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Abstract

Quantum field theory has been enormously successful as a theory describing the
behavior of fields up to energy scales of the order of 100 GeV. Quantum elec-
trodynamics, the earliest of the gauge theories, describes the interaction of the
electromagnetic field with matter. Though, during the early stages of its for-
mulation, the divergences that arise in the theory had seemed too big a hurdle
to overcome, regularization and renormalization procedures have been developed
to handle these divergences and the theory has come up with a large number of
predictions. Several of these predictions, like, Lamb shift, anomalous magnetic
moment of the electron, have been experimentally verified thereby firmly estab-
lishing the validity of quantum electrodynamics. The theory due to Salam and
Weinberg has been able to successfully unify the electromagnetic and weak in-
teractions into a single gauge theory. Also, the W and the Z bosons predicted
by the theory have been observed experimentally thereby establishing the Salam-
Weinberg theory as the correct theory of weak interactions. Though, we are yet to
have a theory that describes the strong interactions adequately, we have in hand
a workable model in quantum chromodynamics. Efforts to describe all these three

interactions by a unified gauge theory have also been successful.

The gravitational interaction has been the odd one out. All attempts to



provide a quantum framework for the gravitational field have so far proved to
be unsuccessful. In the absence of a viable quantum theory of gravity, can one
say anything at all about the influence of the gravitational field on quantum
phenomena? In the early days of quantum theory, before the development of
quantum electrodynamics, a picture of a classical electromagnetic field interact-
ing with atomic and molecular systems was used to understand spectroscopic
results. Such a semiclassical description yields some results that are in accor-
dance with the full theory of quantum electrodynamics. One may therefore hope
that a similar regime exists for gravity, a regime in which the gravitational field
can be retained as a classical background, while the matter fields are quantized
according to the conventional quantum field theory. Though, we are yet to have a
quantum theory of gravity, there exist compelling reasons to believe that quantum
gravitational effects will be important only at energy scales of the order of Planck
energy (~ 10'? GeV). There exists a domain of 17 orders of magnitude between
the Planck energy and an energy scale of the order of 100 GeV, a domain in which
the gravitational field can be assumed to behave classically and the matter fields
can be assumed to have a quantum nature. Though, there exist other contest-
ing theories to describe the classical gravitational field, experiments have pointed
towards Finstein’s general theory of relativity as the correct classical theory of
gravity. Thus, adopting general relativity as a theory describing classical gravity,
one is led to the subject of quantum field theory in curved spacetimes which has

been an area of active research during the past couple of decades.

The conventional formulation of quantum field theory in Minkowski space-
time is invariant under the Poincare group, i.e. the theory is invariant only under

linear coordinate transformations. Under non-linear coordinate transformations,
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even in flat spacetime, quantum field theoretic concepts such as vacua, particles
etc. do not, in general, seem to possess a covariant meaning. Similar problems
are encountered when the evolution of quantum fields are studied in curved space-
times. Further, in a curved spacetime the presence of the gravitational background
can lead to production of particles corresponding to the quantum field. These par-
ticles that have been produced can also react back on the classical background.
The metric, which is assumed here to be described by Einstein’s equations, is
a covariant concept. Therefore, if the backreaction of the quantum field on the
gravitational background has to be studied meaningfully, a covariant description
of the phenomenon of particle production is called for. This in turn requires an

understanding of the concept of a particle in an arbitrary curved spacetime.

The phenomenon of particle production takes place in classical electromag-
netic backgrounds too. We can possibly learn lessons for the gravitational case
by studying the evolution of quantum fields in electromagnetic backgrounds. In
fact, some of the conceptual problems that arise while studying quantum fields in
curved spacetimes are encountered in electromagnetic backgrounds too. Just as
a covariant formulation of the phenomenon of particle production is required for
gravitational backgrounds, a gauge invariant description of the same phenomenon

is called for in the case of electromagnetic backgrounds.

This thesis work is focussed towards improving our understanding of the
phenomenon of particle production and also the backreaction of these particles

that have been produced on the classical backgrounds.

A chapter wise summary of the thesis is given below.

In chapter 1, we introduce the basic terminology and the mathematical

xii



framework that is used to study the evolution of quantum fields in classical grav-
itational and electromagnetic backgrounds. This chapter reviews some of the
essential results that serve as a background for the chapters that follow. We be-
gin this chapter by illustrating the coordinate dependence of the particle concept
with the aid of a simple example in flat spacetime. We then present an example
of a time dependent gravitational background in which the phenomenon of parti-
cle production takes place. Motivating the usefulness of the detector concept, we
introduce the Unruh-DeWitt detector. We discuss the response of inertial and uni-
formly accelerated Unruh-DeWitt detectors in flat spacetime and also analyze the
response of these detectors in Schwarzschild and de-Sitter spacetimes. Carrying
out the canonical quantization of a complex scalar field in a constant electric field
background, we illustrate how the tunneling interpretation is invoked to explain
the phenomenon of particle production in time independent gauges. Introducing
the effective Lagrangian approach, we show that invariant results can be obtained
by this approach with the help of an electromagnetic example. Finally, we discuss
as to how the backreaction of the quantum field on the classical background can

be taken into account and introduce the semiclassical Einstein’s equations.

