 + 85 k2

0 η
2 + 25 k4

0 η
4 + 6 k6

0 η
6 + k2

(
−3 + k2

0 η
2
) (
η + k2

0 η
3
)2

(−1 + 3 k2
0 η

2) (η + k2
0 η

3)
2 S

= − 4
√

3
(
−3 + 2 k2

0 η
2
)

η
√

1 + k2
0 η

2 (−1 + 3 k2
0 η

2)
R′ − 4 k2

√
1 + k2

0 η
2

√
3 (−1 + 3 k2

0 η
2)
R.

However, some of the coefficients diverge when Ḣ vanishes and/or at the bounce.
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

The uniform-χ gauge
The above issue can be avoided by working in a gauge wherein δχ = 014. In this gauge,
the curvature and isocurvature perturbations simplify to be

R = ψ +
2HM2

Pl

φ̇2 − α χ̇4

(
ψ̇ +H A

)
, S =

2HM2
Pl

√
α χ̇2

φ̇2 − α χ̇4

(
χ̇

φ̇

) (
ψ̇ +H A

)
.

The equations of motion for R and S then lead to the following equations for the metric
perturbations A and ψ:

A′′ + 4HA′ +
(
k2

3
− 5

4

αχ′4

a2M2
Pl

)
A = −3Hψ′ + 4 k2

3
ψ,

ψ′′ − 2Hψ′ + k2 ψ = −2HA′ − 5αχ′4

4M2
Pl
a2
A,

where H = a′/a. These equations prove to be helpful in evolving the scalar perturbations
across the bounce.

14L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

Solutions for Rk and Sk in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after
the bounce at η = β η0. Also, to arrive at the analytical approximations, as earlier, we shall
divide period of interest into two domains, viz. −∞ < η < −αη0 and −αη0 < η < β η0.

In the first domain, we find that the solution to the curvature perturbation can be arrived at
as in the case of tensors and is given by

Rk(η) ' 1√
6 kM

Pl
a0 k2

0 η
2

(
1− i

k η

)
e−i k η.

Using this solution, it is straightforward to obtain the following solution for the isocurvature
perturbation at early times:

Sk(η) ' e−i (3+
√

3) k η/3

9
√

2 k3 a0 k3
0 MPl

η4

{
−12 i ei k η/

√
3 + 12 kη ei k η/

√
3 +

(
9/31/4

)
k k0 η

2 ei k η

+ 4π k2 η2 ei k η + 4 i k2 η2 ei k η Ei
[
ei (−3+

√
3) k η/3

]}
.
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

Solutions for ψk and Ak in the second domain

In the second domain, upon ignoring the k2 dependent terms, one finds that the combina-
tion Ak + ψk satisfies the same equation of motion as the tensor modes.

This feature helps us obtain the solutions for Ak and ψk, and they are given by

Ak(η) ' C1
k η

4 a2
0 (1 + k2

0 η
2)

+ C2
k e−2

√
5 tan−1(k0 η) + C3

k e2
√

5 tan−1(k0η),

ψk(η) ' C1
k

[
η

4 a2
0 (1 + k2

0η
2)

+
tan−1 (k0 η)

2 k0 a2
0

]

−C2
k e−2

√
5 tan−1(k0 η) − C3

k e2
√

5 tan−1(k0η) + C4
k .

The four constants, viz. C1
k , C2

k , C3
k and C4

k , are fixed by matching the above solutions with
the solutions for Rk and Sk in the first domain at η = −αη0.
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The tensor-to-scalar ratio in the matter bounce scenario Equations of motion for the scalar perturbations

Evolution of Rk, Sk and hk
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The evolution of the curvature, isocurvature and tensor perturbations, viz. Rk (in red), Sk
(in blue) and tensor hk (in green) across the bounce for the mode k/k0 = 10−20 (on the
left) and the mode k/k0 = 10−15 (on the right). We have set k0/MPl

= 1, a0 = 3× 107 and
VM4

Pl
= 1. The solid lines denote the results obtained numerically, while the dashed lines

represent the analytical approximations.
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The tensor-to-scalar ratio in the matter bounce scenario The power spectra

The scalar and tensor power spectra
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The scalar and tensor power spectra have been plotted before (as solid lines) as well as
after (as dashed lines) the bounce15.

