Viable tensor-to-scalar ratio in a symmetric matter bounce

L. Sriramkumar

Department of Physics, Indian Institute of Technology Madras, Chennai

Aspects of Early Universe Cosmology
Saha Institute of Nuclear Physics, Kolkata
January 16-20, 2017

Plan of the talk

(1) Whither inflation?
(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce
4. A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce
(7) Summary

This talk is based on. . .

- D. Chowdhury, V. Sreenath and L. Sriramkumar, The tensor bispectrum in a matter bounce, JCAP 1511, 002 (2015) [arXiv:1506.06475 [astro-ph.CO]].
\downarrow R. N. Raveendran, D. Chowdhury and L. Sriramkumar, Viable tensor-to-scalar ratio in a symmetric matter bounce, In preparation.

A few words on the conventions and notations

\checkmark We shall work in units such that $c=\hbar=1$, and define the Planck mass to be $M_{\mathrm{Pl}}=$ $(8 \pi G)^{-1 / 2}$.

A few words on the conventions and notations

\checkmark We shall work in units such that $c=\hbar=1$, and define the Planck mass to be $M_{\mathrm{Pl}}=$ $(8 \pi G)^{-1 / 2}$.
\uparrow We shall assume the background universe to be described by the following spatially flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-element:

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \boldsymbol{x}^{2}=a^{2}(\eta)\left(-\mathrm{d} \eta^{2}+\mathrm{d} \boldsymbol{x}^{2}\right),
$$

where t is the cosmic time, $a(t)$ is the scale factor and $\eta=\int \mathrm{d} t / a(t)$ denotes the conformal time coordinate.

A few words on the conventions and notations

\checkmark We shall work in units such that $c=\hbar=1$, and define the Planck mass to be $M_{\mathrm{Pl}}=$ $(8 \pi G)^{-1 / 2}$.
\uparrow We shall assume the background universe to be described by the following spatially flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-element:

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \boldsymbol{x}^{2}=a^{2}(\eta)\left(-\mathrm{d} \eta^{2}+\mathrm{d} \boldsymbol{x}^{2}\right),
$$

where t is the cosmic time, $a(t)$ is the scale factor and $\eta=\int \mathrm{d} t / a(t)$ denotes the conformal time coordinate.
\uparrow We shall denote differentiation with respect to the cosmic and the conformal times t and η by an overdot and an overprime, respectively.

A few words on the conventions and notations

\checkmark We shall work in units such that $c=\hbar=1$, and define the Planck mass to be $M_{\mathrm{Pl}}=$ $(8 \pi G)^{-1 / 2}$.
\uparrow We shall assume the background universe to be described by the following spatially flat, Friedmann-Lemaître-Robertson-Walker (FLRW) line-element:

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \boldsymbol{x}^{2}=a^{2}(\eta)\left(-\mathrm{d} \eta^{2}+\mathrm{d} \boldsymbol{x}^{2}\right),
$$

where t is the cosmic time, $a(t)$ is the scale factor and $\eta=\int \mathrm{d} t / a(t)$ denotes the conformal time coordinate.
\uparrow We shall denote differentiation with respect to the cosmic and the conformal times t and η by an overdot and an overprime, respectively.
\downarrow Further, as usual, $H=\dot{a} / a$ shall denote the Hubble parameter associated with the FLRW universe.

Plan of the talk

(1) Whither inflation?
(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce

Proliferation of inflationary models

 assisted inflation assisted chaotic inflation boundary inflation brane inflation brane-assisted inflation brane gas inflation brane-antibrane inflation braneworld inflation Brans-Dicke chaotic inflation Brans-Dicke inflation bulky brane inflation chaotic hybrid inflation chaotic inflation chaotic new inflation D-brane inflation D-term inflation dilaton-driven inflation dilaton-driven brane inflation double inflation double D-term inflation dual inflation dynamical inflation dynamical SUSY inflation eternal inflation extended inflationextended open inflation extended warm inflation extra dimensional inflation F-term inflation F-term hybrid inflation faise vacuum inflation false vacuum chaotic inflation fast-roll inflation first order inflation gauged inflation generalised inflation generalized assisted inflation generalized slow-roll inflation gravity driven inflation Hagedorn inflation higher-curvature inflation hybrid inflation hyperextended inflation induced gravity inflation induced gravity open inflation intermediate inflation inverted hybrid inflation isocurvature inflation K inflation kinetic inflation lambda inflation large field inflation late D-term inflation
late-time mild inflation
low-scale inflation
low-scale supergravity inflation
M-theory inflation
mass inflation
massive chaotic inflation modulĭ inflation multi-scalar inflation multiple inflation multiple-field slow-roll inflation multiple-stage inflation natural inflation natural Chaotic inflation natural double inflation natural supergravity infiation new inflation
next-to-minimal supersymmetric
hybrid inflation
non-commutative inflation
non-slow-roll inflation nonminimal chaotic inflation old inflation open hybrid inflation open inflation oscillating inflation polynomial chaotic inflation polynomial hybrid inflation power-law inflation
pre-Big-Bang inflation primary inflation primordial inflation quasi-open inflation quintessential inflation R-invariant topological inflation rapid asymmetric inflation running inflation scalar-tensor gravity inflation scalar-tensor stochastic inflation Seiberg-Witten inflation single-bubble open inflation spinodal inflation stable starobinsky-type inflation stead)-state eternal inflation steep inflation stochastic inflation string-forming open inflation successful D-term inflation supergravity inflation supernatural inflation superstring inflation supersymmetric hybrid inflation supersymmetric inflation supersymmetric topological inflatior supersymmetric new inflation synergistic warm inflation TeV-scale hybrid inflation

A (partial?) list of ever-increasing number of inflationary models ${ }^{1}$. Actually, it may not even

 be possible to rule out some of these models![^0]L. Sriramkumar (IIT Madras, Chennai)

Viable r in a symmetric matter bounce

Performance of inflationary models against the data

The efficiency of the inflationary paradigm leads to a situation wherein, despite the strong constraints, a variety of models continue to remain consistent with the data ${ }^{2}$.
${ }^{2}$ J. Martin, C. Ringeval, R. Trotta and V. Vennin, JCAP 1403, 039 (2014).

Can inflation be falsified?

The difficulty with the inflationary paradigm

A theory that predicts everything predicts nothing ${ }^{a}$.
a

Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce

Bouncing scenarios as an alternative paradigm ${ }^{3}$

\uparrow Bouncing models correspond to situations wherein the universe initially goes through a period of contraction until the scale factor reaches a certain minimum value before transiting to the expanding phase.

[^1]
Bouncing scenarios as an alternative paradigm ${ }^{3}$

\uparrow Bouncing models correspond to situations wherein the universe initially goes through a period of contraction until the scale factor reaches a certain minimum value before transiting to the expanding phase.

- They offer an alternative to inflation to overcome the horizon problem, as they permit well motivated, Minkowski-like initial conditions to be imposed on the perturbations at early times during the contracting phase.

[^2]
Bouncing scenarios as an alternative paradigm ${ }^{3}$

\uparrow Bouncing models correspond to situations wherein the universe initially goes through a period of contraction until the scale factor reaches a certain minimum value before transiting to the expanding phase.

- They offer an alternative to inflation to overcome the horizon problem, as they permit well motivated, Minkowski-like initial conditions to be imposed on the perturbations at early times during the contracting phase.
\uparrow However, matter fields will have to violate the null energy condition near the bounce in order to give rise to such a scale factor. Also, there exist (genuine) concerns whether such an assumption about the scale factor is valid in a domain where general relativity can be supposed to fail and quantum gravitational effects are expected to take over.

[^3]
The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the Hubble radius at the last scattering surface (which subtends an angle of about 1° today) could not have interacted before decoupling.

[^4]
The resolution of the horizon problem in inflation

Left: The radiation from the CMB arriving at us from regions separated by more than the Hubble radius at the last scattering surface (which subtends an angle of about 1° today) could not have interacted before decoupling.
Right: An illustration of how an early and sufficiently long epoch of inflation helps in resolving the horizon problem ${ }^{4}$.