Chapter 2 is devoted to the study of finite time response of Unruh-DeWitt
detectors. We begin this chapter by motivating the need for a finite time detector.
We then study the response inertial and uniformly accelerated Unruh-DeWitt
detectors in flat spacetime when they are switched on smoothly as well as abruptly
for a finite proper time interval. We identify the divergences that appear in the
response functions of the detectors when they are switched on abruptly and point
out the origin of these divergences. We conclude this chapter by pointing out the

limitations of the detector concept.

x1il



In chapter 3, we study the evolution of a quantized complex scalar field
in classical electromagnetic backgrounds. We begin this chapter by introducing
Schwinger’s proper time formalism to evaluate effective Lagrangians. We then
examine the validity of the tunneling interpretation that is usually invoked in
literature to explain the phenomenon of particle production in time independent
gauges. With the aid of an example, we show that the tunneling interpretation can
be inconsistent with the effective Lagrangian approach. The effective Lagrangian
being a more reliable approach, we conclude that this lack of consistency between
these two approaches calls into question the validity of the tunneling interpreta-
tion. We then discuss the limitations of the the Klein approach that is used to

study particle production in time independent gauges.

Though the effective Lagrangian approach is more reliable, the evaluation
of the effective Lagrangian even for a given classical background proves to be a
rather difficult task. In chapter 3, we also propose a conjecture that can possibly
help us guess the form of the the effective Lagrangian for an arbitrary background.
We put forward the conjecture that the effective Lagrangian for a classical back-
ground will be zero if all the invariant scalars (involving the field and its deriva-
tives) describing the background vanish identically. We verify this conjecture by
explicitly evaluating the effective Lagrangian for some non-trivial electromagnetic
and gravitational backgrounds. We conclude this chapter with a few remarks on
the boundary condition that is implicitly assumed in the evaluation of effective

agrangians using Schwinger’s formalism.
L Sch ’s |

In chapters 2 and 3, we had neglected the backreaction of the quantum
field on the classical background and had concentrated our efforts on obtaining

an invariant description of the phenomenon of particle production. Once such
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description is at hand the backreaction of the quantum field on the classical back-
ground can be taken into account. It is generally assumed that the backreaction
of the quantum field on a gravitational background is given by the expectation
value of the energy-momentum tensor of the quantum field. Since such a semiclas-
sical theory is incapable of providing a preferred state for the quantum field by
itself, the expectation value of the energy-momentum tensor has to be evaluated
in a state specified by hand. This semiclassical theory can then be relied upon
only if the fluctuations in the energy-momentum densities of the quantum field
are small when compared to their expectation values. Using this as the criterion,
in chapter 4, we analyze the validity of the semiclassical theory for a minisuper-
space model of a massless scalar field in a Friedmann universe. We evaluate the
magnitude of the fluctuations in the backreaction term for the states of the scalar
field mode that correspond to the vacuum, n-particle and coherent states of the
quantized scalar field. We find that the fluctuations in the backreaction term are
small, even when a large amount of particles are being produced, only for coher-
ent states with a large value for the parameter describing them. We therefore
conclude that the semiclassical theory we have considered will be valid during all
stages of evolution, only if the quantum fields are assumed to be in ‘coherent’ like

states.

In quantum field theory, it is the coefficients of the positive frequency com-
ponents of the normal modes of the quantum field that are identified to be an-
nihilation operators. Therefore, the evolution of a quantum field is governed by
the behavior of the normal modes of the equation of motion satisfied by it. But,
even a classical field satisfies the same equations of motion as does a quantum

field. If so, can some of the non-trivial effects that arise in quantum field theory
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arise in classical field theory too? In chapter 5, we show that this indeed can be
the case. Fourier analyzing real plane waves modes of scalar and electromagnetic
fields in flat spacetime with respect to the proper time of a uniformly accelerated
observer, we find that the resulting power spectrum has a Planckian nature. We
then outline as to how such a Planckian spectrum can also prove to be a feature of
observers stationed at a constant radius in Schwarzschild and de-sitter spacetimes.
We conclude this chapter by presenting a model of a detector which responds to
the Fourier spectrum of the field with respect to its proper time thereby illus-
trating that it should, in principle, be possible to physically measure the power

spectrum we have obtained.
Finally, in chapter 6, we present our conclusions and outlook.