15R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.
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The tensor-to-scalar ratio in the matter bounce scenario The power spectra

The evolution of the tensor-to-scalar ratio

−15 −10 −5 0 5 10

N
10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

r(
N
)

The evolution of the tensor-to-scalar ratio across the symmetric matter bounce for a typical
mode of cosmological interest. The solid and dashed lines represent the numerical and
analytical results, respectively.
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The tensor bispectrum in a matter bounce

Plan of the talk

1 Whither inflation?

2 Bouncing scenarios

3 The tensor power spectrum in a symmetric matter bounce
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The tensor bispectrum in a matter bounce The tensor bispectrum

Tensor bispectrum and non-Gaussianity parameter

The tensor bispectrum, evaluated at the conformal time, say, ηe, is defined as

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)3 Bm1n1m2n2m3n3
γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3)

and, for convenience, we shall set

Bm1n1m2n2m3n3
γγγ (k1,k2,k3) = (2π)−9/2 Gm1n1m2n2m3n3

γγγ (k1,k2,k3).

As in the scalar case, one can define a dimensionless non-Gaussianity parameter to char-
acterize the amplitude of the tensor bispectrum as follows16:

h
NL

(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT

(k1) P
T

(k2) + five permutations
]−1

.

16V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 41 / 51



The tensor bispectrum in a matter bounce The tensor bispectrum

Tensor bispectrum and non-Gaussianity parameter

The tensor bispectrum, evaluated at the conformal time, say, ηe, is defined as

〈γ̂k1
m1n1

(ηe) γ̂
k2
m2n2

(ηe) γ̂
k3
m3n3

(ηe)〉 = (2π)3 Bm1n1m2n2m3n3
γγγ (k1,k2,k3)

× δ(3) (k1 + k2 + k3)

and, for convenience, we shall set

Bm1n1m2n2m3n3
γγγ (k1,k2,k3) = (2π)−9/2 Gm1n1m2n2m3n3

γγγ (k1,k2,k3).

As in the scalar case, one can define a dimensionless non-Gaussianity parameter to char-
acterize the amplitude of the tensor bispectrum as follows16:

h
NL

(k1,k2,k3) = −
(

4

2π2

)2 [
k3

1 k
3
2 k

3
3 G

m1n1m2n2m3n3
γγγ (k1,k2,k3)

]

×
[
Πk1
m1n1,m2n2

Πk2
m3n3,m̄n̄ k

3
3 PT

(k1) P
T

(k2) + five permutations
]−1

.

16V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 41 / 51



The tensor bispectrum in a matter bounce The tensor bispectrum

The third order action and the tensor bispectrum
The third order action that leads to the tensor bispectrum is given by17

S3
γγγ [γij ] =

M2
Pl

2

∫
dη

∫
d3x

[
a2

2
γlj γim ∂l∂mγij −

a2

4
γij γlm ∂l∂mγij

]
.

The tensor bispectrum calculated in the perturbative vacuum using the Maldacena formalism, can
be written in terms of the modes hk as follows:

Gm1n1m2n2m3n3
γγγ (k1,k2,k3)

= M2
Pl

[(
Πk1
m1n1,ij

Πk2
m2n2,im

Πk3

m3n3,lj
− 1

2
Πk1
m1n1,ij

Πk2

m2n2,ml
Πk3
m3n3,ij

)
k1m k1l

+ five permutations

]

×
[
hk1(ηe)hk2(ηe)hk3(ηe)Gγγγ(k1,k2,k3) + complex conjugate

]
,

where Gγγγ(k1,k2,k3) is described by the integral

Gγγγ(k1,k2,k3) = − i
4

∫ ηe

ηi

dη a2 h∗k1 h
∗
k2 h

∗
k3 ,

with ηi denoting the time when the initial conditions are imposed on the perturbations.

17J. Maldacena, JHEP 0305, 013 (2003).
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The tensor bispectrum in a matter bounce The tensor bispectrum

The contributions due to the three domains
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The contributions to the non-Gaussianity parameter hNL in the equilateral limit from the
first (in green), the second (in red) and the third (in blue) domains have been plotted as
a function of k/k0 for k � k0/α. Clearly, the third domain gives rise to the maximum
contribution to hNL

18.
18D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)
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The tensor bispectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength tensor
mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW metric can be
written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation transforms
as19

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

19S. Kundu, JCAP 1404, 016 (2014).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 44 / 51



The tensor bispectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength tensor
mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW metric can be
written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation transforms
as19

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

19S. Kundu, JCAP 1404, 016 (2014).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 44 / 51



The tensor bispectrum in a matter bounce The squeezed limit and the consistency relation

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during
inflation, such modes can be treated as a background as far as the smaller wavelength
modes are concerned. Let us denote the constant amplitude of the long wavelength tensor
mode as γB

ij .