[^5]
Bringing the modes inside the Hubble radius

The behavior of the physical wavelength $\lambda_{\mathrm{P}} \propto a$ (the green lines) and the Hubble radius H^{-1} (the blue line) during inflation and the radiation dominated epochs ${ }^{5}$.
${ }^{5}$ See, for example, E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley Publishing Company,
New York, 1990), Fig. 8.4.

Overcoming the horizon problem in bouncing models

Evolution of the physical wavelength and the Hubble radius in a bouncing scenario ${ }^{6}$.

[^6]
Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

$$
\dot{H}=-4 \pi G(\rho+p) .
$$

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses zero at the bounce and is positive thereafter.

Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

$$
\dot{H}=-4 \pi G(\rho+p) .
$$

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses zero at the bounce and is positive thereafter.
It can be shown that, if the modes of cosmological interest have to be inside the Hubble radius at early times during the contracting phase, the universe needs to undergo nonaccelerated contraction.

Violation of the null energy condition near the bounce

Recall that, according to the Friedmann equations

$$
\dot{H}=-4 \pi G(\rho+p) .
$$

In any bouncing scenario, the Hubble parameter is negative before the bounce, crosses zero at the bounce and is positive thereafter.
It can be shown that, if the modes of cosmological interest have to be inside the Hubble radius at early times during the contracting phase, the universe needs to undergo nonaccelerated contraction.
In such cases, one finds that \dot{H} will be positive near the bounce, which implies that $(\rho+p)$ has to be negative in this domain. In other words, the null energy condition needs to be violated in order to achieve such bounces.

Classical bounces and sources

Consider for instance, bouncing models of the form

$$
a(\eta)=a_{0}\left(1+\frac{\eta^{2}}{\eta_{0}^{2}}\right)^{q}=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)^{q},
$$

where a_{0} is the value of the scale factor at the bounce (i.e. when $\eta=0$), $\eta_{0}=1 / k_{0}$ denotes the time scale of the duration of the bounce and $q>0$. We shall assume that the scale k_{0} associated with the bounce is of the order of the Planck scale $M_{\mathrm{P} 1}$.

Classical bounces and sources

Consider for instance, bouncing models of the form

$$
a(\eta)=a_{0}\left(1+\frac{\eta^{2}}{\eta_{0}^{2}}\right)^{q}=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)^{q}
$$

where a_{0} is the value of the scale factor at the bounce (i.e. when $\eta=0$), $\eta_{0}=1 / k_{0}$ denotes the time scale of the duration of the bounce and $q>0$. We shall assume that the scale k_{0} associated with the bounce is of the order of the Planck scale $M_{\mathrm{P} 1}$.
The above scale factor can be achieved with the help of two fluids with constant equation of state parameters $w_{1}=(1-q) /(3 q)$ and $w_{2}=(2-q) /(3 q)$. The energy densities of these fluids behave as $\rho_{1}=M_{1} / a^{(2 q+1) / q}$ and $\rho_{2}=M_{2} / a^{2(1+q) / q}$, where $M_{1}=12 k_{0}^{2} M_{\mathrm{pl}}^{2} a_{0}^{1 / q}$ and $M_{2}=-M_{1} a_{0}^{1 / q}$.

Classical bounces and sources

Consider for instance, bouncing models of the form

$$
a(\eta)=a_{0}\left(1+\frac{\eta^{2}}{\eta_{0}^{2}}\right)^{q}=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)^{q}
$$

where a_{0} is the value of the scale factor at the bounce (i.e. when $\eta=0$), $\eta_{0}=1 / k_{0}$ denotes the time scale of the duration of the bounce and $q>0$. We shall assume that the scale k_{0} associated with the bounce is of the order of the Planck scale $M_{\mathrm{P} 1}$.
The above scale factor can be achieved with the help of two fluids with constant equation of state parameters $w_{1}=(1-q) /(3 q)$ and $w_{2}=(2-q) /(3 q)$. The energy densities of these fluids behave as $\rho_{1}=M_{1} / a^{(2 q+1) / q}$ and $\rho_{2}=M_{2} / a^{2(1+q) / q}$, where $M_{1}=12 k_{0}^{2} M_{\mathrm{Pl}}^{2} a_{0}^{1 / q}$ and $M_{2}=-M_{1} a_{0}^{1 / q}$.
Note that, when $q=1$, during very early times wherein $\eta \ll-\eta_{0}$, the scale factor behaves as in a matter dominated universe (i.e. $a \propto \eta^{2}$). Therefore, the $q=1$ case is often referred to as the matter bounce scenario. In such a case, $\rho_{1}=12 k_{0}^{2} M_{\mathrm{Pl}}^{2} a_{0} / a^{3}$ and $\rho_{2}=-12 k_{0}^{2} M_{\mathrm{P} 1}^{2} a_{0}^{2} / a^{4}$.

E-N-folds

The conventional e-fold N is defined $N=\log \left(a / a_{\mathrm{i}}\right)$ so that $a(N)=a_{\mathrm{i}} \exp N$. However, the function e^{N} is a monotonically increasing function of N.

E-N-folds

The conventional e-fold N is defined $N=\log \left(a / a_{\mathrm{i}}\right)$ so that $a(N)=a_{\mathrm{i}} \exp N$. However, the function e^{N} is a monotonically increasing function of N.

In completely symmetric bouncing scenarios, an obvious choice for the scale factor seems to be^{7}

$$
a(\mathcal{N})=a_{0} \exp \left(\mathcal{N}^{2} / 2\right)
$$

with \mathcal{N} being the new time variable that we shall consider for integrating the differential equation governing the background as well as the perturbations.

[^7]
E-N-folds

The conventional e-fold N is defined $N=\log \left(a / a_{\mathrm{i}}\right)$ so that $a(N)=a_{\mathrm{i}} \exp N$. However, the function e^{N} is a monotonically increasing function of N.

In completely symmetric bouncing scenarios, an obvious choice for the scale factor seems to be^{7}

$$
a(\mathcal{N})=a_{0} \exp \left(\mathcal{N}^{2} / 2\right)
$$

with \mathcal{N} being the new time variable that we shall consider for integrating the differential equation governing the background as well as the perturbations.

We shall refer to the variable \mathcal{N} as e- \mathcal{N}-fold since the scale factor grows roughly by the amount $\mathrm{e}^{\mathcal{N}}$ between \mathcal{N} and $(\mathcal{N}+1)$.

[^8]
Behavior of \dot{H} and ρ in a matter bounce

The behavior of \dot{H} (on the left) and the total energy density ρ (on the right) in a symmetric matter bounce scenario has been plotted as a function of \mathcal{N}. Note that the maximum value of ρ is much smaller than M_{Pl}^{4}, which suggests that the bounce can be treated completely classically.

Duality between de Sitter inflation and matter bounce

It is known that the solutions to the equations of motion governing the scalar and tensor perturbations are invariant under a certain transformation referred to as the duality transformation ${ }^{8}$.

[^9]
Duality between de Sitter inflation and matter bounce

It is known that the solutions to the equations of motion governing the scalar and tensor perturbations are invariant under a certain transformation referred to as the duality transformation ${ }^{8}$.
For instance, recall that the Mukhanov-Sasaki variable corresponding to the tensor perturbations satisfies the differential equation

$$
u_{k}^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) u_{k}=0 .
$$

Given a scale factor a, the corresponding dual, say, \tilde{a}, which leads to the same equation for the variable u_{k} is given by

$$
a(\eta) \rightarrow \tilde{a}(\eta)=C a(\eta) \int_{\eta_{*}}^{\eta} \frac{\mathrm{d} \bar{\eta}}{a^{2}(\bar{\eta})},
$$

where C and η_{*} are constants.
It is straightforward to show that the dual solution to de Sitter inflation corresponds to the matter bounce. Both these cases lead to scale invariant spectra.

Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce
(7) Summary

Equation governing the tensor perturbations

Upon quantization, the tensor perturbations can be written in terms of the corresponding modes, say, h_{k}, as follows:

$$
\begin{aligned}
\hat{\gamma}_{i j}(\eta, \boldsymbol{x}) & =\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3 / 2}} \hat{\gamma}_{i j}^{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}} \\
& =\sum_{s} \int \frac{\mathrm{~d}^{3} \boldsymbol{k}}{(2 \pi)^{3 / 2}}\left(\hat{b}_{\boldsymbol{k}}^{s} \varepsilon_{i j}^{s}(\boldsymbol{k}) h_{k}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}+\hat{b}_{\mathbf{k}}^{s \dagger} \varepsilon_{i j}^{s *}(\boldsymbol{k}) h_{k}^{*}(\eta) \mathrm{e}^{-i \boldsymbol{k} \cdot \boldsymbol{x}}\right),
\end{aligned}
$$

where \hat{b}_{k}^{s} and $\hat{b}_{k}^{s \dagger}$ are the usual creation and annihilation operators that satisfy the standard commutation relations, while $\varepsilon_{i j}^{s}(\boldsymbol{k})$ represents the transverse and traceless polarization tensor describing gravitational waves.

Equation governing the tensor perturbations

Upon quantization, the tensor perturbations can be written in terms of the corresponding modes, say, h_{k}, as follows:

$$
\begin{aligned}
\hat{\gamma}_{i j}(\eta, \boldsymbol{x}) & =\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3 / 2}} \hat{\gamma}_{i j}^{\boldsymbol{k}}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}} \\
& =\sum_{s} \int \frac{\mathrm{~d}^{3} \boldsymbol{k}}{(2 \pi)^{3 / 2}}\left(\hat{b}_{\boldsymbol{k}}^{s} \varepsilon_{i j}^{s}(\boldsymbol{k}) h_{k}(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}}+\hat{b}_{\mathbf{k}}^{s \dagger} \varepsilon_{i j}^{s *}(\boldsymbol{k}) h_{k}^{*}(\eta) \mathrm{e}^{-i \boldsymbol{k} \cdot \boldsymbol{x}}\right),
\end{aligned}
$$

where \hat{b}_{k}^{s} and $\hat{b}_{k}^{s \dagger}$ are the usual creation and annihilation operators that satisfy the standard commutation relations, while $\varepsilon_{i j}^{s}(\boldsymbol{k})$ represents the transverse and traceless polarization tensor describing gravitational waves.
The modes h_{k} are governed by the differential equation

$$
h_{k}^{\prime \prime}+2 \mathcal{H} h_{k}^{\prime}+k^{2} h_{k}=0
$$

where $\mathcal{H}=a^{\prime} / a$ and, in terms of the variable $u_{k}=M_{\mathrm{Pl}} a h_{k} / \sqrt{2}$, the above equation reduces to

$$
u_{k}^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) u_{k}=0
$$

The tensor power spectrum: Definition

The tensor power spectrum $\mathcal{P}_{\mathrm{T}}(k)$ is defined through the relation

$$
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}} \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{p}}\right\rangle=\frac{(2 \pi)^{2}}{8 k^{3}} \Pi_{m_{1} n_{1}, m_{2} n_{2}}^{\boldsymbol{k}} \mathcal{P}_{\mathrm{T}}(k) \delta^{3}(\boldsymbol{k}+\boldsymbol{p}),
$$

where

$$
\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k}=\sum_{s} \varepsilon_{m_{1} n_{1}}^{s}(\boldsymbol{k}) \varepsilon_{m_{2} n_{2}}^{s *}(\boldsymbol{k}) .
$$

[^10]
The tensor power spectrum: Definition

The tensor power spectrum $\mathcal{P}_{\mathrm{T}}(k)$ is defined through the relation

$$
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{k} \hat{\gamma}_{m_{2} n_{2}}^{p}\right\rangle=\frac{(2 \pi)^{2}}{8 k^{3}} \Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k} \mathcal{P}_{\mathrm{T}}(k) \delta^{3}(\boldsymbol{k}+\boldsymbol{p}),
$$

where

$$
\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k}=\sum_{s} \varepsilon_{m_{1} n_{1}}^{s}(\boldsymbol{k}) \varepsilon_{m_{2} n_{2}}^{s *}(\boldsymbol{k}) .
$$

In terms of the quantities h_{k} and u_{k}, the tensor power spectrum $\mathcal{P}_{\mathrm{T}}(k)$ in the Bunch-Davies vacuum is given by

$$
\mathcal{P}_{\mathrm{T}}(k)=4 \frac{k^{3}}{2 \pi^{2}}\left|h_{k}\right|^{2}=\frac{8}{M_{\mathrm{Pl}}^{2}} \frac{k^{3}}{2 \pi^{2}}\left(\frac{\left|u_{k}\right|}{a}\right)^{2},
$$

with the right hand side being evaluated at suitably late times ${ }^{9}$.

[^11]
The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms of the conformal time coordinate η by the relation

$$
a(\eta)=a_{0}\left(1+\eta^{2} / \eta_{0}^{2}\right)=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)
$$

As we had discussed earlier, at very early times, viz. when $\eta \ll-\eta_{0}$, the scale factor behaves as in a matter dominated epoch ${ }^{10}$.

[^12]
The matter bounce

We shall assume that the scale factor describing the bouncing scenario is given in terms of the conformal time coordinate η by the relation

$$
a(\eta)=a_{0}\left(1+\eta^{2} / \eta_{0}^{2}\right)=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)
$$

As we had discussed earlier, at very early times, viz. when $\eta \ll-\eta_{0}$, the scale factor behaves as in a matter dominated epoch ${ }^{10}$.
The quantity $a^{\prime \prime} / a$ corresponding to the above scale factor is given by

$$
\frac{a^{\prime \prime}}{a}=\frac{2 k_{0}^{2}}{1+k_{0}^{2} \eta^{2}},
$$

which is essentially a Lorentzian profile.

[^13]
The behavior of $a^{\prime \prime} / a$

The behavior of the quantity $a^{\prime \prime} / a$ has been plotted as a function of \mathcal{N} for the matter bounce scenario of interest. Note that the maximum value of $a^{\prime \prime} / a$ is of the order of k_{0}^{2}.

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which corresponds to, say, the epoch of reheating in the conventional big bang model.

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition $-\infty<\eta<-\alpha \eta_{0}$, where α is a relatively large number, which we shall set to be, say, 10^{5}.

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition $-\infty<\eta<-\alpha \eta_{0}$, where α is a relatively large number, which we shall set to be, say, 10^{5}.

In the first domain, we can assume that the scale factor behaves as $a(\eta) \simeq a_{0} k_{0}^{2} \eta^{2}$, so that $a^{\prime \prime} / a \simeq 2 / \eta^{2}$. Since the condition $k^{2}=a^{\prime \prime} / a$ corresponds to, say, $\eta_{k}=-\sqrt{2} / k$, the initial conditions can be imposed when $\eta \ll \eta_{k}$.

The tensor modes in the first domain

We are interested in the evolution of the modes until some time after the bounce which corresponds to, say, the epoch of reheating in the conventional big bang model.

Let us divide this period into two domains, with the first domain determined by the condition $-\infty<\eta<-\alpha \eta_{0}$, where α is a relatively large number, which we shall set to be, say, 10^{5}.

In the first domain, we can assume that the scale factor behaves as $a(\eta) \simeq a_{0} k_{0}^{2} \eta^{2}$, so that $a^{\prime \prime} / a \simeq 2 / \eta^{2}$. Since the condition $k^{2}=a^{\prime \prime} / a$ corresponds to, say, $\eta_{k}=-\sqrt{2} / k$, the initial conditions can be imposed when $\eta \ll \eta_{k}$.
The modes h_{k} can be easily obtained in such a case and the positive frequency modes that correspond to the vacuum state at early times are given by

$$
h_{k}(\eta)=\frac{\sqrt{2}}{M_{\mathrm{Pl}}} \frac{1}{\sqrt{2 k}} \frac{1}{a_{0} k_{0}^{2} \eta^{2}}\left(1-\frac{i}{k \eta}\right) \mathrm{e}^{-i k \eta}
$$

The modes in the second domain

Let us now consider the behavior of the modes in the domain $-\alpha \eta_{0}<\eta<\beta \eta_{0}$, where, say, $\beta \simeq 10^{2}$. Since we are interested in scales much smaller than k_{0}, we shall assume that $\eta_{k} \ll-\alpha \eta_{0}$, which corresponds to $k \ll k_{0} / \alpha$.