This thesis is mainly based on the following publications.
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e L. Sriramkumar and T. Padmanabhan, Does a nonzero tunneling prob-
ability imply particle production in time independent classical electromag-

netic backgrounds?, Phys. Rev. D 54, 7599 (1996).

e L. Sriramkumar, R. Mukund and T. Padmanabhan, Non-trivial classical

backgrounds with vanishing quantum corrections, [UCAA preprint 42/96,
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Chapter 1

Introduction and background

During the past couple of decades or so the subject of quantum field theory in
curved spacetime has been an area of active research. The original motivation to
study the behavior of quantum fields in classical gravitational backgrounds was
the belief that such a study will provide useful clues for a quantum theory of
gravity. Though a quantum theory of gravity still remains a distant dream, it
will be fair to say that there has been very interesting discoveries in this area.
Many important lessons have been learned from this effort, but it is difficult to
list down direct clues to quantum gravity obtained from this study—if anything,
the conceptual problems faced in this subject make quantum gravity look all the

more puzzling.

The basic formalism of quantum field theory in flat spacetime can be gen-
eralized to a curved spacetime in a straightforward way (see, for e.g., any of the
following textbooks [1, 2, 3], or one of the following review articles [4, 5, 6]). A
quantum field is described in a curved spacetime by the generally covariant version
of flat spacetime Lagrangian, varying which one obtains the generally covariant

field equations. Quantization of the field then proceeds by defining a set of canon-



ical commutation relations for the field operators. The evolution of the quantum
field is governed by the behavior of the normal modes of the field equation in the
spacetime of interest. Departure from flat spacetime field theory comes at the next
level when one tries to construct the Fock basis and define particles corresponding
to the quantum field. (Throughout this thesis, we shall restrict our analysis to
free quantum fields, because our interest is the interaction of the quantum field
with gravity or electromagnetism rather than its interaction with itself. Also, we
shall assume here that the gravitational background is described by Finstein’s

equations.)

Actually this departure arises even when one attempts to formulate quan-
tum field theory in a noninertial coordinate system in flat spacetime [7, 8]. Af-
ter all, there is no reason why field quantization should be carried out in the
Minkowski coordinates alone. An accelerating observer, for example, will find
it more natural to carry out the field quantization in a coordinate system ob-
tained by a suitable transformation of the Minkowski coordinates. It then turns
out, that the vacuum state defined in an inertial coordinate system and the vac-
uum state defined in a noninertial coordinate system can, in general, be different
states [9, 10]. Hence, the definition of a particle in the two coordinate systems can
also be different. These features are encountered when the evolution of quantum

fields is studied in a curved spacetime [4].

The hope of providing an operational definition of the concept of a particle
in a curved spacetime led to the idea of a detector. The development of the idea of
detectors have emphasized the observer dependence of the particle concept. It was
shown that the response of detectors depends on the state of their motion, if the

quantum field is assumed to be in a particular state, say, the Minkowski vacuum



state in flat spacetime. The monopole detector due to Unruh and DeWitt [11, 12],
for instance, does not respond in the Minkowski vacuum state when in inertial
motion in flat spacetime but responds when it is accelerating uniformly or when
it is in rotational motion [10, 13]. Similar features arise when the response of
detectors are studied in curved spacetimes [14]. It has become clear that the
conventional formulation of quantum field theory in flat spacetime is not invariant
under non-linear coordinate transformations and in an arbitrary curved spacetime
the very definition of a particle becomes dependent on the coordinate system

chosen by an observer.

In a curved spacetime, even if we choose a particular coordinate system,
a quantum field which was initially in the vacuum state may not remain in the
vacuum state at a later time. One finds that the time variation of the classical
gravitational background can lead to production of particles corresponding to the
quantum field [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. The other aspect of the
study of quantum fields in a curved spacetime is the backreaction of the particles
that have been produced on the classical gravitational background. It is generally
believed that this backreaction should be described by Einstein’s equations with
the right hand side replaced by the expectation value of the energy-momentum

tensor of the quantum field, evaluated in a given state [27, 28, 29, 30, 31, 32].

Phenomena such as particle production and vacuum polarization also arise
in classical electromagnetic backgrounds [33, 34, 35, 36]. Some of the conceptual
issues that arise in the study of quantum fields in classical gravitational back-
grounds are encountered in electromagnetic backgrounds too [37, 38]. So, the
evolution of quantum fields in electromagnetic backgrounds has been repeatedly

studied in literature with the hope that such a study will teach us some useful



lessons to handle the gravitational case.

In this chapter, we introduce the basic mathematical formalism of the differ-
ent approaches that are used to study the evolution of quantum fields in classical
gravitational and electromagnetic backgrounds. We also review here some of the
essential results that will serve as a background for the chapters that follow. Most
of the our analysis in this chapter and the chapters that follow will be carried out
for the case of a quantum scalar field, but our results will, in general, hold good
for fields of higher spins too. This restriction will enable the results presented in
this thesis to emerge with the minimum of mathematical complexity. Also, we

shall set A = ¢ = G =1 in all our calculations.