In the presence of such a long wavelength mode, the background FLRW metric can be
written as

ds2 = −dt2 + a2(t) [eγ
B

]ij dxi dxj ,

i.e. the spatial coordinates are modified according to a spatial transformation of the form
x′ = Λx, where Λij = [eγ

B /2]ij .

Under such a spatial transformation, the small wavelength tensor perturbation transforms
as19

γkij → det (Λ−1) γΛ−1 k
ij ,

where det (Λ−1) = 1.

19S. Kundu, JCAP 1404, 016 (2014).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 44 / 51



The tensor bispectrum in a matter bounce The squeezed limit and the consistency relation

The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the presence of
a long wavelength mode denoted by, say, the wavenumber k, can be written as

〈γ̂k1
m1n1

γ̂k2
m2n2
〉k =

(2π)2

2 k3
1

Πk1
m1n1,m2n2

4
PT(k1) δ(3)(k1 + k2)

×
[
1−

(
nT − 3

2

)
γB
ij n̂1i n̂1j

]
,

where n̂1i = k1i/k1.

One can also show that, in the presence of a long wavelength mode, the tensor bispectrum
can be written as20

〈 γ̂k1
m1n1

γ̂k2
m2n2

γ̂k3
m3n3

〉k3 = − (2π)5/2

4 k3
1 k

3
3

(
nT − 3

32

)
PT(k1)PT(k3)

×Πk1
m1n1,m2n2

Πk3
m3n3,ij

n̂1i n̂1j δ
3(k1 + k2).

20V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).
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The tensor bispectrum in a matter bounce The squeezed limit and the consistency relation

The complete contribution to h
NL
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The behavior of h
NL

in the equilateral (in blue) and the squeezed (in red) limits plotted as a function
of k/k0 for k � k0/α. The resulting h

NL
is considerably small when compared to the values that

arise in de Sitter inflation wherein 3/8 . h
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. 1/2. Moreover, we find that h
NL

behaves as k2 in
the equilateral and the squeezed limits, with similar amplitudes21.

21D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015).
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Summary

Summary

F Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be
large in symmetric bounces.

In this work, we have been able to construct a completely symmetric matter bounce
scenario that leads to scale invariant spectra and a tensor-to-scalar ratio that is con-
sistent with the observations.
We are currently working on constructing symmetric bouncing models that lead to
scalar power spectra with a tilt as suggested by the cosmological data.
It is also important to examine if the non-Gaussianities generated in such models are
in agreement with the recent constraints from Planck.
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Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios22?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations23?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models24?

22L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
23Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
24J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 49 / 51



Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios22?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations23?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models24?

22L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
23Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
24J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 49 / 51



Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios22?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations23?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models24?

22L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
23Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
24J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 49 / 51



Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios22?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations23?

Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models24?

22L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
23Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
24J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 49 / 51



Summary

Issues confronting bouncing models
F In inflation, any classical perturbations present at the start will decay. In contrast, they

grow strongly in bouncing models. So, these need to be assumed to be rather small
if smooth bounces have to begin.

F The growth of the perturbations as one approaches the bounce during the contract-
ing phase causes concerns about the validity of linear perturbation theory near the
bounce. Is it, for instance, sufficient if the perturbations remain small in specific
gauges? Is a divergent curvature perturbation acceptable?

F Is it possible to construct wider classes of completely symmetric bounces with nearly
scale invariant spectra and viable tensor-to-scalar ratios22?

F After the bounce, the universe needs to transit to a radiation dominated epoch. How
can this be achieved? Does this process affect the evolution of the large scale pertur-
bations23?
Does the growth in the amplitude of the perturbations as one approaches the bounce
naturally lead to large levels of non-Gaussianities in such models24?

22L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
23Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
24J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).
L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 49 / 51



Collaborators

Collaborators: current and former students

Debika Chowdhury Rathul Nath Raveendran V. Sreenath

L. Sriramkumar (IIT Madras, Chennai) Viable r in a symmetric matter bounce January 17, 2017 50 / 51



Thank you for your attention


	Whither inflation?
	Bouncing scenarios
	The tensor power spectrum in a symmetric matter bounce
	A new model for the completely symmetric matter bounce
	The tensor-to-scalar ratio in the matter bounce scenario
	The tensor bispectrum in a matter bounce
	Summary