The modes in the second domain

Let us now consider the behavior of the modes in the domain $-\alpha \eta_{0}<\eta<\beta \eta_{0}$, where, say, $\beta \simeq 10^{2}$. Since we are interested in scales much smaller than k_{0}, we shall assume that $\eta_{k} \ll-\alpha \eta_{0}$, which corresponds to $k \ll k_{0} / \alpha$.
In such a case, upon ignoring the k^{2} term, the equation governing h_{k} can be immediately integrated to yield

$$
h_{k}(\eta) \simeq h_{k}\left(\eta_{*}\right)+h_{k}^{\prime}\left(\eta_{*}\right) a^{2}\left(\eta_{*}\right) \int_{\eta_{*}}^{\eta} \frac{\mathrm{d} \tilde{\eta}}{a^{2}(\tilde{\eta})},
$$

where η_{*} is a suitably chosen time and the scale factor $a(\eta)$ is given by the complete expression.

The modes in the second domain

Let us now consider the behavior of the modes in the domain $-\alpha \eta_{0}<\eta<\beta \eta_{0}$, where, say, $\beta \simeq 10^{2}$. Since we are interested in scales much smaller than k_{0}, we shall assume that $\eta_{k} \ll-\alpha \eta_{0}$, which corresponds to $k \ll k_{0} / \alpha$.
In such a case, upon ignoring the k^{2} term, the equation governing h_{k} can be immediately integrated to yield

$$
h_{k}(\eta) \simeq h_{k}\left(\eta_{*}\right)+h_{k}^{\prime}\left(\eta_{*}\right) a^{2}\left(\eta_{*}\right) \int_{\eta_{*}}^{\eta} \frac{\mathrm{d} \tilde{\eta}}{a^{2}(\tilde{\eta})},
$$

where η_{*} is a suitably chosen time and the scale factor $a(\eta)$ is given by the complete expression.

If we choose $\eta_{*}=-\alpha \eta_{0}$, we can make use of the solution in the first domain to determine the constants and express the solution in the second domain as follows:

$$
h_{k}=\mathcal{A}_{k}+\mathcal{B}_{k} f\left(k_{0} \eta\right)
$$

where

$$
f\left(k_{0} \eta\right)=\frac{k_{0} \eta}{1+k_{0}^{2} \eta^{2}}+\tan ^{-1}\left(k_{0} \eta\right)
$$

Evolution of the tensor modes across the bounce

A comparison of the numerical results (in blue) with the analytical results (in red) for the amplitude of the tensor mode $\left|h_{k}\right|$ corresponding to the wavenumber $k / k_{0}=10^{-20}$. We have set $a_{0}=10^{5}$, and we have chosen $\alpha=10^{5}$ for plotting the analytical results ${ }^{11}$.

[^14]
The tensor power spectrum after the bounce

The quantities \mathcal{A}_{k} and \mathcal{B}_{k} are given by

$$
\begin{aligned}
\mathcal{A}_{k} & =\frac{\sqrt{2}}{M_{\mathrm{P} 1}} \frac{1}{\sqrt{2 k}} \frac{1}{a_{0} \alpha^{2}}\left(1+\frac{i k_{0}}{\alpha k}\right) \mathrm{e}^{i \alpha k / k_{0}}+\mathcal{B}_{k} f(\alpha) \\
\mathcal{B}_{k} & =\frac{\sqrt{2}}{M_{\mathrm{Pl}}} \frac{1}{\sqrt{2 k}} \frac{1}{2 a_{0} \alpha^{2}}\left(1+\alpha^{2}\right)^{2}\left(\frac{3 i k_{0}}{\alpha^{2} k}+\frac{3}{\alpha}-\frac{i k}{k_{0}}\right) \mathrm{e}^{i \alpha k / k_{0}}
\end{aligned}
$$

The tensor power spectrum after the bounce

The quantities \mathcal{A}_{k} and \mathcal{B}_{k} are given by

$$
\begin{aligned}
\mathcal{A}_{k} & =\frac{\sqrt{2}}{M_{\mathrm{P} 1}} \frac{1}{\sqrt{2 k}} \frac{1}{a_{0} \alpha^{2}}\left(1+\frac{i k_{0}}{\alpha k}\right) \mathrm{e}^{i \alpha k / k_{0}}+\mathcal{B}_{k} f(\alpha) \\
\mathcal{B}_{k} & =\frac{\sqrt{2}}{M_{\mathrm{P}}} \frac{1}{\sqrt{2 k}} \frac{1}{2 a_{0} \alpha^{2}}\left(1+\alpha^{2}\right)^{2}\left(\frac{3 i k_{0}}{\alpha^{2} k}+\frac{3}{\alpha}-\frac{i k}{k_{0}}\right) \mathrm{e}^{i \alpha k / k_{0}}
\end{aligned}
$$

If we evaluate the tensor power spectrum after the bounce at $\eta=\beta \eta_{0}$, we find that it can be expressed as

$$
\mathcal{P}_{\mathrm{T}}(k)=4 \frac{k^{3}}{2 \pi^{2}}\left|\mathcal{A}_{k}+\mathcal{B}_{k} f(\beta)\right|^{2}
$$

The tensor power spectrum

The behavior of the tensor power spectrum has been plotted as a function of k / k_{0} for a wide range of wavenumbers. In plotting this figure, we have set $k_{0} / M_{\mathrm{P} 1}=1, a_{0}=10$ $\alpha=10^{5}$ and $\beta=10^{2}$. Note that the power spectrum is scale invariant for $k \ll k_{0} / \alpha$.

Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce
4. A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce

Modeling the matter bounce with scalar fields

As we had discussed, the matter bounce scenario described by the scale factor

$$
a(\eta)=a_{0}\left(1+\eta^{2} / \eta_{0}^{2}\right)=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)
$$

can be driven with the aid of two fluids, one which is matter and another fluid which behaves like radiation, but has negative energy density.

[^15]
Modeling the matter bounce with scalar fields

As we had discussed, the matter bounce scenario described by the scale factor

$$
a(\eta)=a_{0}\left(1+\eta^{2} / \eta_{0}^{2}\right)=a_{0}\left(1+k_{0}^{2} \eta^{2}\right)
$$

can be driven with the aid of two fluids, one which is matter and another fluid which behaves like radiation, but has negative energy density.

We find that the behavior can also be achieved with the help of two scalar fields, say, ϕ and χ, that are governed by the following action ${ }^{12}$:

$$
S[\phi, \chi]=-\int \mathrm{d}^{4} x \sqrt{-g}\left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V(\phi)+\mathcal{V}\left(-\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi\right)^{2}\right]
$$

where \mathcal{V} is a constant and the potential $V(\phi)$ is given by

$$
V(\phi)=\frac{6 M_{\mathrm{Pl}}^{2} k_{0}^{2} / a_{0}^{2}}{\cosh ^{6}\left(\sqrt{12} \phi / M_{\mathrm{Pl}}\right)} .
$$

[^16]
Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce
(7) Summary

The scalar perturbations

When the scalar perturbations are taken into account, the FLRW line element can be written as

$$
\mathrm{d} s^{2}=-(1+2 A) \mathrm{d} t^{2}+2 a(t)\left(\partial_{i} B\right) \mathrm{d} t \mathrm{~d} x^{i}+a^{2}(t)\left[(1-2 \psi) \delta_{i j}+2\left(\partial_{i} \partial_{j} E\right)\right] \mathrm{d} x^{i} \mathrm{~d} x^{j},
$$

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.