This chapter is organized as follows. In section 1.1, we illustrate the co-
ordinate dependence of the particle concept with the aid of a simple example in
flat spacetime. In section 1.2, we present an example of a time dependent gravi-
tational background in which the phenomenon of particle production takes place.
After motivating the usefulness of the detector concept, we introduce the Unruh-
DeWitt detector in section 1.3. In the same section, we discuss the response of
inertial and uniformly accelerated Unruh-DeWitt detectors in flat spacetime and
also analyze the response of these detectors when they are stationed at a constant
radius in Schwarzschild and de-Sitter spacetimes. Carrying out the normal mode
analysis of a complex scalar field in a constant electric field background, in sec-
tion 1.4, we illustrate how the tunneling interpretation is invoked to explain the
phenomenon of particle production in time independent gauges. In section 1.5,
we introduce the effective Lagrangian approach and show that invariant results
can be obtained by this approach with the aid of the example of a constant elec-

tromagnetic background. In section 1.6, we discuss as to how the backreaction of



the quantum field on the classical background can possibly be taken into account

and introduce the semiclassical Einstein’s equations.

1.1 Coordinate dependence of the particle con-
cept: an example in flat spacetime

In this section, we shall illustrate the coordinate dependence of the particle concept
with the help of a simple example in flat spacetime. For the sake of mathematical

simplicity, we shall mostly work here in (1 + 1) dimensions.

The system we shall consider is a real, massless scalar field ® described by

the action

S[9) = /d2x¢——g,c(q>) :% /dQ:L’\/—_ggWa“(I) P23 (1.1)

where

d, (1.2)

9
dxn’
The equation of motion for the scalar field ® described by the action above is
given by

0o 0 (V=99"0,) ® = 0. (1.3)

- L
Ve

With the help of the following conserved four current j*
Ju = (970,® — ©0,97), (1.4)

we can define a scalar product for any two solutions ®; and ®, of the scalar field ®

as follows:

(D1, ;) = —@'/dzw—gz (,0,8; — 059,0,), (1.5)



where d¥* = n*d¥, with n* being a future directed unit vector orthogonal to
the spacelike hypersurface ¥ (d¥ is the volume element on ¥) and the asterisk

denotes complex conjugation.

1.1.1 Canonical quantization in Minkowski coordinates

In (1 + 1) dimensions and in Minkowski coordinates (¢, x), flat spacetime is de-

scribed by the line element

ds? = dt* — dz°. (1.6)

The equation of motion for the scalar field @, viz. equation (1.3), corresponding

to this metric is given by

(07 — 02) o(t,2) = 0. (1.7)

The solutions to this equation are plane waves i.e.
ug(t, ) o< exp —i(wt — k), (1.8)

where w = |k| and k can take values continuously in the range —oo and oo.
Since the flat spacetime metric is independent of the Minkowski time coordinate ¢,
positive frequency modes can be defined with respect to the timelike Killing vector
(0/0t). That is, normal modes uy are defined to be positive frequency modes if

they are eigenfunctions of the operator (9/0t):
Opug(t,x) = —iw ug(t,x) with w > 0. (1.9)

In the Minkowski coordinates we are considering here we can choose the hyper-
surface d¥* in the scalar product (1.5) to be a constant ¢ surface. Then, if we

choose

up(t,x) = exp —i(wt — ka), (1.10)



we find that the modes uj and their complex conjugates uj satisfy the following

orthonormality relations
(ug,up) = 0p(k — K'Y 5 (uj,up)=—dp(k—Fk) and (ug,u),) =0, (1.11)
where dp(2) is the Dirac delta function of the corresponding argument.

The canonical quantization of the scalar field can be carried out by treating

® as an operator and imposing the following equal time commutation relations
[®(t, ), (t,2")] =0

(¢, ), TI(t, )] =0 (1.12)

[®(t, ), (¢, 2")] =idp(x — '),

where II is the canonically conjugate momentum corresponding to the scalar field

defined as
oL
(0 ®)

= 0p®. (1.13)

(In an arbitrary curved spacetime, the canonically conjugate variable II corre-

sponding to the scalar field ® is given by the relation

oc

1= =/—g¢"0,90. 1.14

In flat spacetime and in Minkowski coordinates ¢°° = 1 and ¢°* = 0. Therefore,

in such a case, the above relation for Il simplifies to equation (1.13).)

The normal modes (1.10) and their complex conjugates satisfying the rela-
tions (1.11) form a complete orthonormal basis so that the quantized scalar field

can be expanded as follows:

O(l,2) = /_O:o dk (@ up(t,2) + L ui(t,2)) . (1.15)

7



where a; and &L are the annihilation and the creation operators for the mode k.
(Note that in the decomposition above we have identified the coefficients of the
positive frequency normal modes to be the annihilation operators.) The equal

time commutation relations (1.12) then correspond to

lal.al] =0 (1.16)

The Minkowski vacuum state |0ys) is then defined to be the state that is annihi-

lated by the annihilation operator ay, i.e.
agl0p) =0, VEk. (1.17)

The many particle states can then be obtained by repeatedly operating the cre-
ation operator &L on the Minkowski vacuum state. For instance, the one par-

ticle state |1;) can be obtained by operating the creation operator once on the

Minkowski vacuum state as follows:

1) = af

Onr). (1.18)