[^17]
The scalar perturbations

When the scalar perturbations are taken into account, the FLRW line element can be written as

$$
\mathrm{d} s^{2}=-(1+2 A) \mathrm{d} t^{2}+2 a(t)\left(\partial_{i} B\right) \mathrm{d} t \mathrm{~d} x^{i}+a^{2}(t)\left[(1-2 \psi) \delta_{i j}+2\left(\partial_{i} \partial_{j} E\right)\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}
$$

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.
The gauge invariant curvature and isocurvature perturbations \mathcal{R} and \mathcal{S} can be defined in terms of the above metric perturbations and the perturbations $\delta \phi$ and $\delta \chi$ in the scalar fields as follows ${ }^{13}$:

$$
\mathcal{R}=\frac{H}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}\left(\dot{\phi} \overline{\delta \phi}-\alpha \dot{\chi}^{3} \overline{\delta \chi}\right), \quad \mathcal{S}=\frac{H \sqrt{\alpha \dot{\chi}^{2}}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}(\dot{\chi} \overline{\delta \phi}-\dot{\phi} \overline{\delta \chi}) .
$$

[^18]
The scalar perturbations

When the scalar perturbations are taken into account, the FLRW line element can be written as

$$
\mathrm{d} s^{2}=-(1+2 A) \mathrm{d} t^{2}+2 a(t)\left(\partial_{i} B\right) \mathrm{d} t \mathrm{~d} x^{i}+a^{2}(t)\left[(1-2 \psi) \delta_{i j}+2\left(\partial_{i} \partial_{j} E\right)\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}
$$

where, evidently, the quantities A, ψ, B and E represent the metric perturbations.
The gauge invariant curvature and isocurvature perturbations \mathcal{R} and \mathcal{S} can be defined in terms of the above metric perturbations and the perturbations $\delta \phi$ and $\delta \chi$ in the scalar fields as follows ${ }^{13}$:

$$
\mathcal{R}=\frac{H}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}\left(\dot{\phi} \overline{\delta \phi}-\alpha \dot{\chi}^{3} \overline{\delta \chi}\right), \quad \mathcal{S}=\frac{H \sqrt{\alpha \dot{\chi}^{2}}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}(\dot{\chi} \overline{\delta \phi}-\dot{\phi} \overline{\delta \chi}) .
$$

The quantities $\overline{\delta \phi}$ and $\overline{\delta \chi}$ denote the gauge invariant versions of the perturbations in the scalar fields, and are given by

$$
\overline{\delta \phi}=\delta \phi+\frac{\dot{\phi} \psi}{H}, \quad \overline{\delta \chi}=\delta \chi+\frac{\dot{\chi} \psi}{H} .
$$

[^19]
Equations governing the curvature and isocurvature perturbations

We obtain the equations of motion describing the gauge invariant perturbations \mathcal{R} and \mathcal{S} in our model to be

$$
\begin{aligned}
\mathcal{R}^{\prime \prime} & +\frac{2\left(7+9 k_{0}^{2} \eta^{2}-6 k_{0}^{4} \eta^{4}\right)}{\eta\left(1-2 k_{0}^{2} \eta^{2}-3 k_{0}^{4} \eta^{4}\right)} \mathcal{R}^{\prime}+\frac{k^{2}\left(5+9 k_{0}^{2} \eta^{2}\right)}{\left(-3+9 k_{0}^{2} \eta^{2}\right)} \mathcal{R} \\
& =-\frac{4\left(5+12 k_{0}^{2} \eta^{2}\right)}{\eta\left(-1+3 k_{0}^{2} \eta^{2}\right) \sqrt{3+3 k_{0}^{2} \eta^{2}}} \mathcal{S}^{\prime}-\frac{4\left[5-22 k_{0}^{2} \eta^{2}-24 k_{0}^{4} \eta^{4}+k^{2} \eta^{2}\left(1+k_{0}^{2} \eta^{2}\right)^{2}\right]}{\sqrt{3} \eta^{2}\left(1+k_{0}^{2} \eta^{2}\right)^{3 / 2}\left(-1+3 k_{0}^{2} \eta^{2}\right)} \mathcal{S}, \\
\mathcal{S}^{\prime \prime} & +\frac{2\left(9+7 k_{0}^{2} \eta^{2}+6 k_{0}^{4} \eta^{4}\right)}{\eta\left(-1+2 k_{0}^{2} \eta^{2}+3 k_{0}^{4} \eta^{4}\right)} \mathcal{S}^{\prime} \\
& +\frac{-18+85 k_{0}^{2} \eta^{2}+25 k_{0}^{4} \eta^{4}+6 k_{0}^{6} \eta^{6}+k^{2}\left(-3+k_{0}^{2} \eta^{2}\right)\left(\eta+k_{0}^{2} \eta^{3}\right)^{2}}{\left(-1+3 k_{0}^{2} \eta^{2}\right)\left(\eta+k_{0}^{2} \eta^{3}\right)^{2}} \mathcal{S} \\
& =-\frac{4 \sqrt{3}\left(-3+2 k_{0}^{2} \eta^{2}\right)}{\eta \sqrt{1+k_{0}^{2} \eta^{2}}\left(-1+3 k_{0}^{2} \eta^{2}\right)} \mathcal{R}^{\prime}-\frac{4 k^{2} \sqrt{1+k_{0}^{2} \eta^{2}}}{\sqrt{3}\left(-1+3 k_{0}^{2} \eta^{2}\right)} \mathcal{R} .
\end{aligned}
$$

However, some of the coefficients diverge when \dot{H} vanishes and/or at the bounce.

The uniform- χ gauge

The above issue can be avoided by working in a gauge wherein $\delta \chi=0^{14}$. In this gauge, the curvature and isocurvature perturbations simplify to be

$$
\mathcal{R}=\psi+\frac{2 H M_{\mathrm{Pl}}^{2}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}(\dot{\psi}+H A), \quad \mathcal{S}=\frac{2 H M_{\mathrm{Pl}}^{2} \sqrt{\alpha \dot{\chi}^{2}}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}\left(\frac{\dot{\chi}}{\dot{\phi}}\right)(\dot{\psi}+H A) .
$$

[^20]
The uniform- χ gauge

The above issue can be avoided by working in a gauge wherein $\delta \chi=0^{14}$. In this gauge, the curvature and isocurvature perturbations simplify to be

$$
\mathcal{R}=\psi+\frac{2 H M_{\mathrm{Pl}}^{2}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}(\dot{\psi}+H A), \quad \mathcal{S}=\frac{2 H M_{\mathrm{Pl}}^{2} \sqrt{\alpha \dot{\chi}^{2}}}{\dot{\phi}^{2}-\alpha \dot{\chi}^{4}}\left(\frac{\dot{\chi}}{\dot{\phi}}\right)(\dot{\psi}+H A) .
$$

The equations of motion for \mathcal{R} and \mathcal{S} then lead to the following equations for the metric perturbations A and ψ :

$$
\begin{aligned}
A^{\prime \prime}+4 \mathcal{H} A^{\prime}+\left(\frac{k^{2}}{3}-\frac{5}{4} \frac{\alpha \chi^{\prime 4}}{a^{2} M_{\mathrm{Pl}}^{2}}\right) A & =-3 \mathcal{H} \psi^{\prime}+\frac{4 k^{2}}{3} \psi \\
\psi^{\prime \prime}-2 \mathcal{H} \psi^{\prime}+k^{2} \psi & =-2 \mathcal{H} A^{\prime}-\frac{5 \alpha \chi^{\prime 4}}{4 M_{\mathrm{Pl}}^{2} a^{2}} A
\end{aligned}
$$

where $\mathcal{H}=a^{\prime} / a$. These equations prove to be helpful in evolving the scalar perturbations across the bounce.
${ }^{14}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).

Solutions for \mathcal{R}_{k} and \mathcal{S}_{k} in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after the bounce at $\eta=\beta \eta_{0}$. Also, to arrive at the analytical approximations, as earlier, we shall divide period of interest into two domains, viz. $-\infty<\eta<-\alpha \eta_{0}$ and $-\alpha \eta_{0}<\eta<\beta \eta_{0}$.

Solutions for \mathcal{R}_{k} and \mathcal{S}_{k} in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after the bounce at $\eta=\beta \eta_{0}$. Also, to arrive at the analytical approximations, as earlier, we shall divide period of interest into two domains, viz. $-\infty<\eta<-\alpha \eta_{0}$ and $-\alpha \eta_{0}<\eta<\beta \eta_{0}$.
In the first domain, we find that the solution to the curvature perturbation can be arrived at as in the case of tensors and is given by

$$
\mathcal{R}_{k}(\eta) \simeq \frac{1}{\sqrt{6 k} M_{\mathrm{P} 1} a_{0} k_{0}^{2} \eta^{2}}\left(1-\frac{i}{k \eta}\right) \mathrm{e}^{-i k \eta}
$$

Solutions for \mathcal{R}_{k} and \mathcal{S}_{k} in the first domain

As in the case of tensors, we shall be interested in evaluating the power spectrum after the bounce at $\eta=\beta \eta_{0}$. Also, to arrive at the analytical approximations, as earlier, we shall divide period of interest into two domains, viz. $-\infty<\eta<-\alpha \eta_{0}$ and $-\alpha \eta_{0}<\eta<\beta \eta_{0}$.
In the first domain, we find that the solution to the curvature perturbation can be arrived at as in the case of tensors and is given by

$$
\mathcal{R}_{k}(\eta) \simeq \frac{1}{\sqrt{6 k} M_{\mathrm{P} 1} a_{0} k_{0}^{2} \eta^{2}}\left(1-\frac{i}{k \eta}\right) \mathrm{e}^{-i k \eta} .
$$

Using this solution, it is straightforward to obtain the following solution for the isocurvature perturbation at early times:

$$
\begin{aligned}
\mathcal{S}_{k}(\eta) \simeq & \frac{\mathrm{e}^{-i(3+\sqrt{3}) k \eta / 3}}{9 \sqrt{2 k^{3}} a_{0} k_{0}^{3} M_{\mathrm{P} 1} \eta^{4}}\left\{-12 i \mathrm{e}^{i k \eta / \sqrt{3}}+12 k \eta \mathrm{e}^{i k \eta / \sqrt{3}}+\left(9 / 3^{1 / 4}\right) k k_{0} \eta^{2} \mathrm{e}^{i k \eta}\right. \\
& \left.+4 \pi k^{2} \eta^{2} \mathrm{e}^{i k \eta}+4 i k^{2} \eta^{2} \mathrm{e}^{i k \eta} \operatorname{Ei}\left[\mathrm{e}^{i(-3+\sqrt{3}) k \eta / 3}\right]\right\}
\end{aligned}
$$

Solutions for ψ_{k} and A_{k} in the second domain

In the second domain, upon ignoring the k^{2} dependent terms, one finds that the combination $A_{k}+\psi_{k}$ satisfies the same equation of motion as the tensor modes.

Solutions for ψ_{k} and A_{k} in the second domain

In the second domain, upon ignoring the k^{2} dependent terms, one finds that the combination $A_{k}+\psi_{k}$ satisfies the same equation of motion as the tensor modes.
This feature helps us obtain the solutions for A_{k} and ψ_{k}, and they are given by

$$
\begin{aligned}
A_{k}(\eta) \simeq & \frac{\mathcal{C}_{k}^{1} \eta}{4 a_{0}^{2}\left(1+k_{0}^{2} \eta^{2}\right)}+\mathcal{C}_{k}^{2} \mathrm{e}^{-2 \sqrt{5} \tan ^{-1}\left(k_{0} \eta\right)}+\mathcal{C}_{k}^{3} \mathrm{e}^{2 \sqrt{5} \tan ^{-1}\left(k_{0} \eta\right)} \\
\psi_{k}(\eta) \simeq & \mathcal{C}_{k}^{1}\left[\frac{\eta}{4 a_{0}^{2}\left(1+k_{0}^{2} \eta^{2}\right)}+\frac{\tan ^{-1}\left(k_{0} \eta\right)}{2 k_{0} a_{0}^{2}}\right] \\
& -\mathcal{C}_{k}^{2} \mathrm{e}^{-2 \sqrt{5} \tan ^{-1}\left(k_{0} \eta\right)}-\mathcal{C}_{k}^{3} \mathrm{e}^{2 \sqrt{5} \tan ^{-1}\left(k_{0} \eta\right)}+\mathcal{C}_{k}^{4} .
\end{aligned}
$$

The four constants, viz. $\mathcal{C}_{k}^{1}, \mathcal{C}_{k}^{2}, \mathcal{C}_{k}^{3}$ and \mathcal{C}_{k}^{4}, are fixed by matching the above solutions with the solutions for \mathcal{R}_{k} and \mathcal{S}_{k} in the first domain at $\eta=-\alpha \eta_{0}$.

Evolution of $\mathcal{R}_{k}, \mathcal{S}_{k}$ and h_{k}

The evolution of the curvature, isocurvature and tensor perturbations, viz. \mathcal{R}_{k} (in red), \mathcal{S}_{k} (in blue) and tensor h_{k} (in green) across the bounce for the mode $k / k_{0}=10^{-20}$ (on the left) and the mode $k / k_{0}=10^{-15}$ (on the right). We have set $k_{0} / M_{\mathrm{PI}}=1, a_{0}=3 \times 10^{7}$ and $\mathcal{V} M_{\mathrm{Pl}}^{4}=1$. The solid lines denote the results obtained numerically, while the dashed lin represent the analytical approximations.

The scalar and tensor power spectra

The scalar and tensor power spectra have been plotted before (as solid lines) as well as after (as dashed lines) the bounce ${ }^{15}$.

The evolution of the tensor-to-scalar ratio

The evolution of the tensor-to-scalar ratio across the symmetric matter bounce for a typical mode of cosmological interest. The solid and dashed lines represent the numerical and analytical results, respectively.

Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce

Tensor bispectrum and non-Gaussianity parameter

The tensor bispectrum, evaluated at the conformal time, say, η_{e}, is defined as

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\left(\eta_{\mathrm{e}}\right)\right\rangle=(2 \pi)^{3} & \mathcal{B}_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& \times \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)
\end{aligned}
$$

and, for convenience, we shall set

$$
\mathcal{B}_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=(2 \pi)^{-9 / 2} G_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) .
$$

[^21]
Tensor bispectrum and non-Gaussianity parameter

The tensor bispectrum, evaluated at the conformal time, say, η_{e}, is defined as

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\left(\eta_{\mathrm{e}}\right) \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\left(\eta_{\mathrm{e}}\right)\right\rangle=(2 \pi)^{3} & \mathcal{B}_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& \times \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)
\end{aligned}
$$

and, for convenience, we shall set

$$
\mathcal{B}_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=(2 \pi)^{-9 / 2} G_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) .
$$

As in the scalar case, one can define a dimensionless non-Gaussianity parameter to characterize the amplitude of the tensor bispectrum as follows ${ }^{16}$:

$$
\begin{aligned}
h_{\mathrm{NL}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) & =-\left(\frac{4}{2 \pi^{2}}\right)^{2}\left[k_{1}^{3} k_{2}^{3} k_{3}^{3} G_{\gamma \gamma \gamma}^{m_{1} n_{1} m_{2} n_{2} m_{3} n_{3}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)\right] \\
& \times\left[\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k_{1}} \Pi_{m_{3} n_{3}, \bar{m} \bar{n}}^{k_{2}} k_{3}^{3} \mathcal{P}_{\mathrm{T}}\left(k_{1}\right) \mathcal{P}_{\mathrm{T}}\left(k_{2}\right)+\text { five permutations }\right]^{-1} .
\end{aligned}
$$

[^22]
The third order action and the tensor bispectrum

The third order action that leads to the tensor bispectrum is given by ${ }^{17}$

$$
S_{\gamma \gamma \gamma}^{3}\left[\gamma_{i j}\right]=\frac{M_{\mathrm{Pl}}^{2}}{2} \int \mathrm{~d} \eta \int \mathrm{~d}^{3} \boldsymbol{x}\left[\frac{a^{2}}{2} \gamma_{l j} \gamma_{i m} \partial_{l} \partial_{m} \gamma_{i j}-\frac{a^{2}}{4} \gamma_{i j} \gamma_{l m} \partial_{l} \partial_{m} \gamma_{i j}\right] .
$$