The Fock space thus constructed from the Minkowski vacuum state is invariant
under the action of the Poincaré group. The operator Ny = (&L&k) is called
the number operator for the mode k and its expectation value in a state |ny) is
equal to ng, the number of quanta in the mode k. For instance, in the Minkowski

vacuum state

(0ar| Ne|Oar) = (Onr]alan|0as) =0, V. (1.19)



1.1.2 Canonical quantization in Rindler coordinates

Now, consider the following non-linear transformations of the Minkowski coordi-

nates t and x [39, 40, 41]
t =g e sinh(gr) and x = g~ ' e cosh(gr), (1.20)

where ¢ is a constant. The new coordinates 7 and ¢ which we shall refer to as the
Rindler coordinates, cover only the wedge x > |t| of the Minkowski - plane. In
terms of new coordinates 7 and &, the flat spacetime line element (1.6) takes the

following form:

ds? = €% (dr? — de?) . (1.21)

From equation (1.20) it can be easily noted that
x? —1? = g2 et and tanh(g7) = (/). (1.22)

These relations then imply that curves of constant 7 are straight lines passing
through the origin, while curves of constant £ are hyperbolae in the Minkowski
t-x plane. FEach of these hyperbolae is the spacetime trajectory of a uniformly

accelerating observer having a proper acceleration (g 6_95).

This can be shown as follows (see, for instance, ref. [42], pp. 22-23). Con-
sider an observer who is traveling with a uniform acceleration A along the z-axis.

The equation of motion of such an observer is given by

d v

— | ——] = 1.23

¢ ( - ) , (1.23)
where v = (da/dt). This equation can be integrated with the result

v = ‘;—f = M (14 \23)71/2, (1.24)



where we have chosen the initial condition to be v = 0 at ¢ = 0. Integrating this

equation again and setting x = A™! at ¢ = 0, we obtain that
= A1 4 A2)V2 (1.25)

The proper time s as measured by a clock carried by the accelerated observer is

related to the Minkowski time ¢ as follows:
¢
s(t) = / dtv1 — v?
0

¢ dt
) v
= M larcsinh(\t). (1.26)
Using this relation and equation (1.25), we can express the trajectory of the

observer accelerating with a proper acceleration A as follows:
t = A7'sinh()\s) and z = A" cosh()s). (1.27)

(If we now choose A = (g 6_95) and s = (695 7'), we find that these relations
reduce to the transformations (1.20).) This trajectory is a hyperbolae in the ¢-
x plane confirming our claim that the Rindler coordinates (7, &) correspond to the
coordinates of an observer accelerating uniformly along the spatial coordinate x.
Note that different hyperbolae correspond to different uniform accelerations, with
the acceleration decreasing as one moves out towards positive . A uniformly
accelerated observer traveling along one of these hyperbolae is called a Rindler
observer. The null lines + = =+t are asymptotes of the hyperbolae and hence
a Rindler observer never intersects these lines. These null lines therefore act as

horizons for the uniformly accelerated observers.

Clearly, the metric (1.21) is conformally related to the metric (1.6) (for a

discussion on conformal transformations, see, for e.g., ref. [1], section 3.1). In

10



the (1 + 1) dimensional case we are considering here the action (1.1) is invariant
under conformal transformations. Therefore, the equation of motion (1.3) for the

massless scalar field ® in terms of the new coordinates T and ¢ reduces to
(02— 32) o(r,¢) = 0. (1.28)

The solutions to this equation, as it was in the case of Minkowski coordinates, are

just plane waves, i.e.

vi(7,€) x exp —i(vr — [€), (1.29)

where v = |[| and [ can take values continuously between —oo and oo. Since the
metric (1.21) is independent of the Rindler time coordinate 7, the positive fre-

quency modes for the new coordinates can be defined with respect to the timelike

Killing vector field (9/07) as follows:
O-v(1,€) = —iwv (7€) with v > 0. (1.30)

In the Rindler case, the hypersurface d¥* in the scalar product (1.5) can be chosen

to be a constant 7 hypersurface. Then, the normalized modes are given by

1 .
v(r,€) = T exp —i (v — [§). (1.31)

These modes and their complex conjugates v; satisfy the following set of orthonor-

mality relations
(v,op) =p(l=1") 5 (v],v5)=—0p({—=1") and (v,v})=0. (1.32)

Just as in the Minkowski case, the quantized scalar field can now be expanded in

terms of modes (1.31) and their complex conjugates as follows:
o(r,€) = [ dl (brui(r,€) + 80 (7,6)) (1.33)

11



where b; and l;;r are the creation and the annihilation operators corresponding to
the conformal Rindler mode [. The operators b and l;;r follow the same com-
mutation relations as the Minkowski operators a; and &L. The vacuum state

corresponding to the new Rindler coordinates can then be defined as

blog) =0, Vi (1.34)
1.1.3 Bogolubov transformations

In the last two subsections, we have carried out the canonical quantization of
the scalar field ® in flat spacetime in two different coordinate systems which are
related by a non-linear coordinate transformation. We find that the scalar field ®
can be decomposed in these two coordinate systems in terms of two complete,
orthonormal set of modes uj, and v;. These two decompositions lead to two vacuum
states |0p7) and |0r) and their associated Fock space. Are these two quantization

equivalent?