The third order action and the tensor bispectrum

The third order action that leads to the tensor bispectrum is given by ${ }^{17}$

$$
S_{\gamma \gamma \gamma}^{3}\left[\gamma_{i j}\right]=\frac{M_{\mathrm{Pl}}^{2}}{2} \int \mathrm{~d} \eta \int \mathrm{~d}^{3} \boldsymbol{x}\left[\frac{a^{2}}{2} \gamma_{l j} \gamma_{i m} \partial_{l} \partial_{m} \gamma_{i j}-\frac{a^{2}}{4} \gamma_{i j} \gamma_{l m} \partial_{l} \partial_{m} \gamma_{i j}\right] .
$$

The tensor bispectrum calculated in the perturbative vacuum using the Maldacena formalism, can be written in terms of the modes h_{k} as follows:

$$
\begin{aligned}
& G_{\gamma \gamma \gamma}^{m_{1} n_{1}} m_{2} n_{2} m_{3} n_{3}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \\
& =M_{\mathrm{Pl}}^{2}\left[\left(\Pi_{m_{1} n_{1}, i j}^{\boldsymbol{k}_{1}} \Pi_{m_{2} n_{2}, i m}^{\boldsymbol{k}_{2}} \Pi_{m_{3} n_{3}, l j}^{\boldsymbol{k}_{3}}-\frac{1}{2} \Pi_{m_{1} n_{1}, i j}^{\boldsymbol{k}_{1}} \Pi_{m_{2} n_{2}, m l}^{\boldsymbol{k}_{2}} \Pi_{m_{3} n_{3}, i j}^{\boldsymbol{k}_{3}}\right) k_{1 m} k_{1 l}\right. \\
& \quad+\text { five permutations }] \\
& \quad \times\left[h_{k_{1}}\left(\eta_{\mathrm{e}}\right) h_{k_{2}}\left(\eta_{\mathrm{e}}\right) h_{k_{3}}\left(\eta_{\mathrm{e}}\right) \mathcal{G}_{\gamma \gamma \gamma}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)+\text { complex conjugate }\right]
\end{aligned}
$$

where $\mathcal{G}_{\gamma \gamma \gamma}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)$ is described by the integral

$$
\mathcal{G}_{\gamma \gamma \gamma}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)=-\frac{i}{4} \int_{\eta_{\mathrm{i}}}^{\eta_{\mathrm{e}}} \mathrm{~d} \eta a^{2} h_{k_{1}}^{*} h_{k_{2}}^{*} h_{k_{3}}^{*},
$$

with η_{i} denoting the time when the initial conditions are imposed on the perturbations.
${ }^{17}$ J. Maldacena, JHEP 0305, 013 (2003).

The contributions due to the three domains

The contributions to the non-Gaussianity parameter h_{NL} in the equilateral limit from the first (in green), the second (in red) and the third (in blue) domains have been plotted as a function of k / k_{0} for $k \ll k_{0} / \alpha$. Clearly, the third domain gives rise to the maximum contribution to $h_{\mathrm{NL}}{ }^{18}$.
${ }^{18}$ D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)

The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during inflation, such modes can be treated as a background as far as the smaller wavelength modes are concerned. Let us denote the constant amplitude of the long wavelength tensor mode as $\gamma_{i j}^{\mathrm{B}}$.

[^23]
The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during inflation, such modes can be treated as a background as far as the smaller wavelength modes are concerned. Let us denote the constant amplitude of the long wavelength tensor mode as $\gamma_{i j}^{\mathrm{B}}$.
In the presence of such a long wavelength mode, the background FLRW metric can be written as

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\mathrm{e}^{\gamma^{\mathrm{B}}}\right]_{i j} \mathrm{~d} \boldsymbol{x}^{i} \mathrm{~d} \boldsymbol{x}^{j},
$$

i.e. the spatial coordinates are modified according to a spatial transformation of the form $\boldsymbol{x}^{\prime}=\Lambda \boldsymbol{x}$, where $\Lambda_{i j}=\left[\mathrm{e}^{\gamma^{\mathrm{B}} / 2}\right]_{i j}$.

[^24]
The effect of the long wavelength tensor modes

Since the amplitude of a long wavelength mode freezes on super-Hubble scales during inflation, such modes can be treated as a background as far as the smaller wavelength modes are concerned. Let us denote the constant amplitude of the long wavelength tensor mode as $\gamma_{i j}^{\mathrm{B}}$.
In the presence of such a long wavelength mode, the background FLRW metric can be written as

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\mathrm{e}^{\gamma^{\mathrm{B}}}\right]_{i j} \mathrm{~d} \boldsymbol{x}^{i} \mathrm{~d} \boldsymbol{x}^{j},
$$

i.e. the spatial coordinates are modified according to a spatial transformation of the form $\boldsymbol{x}^{\prime}=\Lambda \boldsymbol{x}$, where $\Lambda_{i j}=\left[\mathrm{e}^{\gamma^{\mathrm{B}} / 2}\right]_{i j}$.
Under such a spatial transformation, the small wavelength tensor perturbation transforms as ${ }^{19}$

$$
\gamma_{i j}^{k} \rightarrow \operatorname{det}\left(\Lambda^{-1}\right) \gamma_{i j}^{\Lambda^{-1} k}
$$

where $\operatorname{det}\left(\Lambda^{-1}\right)=1$.

[^25]
The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the presence of a long wavelength mode denoted by, say, the wavenumber k, can be written as

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}} \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\right\rangle_{k}= & \frac{(2 \pi)^{2}}{2 k_{1}^{3}} \frac{\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{\boldsymbol{k}_{1}}}{4} \mathcal{P}_{\mathrm{T}}\left(k_{1}\right) \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \\
& \times\left[1-\left(\frac{n_{\mathrm{T}}-3}{2}\right) \gamma_{i j}^{\mathrm{B}} \hat{n}_{1 i} \hat{n}_{1 j}\right]
\end{aligned}
$$

where $\hat{n}_{1 i}=k_{1 i} / k_{1}$.

[^26]
The behavior of the two and three-point functions

On using the above results, one finds that the tensor two-point function in the presence of a long wavelength mode denoted by, say, the wavenumber k, can be written as

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}} \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}}\right\rangle_{k}= & \frac{(2 \pi)^{2}}{2 k_{1}^{3}} \frac{\Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k_{1}}}{4} \mathcal{P}_{\mathrm{T}}\left(k_{1}\right) \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \\
& \times\left[1-\left(\frac{n_{\mathrm{T}}-3}{2}\right) \gamma_{i j}^{\mathrm{B}} \hat{n}_{1 i} \hat{n}_{1 j}\right],
\end{aligned}
$$

where $\hat{n}_{1 i}=k_{1 i} / k_{1}$.
One can also show that, in the presence of a long wavelength mode, the tensor bispectrum can be written as^{20}

$$
\begin{aligned}
\left\langle\hat{\gamma}_{m_{1} n_{1}}^{\boldsymbol{k}_{1}} \hat{\gamma}_{m_{2} n_{2}}^{\boldsymbol{k}_{2}} \hat{\gamma}_{m_{3} n_{3}}^{\boldsymbol{k}_{3}}\right\rangle_{k_{3}}= & -\frac{(2 \pi)^{5 / 2}}{4 k_{1}^{3} k_{3}^{3}}\left(\frac{n_{\mathrm{T}}-3}{32}\right) \mathcal{P}_{\mathrm{T}}\left(k_{1}\right) \mathcal{P}_{\mathrm{T}}\left(k_{3}\right) \\
& \times \Pi_{m_{1} n_{1}, m_{2} n_{2}}^{k_{1}} \Pi_{m_{3} n_{3}, i j}^{k_{3}} \hat{n}_{1 i} \hat{n}_{1 j} \delta^{3}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) .
\end{aligned}
$$

[^27]
The complete contribution to h

The behavior of h_{NL} in the equilateral (in blue) and the squeezed (in red) limits plotted as a function of k / k_{0} for $k \ll k_{0} / \alpha$. The resulting h_{NL} is considerably small when compared to the values that arise in de Sitter inflation wherein $3 / 8 \lesssim h_{\mathrm{NL}} \lesssim 1 / 2$. Moreover, we find that h_{NL} behaves as k^{2} in the equilateral and the squeezed limits, with similar amplitudes ${ }^{21}$.

Plan of the talk

(1) Whither inflation?

(2) Bouncing scenarios
(3) The tensor power spectrum in a symmetric matter bounce

4 A new model for the completely symmetric matter bounce
(5) The tensor-to-scalar ratio in the matter bounce scenario

6 The tensor bispectrum in a matter bounce
(7) Summary

Summary

- Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be large in symmetric bounces.

Summary

\uparrow Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be large in symmetric bounces.

- In this work, we have been able to construct a completely symmetric matter bounce scenario that leads to scale invariant spectra and a tensor-to-scalar ratio that is consistent with the observations.

Summary

\uparrow Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be large in symmetric bounces.

- In this work, we have been able to construct a completely symmetric matter bounce scenario that leads to scale invariant spectra and a tensor-to-scalar ratio that is consistent with the observations.
- We are currently working on constructing symmetric bouncing models that lead to scalar power spectra with a tilt as suggested by the cosmological data.

Summary

\uparrow Earlier efforts had seemed to suggest that the tensor-to-scalar ratio may naturally be large in symmetric bounces.

- In this work, we have been able to construct a completely symmetric matter bounce scenario that leads to scale invariant spectra and a tensor-to-scalar ratio that is consistent with the observations.
- We are currently working on constructing symmetric bouncing models that lead to scalar power spectra with a tilt as suggested by the cosmological data.
- It is also important to examine if the non-Gaussianities generated in such models are in agreement with the recent constraints from Planck.

Issues confronting bouncing models

- In inflation, any classical perturbations present at the start will decay. In contrast, they grow strongly in bouncing models. So, these need to be assumed to be rather small if smooth bounces have to begin.

[^28]
Issues confronting bouncing models

- In inflation, any classical perturbations present at the start will decay. In contrast, they grow strongly in bouncing models. So, these need to be assumed to be rather small if smooth bounces have to begin.
- The growth of the perturbations as one approaches the bounce during the contracting phase causes concerns about the validity of linear perturbation theory near the bounce. Is it, for instance, sufficient if the perturbations remain small in specific gauges? Is a divergent curvature perturbation acceptable?

[^29]
Issues confronting bouncing models

- In inflation, any classical perturbations present at the start will decay. In contrast, they grow strongly in bouncing models. So, these need to be assumed to be rather small if smooth bounces have to begin.
- The growth of the perturbations as one approaches the bounce during the contracting phase causes concerns about the validity of linear perturbation theory near the bounce. Is it, for instance, sufficient if the perturbations remain small in specific gauges? Is a divergent curvature perturbation acceptable?
- Is it possible to construct wider classes of completely symmetric bounces with nearly scale invariant spectra and viable tensor-to-scalar ratios ${ }^{22}$?

[^30]
Issues confronting bouncing models

\uparrow In inflation, any classical perturbations present at the start will decay. In contrast, they grow strongly in bouncing models. So, these need to be assumed to be rather small if smooth bounces have to begin.
\checkmark The growth of the perturbations as one approaches the bounce during the contracting phase causes concerns about the validity of linear perturbation theory near the bounce. Is it, for instance, sufficient if the perturbations remain small in specific gauges? Is a divergent curvature perturbation acceptable?
\uparrow Is it possible to construct wider classes of completely symmetric bounces with nearly scale invariant spectra and viable tensor-to-scalar ratios ${ }^{22}$?
\checkmark After the bounce, the universe needs to transit to a radiation dominated epoch. How can this be achieved? Does this process affect the evolution of the large scale perturbations ${ }^{23}$?

[^31]
Issues confronting bouncing models

- In inflation, any classical perturbations present at the start will decay. In contrast, they grow strongly in bouncing models. So, these need to be assumed to be rather small if smooth bounces have to begin.
\uparrow The growth of the perturbations as one approaches the bounce during the contracting phase causes concerns about the validity of linear perturbation theory near the bounce. Is it, for instance, sufficient if the perturbations remain small in specific gauges? Is a divergent curvature perturbation acceptable?
\checkmark Is it possible to construct wider classes of completely symmetric bounces with nearly scale invariant spectra and viable tensor-to-scalar ratios ${ }^{22}$?
\checkmark After the bounce, the universe needs to transit to a radiation dominated epoch. How can this be achieved? Does this process affect the evolution of the large scale perturbations ${ }^{23}$?
- Does the growth in the amplitude of the perturbations as one approaches the bounce naturally lead to large levels of non-Gaussianities in such models ${ }^{24}$?
${ }^{22}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
${ }^{23}$ Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
${ }^{24}$ J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

Collaborators: current and former students

Debika Chowdhury

Rathul Nath Raveendran

V. Sreenath

Thank you for your attention

[^0]: ${ }^{1}$ From E. P. S. Shellard, The future of cosmology: Observational and computational prospects, in The Future of Theoretical Physics and Cosmology, Eds. G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press, Cambridge, England, 2003).

[^1]: ${ }^{3}$ See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
 D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

[^2]: ${ }^{3}$ See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
 D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

[^3]: ${ }^{3}$ See, for instance, M. Novello and S. P. Bergliaffa, Phys. Rep. 463, 127 (2008);
 D. Battefeld and P. Peter, Phys. Rep. 571, 1 (2015).

[^4]: ${ }^{4}$ Images from W. Kinney, astro-ph/0301448.

[^5]: ${ }^{4}$ Images from W. Kinney, astro-ph/0301448.

[^6]: ${ }^{6}$ Figure from, D. Battefeld and P. Peter, Phys. Rept. 571, 1 (2015).

[^7]: ${ }^{7}$ L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).

[^8]: ${ }^{7}$ L. Sriramkumar, K. Atmjeet and R. K. Jain, JCAP 1509, 010 (2015).

[^9]: ${ }^{8}$ D. Wands, Phys. Rev. D 60, 023507 (1999).

[^10]: ${ }^{9}$ See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).

[^11]: ${ }^{9}$ See, for example, L. Sriramkumar, Curr. Sci. 97, 868 (2009).

[^12]: ${ }^{10}$ See, for example, R. Brandenberger, arXiv:1206.4196.

[^13]: ${ }^{10}$ See, for example, R. Brandenberger, arXiv:1206.4196.

[^14]: ${ }^{11}$ D. Chowdhury, V. Sreenath and L. Sriramkumar, JCAP 1511, 002 (2015)

[^15]: ${ }^{12}$ R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.

[^16]: ${ }^{12}$ R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.

[^17]: ${ }^{13}$ R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.

[^18]: ${ }^{13}$ R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.

[^19]: ${ }^{13}$ R. N. Raveendran, D. Chowdhury and L. Sriramkumar, In preparation.

[^20]: ${ }^{14}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).

[^21]: ${ }^{16}$ V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).

[^22]: ${ }^{16}$ V. Sreenath, R. Tibrewala and L. Sriramkumar, JCAP 1312, 037 (2013).

[^23]: ${ }^{19}$ S. Kundu, JCAP 1404, 016 (2014).

[^24]: ${ }^{19}$ S. Kundu, JCAP 1404, 016 (2014).

[^25]: ${ }^{19}$ S. Kundu, JCAP 1404, 016 (2014).

[^26]: ${ }^{20}$ V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).

[^27]: ${ }^{20}$ V. Sreenath and L. Sriramkumar, JCAP 1410, 021 (2014).

[^28]: ${ }^{22}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
 ${ }^{23}$ Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
 ${ }^{24}$ J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

[^29]: ${ }^{22}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
 ${ }^{23}$ Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
 ${ }^{24}$ J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

[^30]: ${ }^{22}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
 ${ }^{23}$ Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
 ${ }^{24}$ J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

[^31]: ${ }^{22}$ L. E. Allen and D. Wands, Phys. Rev. 70, 063515 (2004).
 ${ }^{23}$ Y-F. Cai, R. Brandenberger and X. Zhang, Phys. Letts. B 703, 25 (2011).
 ${ }^{24}$ J. Quintin, Z. Sherkatghanad, Y-F. Cai and R. Brandenberger, Phys. Rev. D 92, 062532 (2015).