As both sets of the normal modes uy and v; are complete, one set of modes

can be expanded in terms of the other as follows:

ulr(te), et o) = [ dh (a(l,k) wnlt,e) + B(L k) u;(t,x)). (1.35)

— 00

Conversely

wlt(r,€,a(r. O = [ dl (7 kyulr6) = BRI G). (136)

— 00

These relations are known as the Bogolubov transformations [43, 44, 45, 46].
The quantities a(l, k) and S(l, k) are called the Bogolubov coefficients. Using

equation (1.35) and the orthonormality relations (1.11), the Bogolubov coefficients

12



can be expressed as
Oé(l,k) = (Ulvuk) and ﬁ(lvk) = _(Ulvu};)' (137)

Making use of the orthonormality conditions (1.11) and (1.32) of the normal modes

uy and vy, it can be shown that

i _/ di (afl, k) b+ 57(L, k) B) (1.38)

and
b= /_0; d (a (1, k) iy — B7(1 k) ). (1.39)

The Bogolubov transformations also possess the following properties

/ dk( ) *(l’,k)—ﬁ(l,k)ﬁ*(l’,k)) — Sp(i—=1),  (1.40)
| dk( ﬁ(l’,k)—ﬁ(l,k)a(l’,k)) ) (1.41)

It follows immediately from equations (1.38) and (1.39) that the two Fock
spaces constructed out of the modes of the Minkowski and the Rindler coordinates
will prove to be different if the Bogolubov coefficient 3 is nonzero. For example,
if # proves to be nonzero then it can be easily seen from equation (1.39) that
the Minkowski vacuum |0ps) will not be annihilated by the Rindler annihilation
operator bi. This indeed happens to be the case. The Bogolubov coefficients
between the Minkowski and the Rindler modes can be evaluated with the aid of
equation (1.37). If we choose to evaluate the scalar products in equation (1.37)
on the 7 = 0 hypersurface, we find that the Bogolubov coefficients relating the

Minkowski and the Rindler modes are described by the following integrals:

all,k) = 47T\1/E /_OO d¢ (wegé + 1/) e’ exp —i (kg_l egg) \

Bl k) = ﬁw/:: d¢ (wegé — 1/) e’ expi (kg_l egg) . (1.42)
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Changing the integration variable to z = €%, we find that these integrals reduce

to

a(l,k) = g /OO d—Z (wz 4+ v) Hilg™h gmikag ™ (1.43)
’ dm/wr Jo  z ’

-1 oo dz
SR = e [ @) s

Carrying out these integrals by rotating the contour to the imaginary axis, we

ilg—1 eikzg_l

(1.44)

obtain that

9! C1y—ilg!
a(l, k) (W) (wl + kv) (kg™)
x T(ilg™t) em/?, (1.45)
B(lLk)y = —a(l,k)e ™, (1.46)

where I'(z) is the Gamma function. In fact, the expectation value of the Rindler
number operator in the Minkowski vacuum state proves to be a thermal spec-

trum [7, 8, 11]. That is

(Oar|NifOar) = (O [6]51|0ns)

= [ dk1Bp

< dk g1
= . 1.4
0o 2wk (exp(Zm/g_l) — 1) (147)

(The logarithmic divergence in the above integral is a feature of massless scalar

fields in (1 4+ 1) dimensions.) Therefore, quantization in the Minkowski and the

Rindler coordinates are inequivalent.

As we have mentioned at the beginning of this section, our discussion above
has been presented in (1+1) dimensions so as to keep the mathematics simple. We
shall now briefly outline as to how the Bogolubov coefficient 5 between Minkowski

and Rindler coordinates proves to be nonzero in (3 + 1) dimensions too.
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In flat spacetime and in Minkowski coordinates, the normalized modes of a
real, massless scalar field in (3 + 1) dimensions are given by

ug(t,x) = _ exp —i(wt — k.x), (1.48)
(2m)3 2w

where w = |k|. The quantized scalar field can be decomposed in terms of these

modes and their complex conjugates wuy as follows:
a(t,x) = [ ik (ak wk(t, %) + é ul*{(t,x)). (1.49)

In (3 + 1) dimensions, the coordinate transformations (1.20) lead to the following

Rindler metric:

ds? = ¥4 (dr? — d€?) — dy* — d=*, (1.50)

where we have assumed that the y and the z-coordinates remain unchanged. The

normalized modes of a massless scalar field in these Rindler coordinates are given

by (see, for e.g., ref. [10])

sinh(rvg™!) i —ivr il X, 1 1 gé
v, (1,6,%1) = W e et XL K- (ng e ), (1.51)

where 1, = ([,,1.), x1. = (y,2), {1 = |l.| and K, ;-1 is the Macdonald function, a
Bessel function of imaginary order and argument. These modes and their complex
conjugates vy, form a complete orthonormal basis. Therefore, the quantized

scalar field can be decomposed in terms of these normal modes as follows:

B(r, £, x1) = /OOO av [, (bm vy (1, 6,%0) + by v;h(r,g,xg) L (152)

The Bogolubov coefficients between the modes (1.48) and (1.52) can evalu-
ated using the scalar product (1.37). Evaluating the scalar product on the 7 =0

hypersurface, we obtain that (see, for instance, ref. [9])

—-1/2

a(v,1,k) = {27ng_1 (1 — exp —(27‘[‘1/9_1)) }
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1

B, k) = —a(y,1,k)e™™ . (1.53)

This result then shows that inequivalent quantization in Minkowski and Rindler
coordinates is a feature that arises in (3 4+ 1) dimensions too. Using the above
expression for the Bogolubov coefficient (3, it can be easily shown that the ex-
pectation value of the Rindler number operator in the Minkowski vacuum state
is a thermal spectrum with a temperature T' = (g/27), just as it was in the

(1 + 1) dimensional case.

The conventional formulation of quantum field theory in flat spacetime is
invariant only the Poincaré group. The Poincaré group is basically a set of linear
coordinate transformations. Our discussion above illustrates the fact that under
non-linear coordinate transformations, even in flat spacetime, concepts such as
vacuum, particles ete. can, in general, prove to be coordinate dependent. In
a curved spacetime, the Poincaré group is no longer a symmetry group of the
spacetime. Therefore, inequivalent quantization in different coordinates describing
the same gravitational background can be expected to arise in curved spacetimes

too.

The results regarding the Bogolubov transformations we have presented
above are not restricted to flat spacetime alone but apply to complete, orthonor-
mal sets of solutions in curved spacetimes too. Consider a curved spacetime in
which more than one timelike Killing vector is available. We can define positive
frequency normal modes with respect to these different timelike Killing vectors.
If the Bogolubov coefficient 3 proves to be nonzero between any two of these

normal modes, then inequivalent quantization, as illustrated in the flat spacetime
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example above, will arise and there is bound to be an ambiguity in the definition
of particles. Further, in a generic spacetime, in which the metric is explicitly
time dependent, a timelike Killing vector may not be available at all. In such a
situation, positive frequency modes cannot be defined unambiguously. Thus, we
may be faced with either a lack of uniqueness in the particle definition, or it may

not be possible to define particles at all [4].

In certain limited cases, however, the particle concept is useful and one can
obtain interesting results. Consider a spacetime which is static in the asymp-
totic past and in the asymptotic future. Then, timelike Killing vector fields are
available in the asymptotic domains, but they need not be the same vector. We
can define a vacuum state, in the past and a (possibly different) vacuum state
in the future, even though a vacuum state cannot be defined in the intermediate
times (due to the absence of a Killing vector field). If the quantum field was
initially in the vacuum state defined in the asymptotic past, then at late times it
will appear as if particles are present in that state. This result is interpreted as
production of particles corresponding to the quantum field by the changing ge-
ometry of spacetime. The emission of Hawking radiation from a star undergoing

gravitational collapse is a famous example of particle creation in a time dependent

gravitational background [47, 48, 49, 50, 51, 52, 53, 54].

The phenomenon of particle production is clearly different from the one
concerning the presence of the Rindler quanta in the Minkowski vacuum. The
latter arises because there is more than one way of defining positive frequency
modes in a given spacetime, even though the spacetime itself is static. On the
other hand, particles are created in a time dependent metric because the natural

definition of positive frequency modes are different at two different times [55, 56].
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1.2 Particle production in a curved spacetime: a
simple example

We shall now discuss a simple model of particle creation in a spacetime that is
Minkowskian in the asymptotic past and asymptotic future but is non-static in be-
tween. (The example we present here was investigated originally in ref. [57]). The
spacetime is a two dimensional Friedmann-Robertson-Walker universe described

by the line element

ds® = dt* — a*(t) da?, (1.54)

where the spatial sections expand or contract uniformly as described by the scale
factor a(t). Introducing a new time parameter (the so called conformal time)

defined as

7 :/%, (1.55)

the metric (1.54) can be rewritten in terms of the conformal time n as follows:

ds* = a*(n) (d772 — d:z;z)

= C(n) (dn* — da?) (1.56)

where we have defined the conformal scale factor as: C'(n) = a*(n). This form
of the line element is manifestly conformal to the flat spacetime line element in

Minkowski coordinates. Suppose that
C(n) = A+ B tanh(pn), (1.57)

where A, B and p are constants, then in the asymptotic past and the asymptotic

future the spacetime becomes Minkowskian since

C(n)— A+ B, as n— too. (1.58)
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Consider a massive, real scalar field described by the action

S[#) = [ v=g £(®) = %/d%@ (g0 "0 970 — 2 02) . (159)

Varying this action with respect to the scalar field ®, we obtain the equation of

motion satisfied by the scalar field to be

(C+m?) o= (ﬁaﬂ (V=99"d.) + m2)<I) = 0. (1.60)

Substituting the metric (1.56) in this equation, we obtain that
(02 — 92 + m*C(n)) (. x) = 0. (1.61)

If we decompose the modes of the scalar field ¢ as

ur(n, ) o xx(n) €™, (1.62)

we find that the function xx(n) satisfies the following differential equation

dek
dn?

+ (k2 + mZC(n)) Y = 0. (1.63)

For the case of C(n) given by (1.57), this differential equation can be solved in
terms of hypergeometric functions [58]. The normalized modes which behave as
positive frequency Minkowski modes in the asymptotic past (i.e. as n, { = —00)

are

W) = e e i{ke —wn— (oo o) In Reosh(on)]

% (14 (- /p)sico- [ p.1 = (iwin /). [1 + tanh(pm)] /2)

exp —i (winn — k), (1.64)

n——00 1

s
ATw;,
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where

1/2
Wi = <k2 + m*(A — B))
1/2
ot = <k2 +m?(A + B)) (1.65)
wy = % (wout + wzn) .

On the other hand, the modes which behave like positive frequency Minkowski

modes in the asymptotic future (i.e. as n, t — oco) are found to be

out 1

u(n) = e e ifke —wun = (o /o) In Reoshipn)] |

x (14 (oo p)sico- .1 + (o), [1 = tanh(pm)] /2)

oo 1 .
A exp —i (woun — k). (1.66)

AT W ot

Clearly, ui” and u$* are not equal which means that the Bogolubov coefficient 3

relating these two modes must be non-vanishing. To see this explicitly we can use
the linear transformation properties of hypergeometric functions (see, for instance,

out

ref. [59], p. 559) to write u}" in terms of ug" as

ud'(n,x) = a(k) uf™(n, x) + B(k) u?{ (n, z), (1.67)

where

(o \ M (T[1 = (inp)] T(=issou/p)
o = () (r<—w+/p>ru—<w+/p>1)’ o8

 (@ou\M? [T = (iwin/p)] T(iwout/p)
i = () (r<w_/,o>r[1+<w_/p>]) 0%

and ['(z) represents the Gamma function. Comparision of equation (1.67) with

equation (1.35) reveals that the Bogolubov coefficients are given by

alk, k') = a(k)dp(k — &)  and  B(k k)= B(k)dp(k+&).  (1.70)
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From these two equations one obtains

Twy/p) ) | (1.71)

sinh(Tweut/p)

me—/p) ) : (1.72)

sinh(Tweut/p)

|oz(k)|2 B sinh?
N sinh (7w, /p

sinh?

BRIF = (sinh(wwm/,o

from which the normalization condition

(k)| = [B(k)[* =1, (1.73)
follows immediately.

Consider the case when the field is assumed to be in the in-vacuum [0;,) as
defined by a Minkowski observer as 1, t = —oo. As the spacetime expands and
reaches the asymptotic future, i.e. as n, t — oo, the field is still in the state |0;,)
(we are working in the Heisenberg picture). However, the Minkowski observer in
the out-region defines a different state |0,,:) as the vacuum state and finds that
the state |0;,) is populated with |3(k)|? (given by equation (1.72)) number of
particles, as defined by her. It is in this sense, we say that particle production has
taken place. However it is not meaningful to ask whether or not these particles
were created during expansion, because the particle concept is not well defined in

the intermediate times.

1.3 Concept of a detector

In a general curved spacetime, the particle concept is ambiguous. When formal
methods, such as the canonical quantization procedure, lead to coordinate de-
pendence of the particle concept, we can ask whether there exists an operational

prescription of defining a particle which can help us resolve this ambiguity. One
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such prescription would be to study the behavior of a measuring apparatus which
interacts with the quantum field and can possibly respond to the particle content
of the quantum field. After all, particles are what particle detectors are designed
to detect [60]. The response of a particle detector in motion on a certain trajec-
tory in the spacetime of our interest should then reflect the particle content of the
quantum field in that spacetime. These motivations for an operational definition

of the particle concept led to the idea of a detector.

In classical physics, if one wants to measure the strength of a field, say an
electric field, it could be done by placing a charge in the field and by measuring the
response of the charge, viz. its acceleration. Alternatively, one can measure the
energy gained by a harmonically bound charge kept in an external electric field,
and the energy gained by the charge will be proportional to the power spectrum
of the field, evaluated at the frequency of the oscillator. The simplest analogue of
this detection process in quantum mechanics would be an atom kept in an external
quantized electric field and the rate of transition of the atom to the excited levels

will then reflect the expectation value of the field.

Therefore, by a detector we have in mind a mathematical model involving
a point like object which can be described by a classical worldline, but which
nevertheless possesses internal degrees of freedom having a quantum description
provided by energy levels. Such model detectors can essentially be described by the
interaction Lagrangian for the coupling between the internal degrees of freedom
of the detector and the quantum field. The worldline of the detector is assumed
to be prescribed a priori; it is not considered to be a part of the dynamics. The
detector is usually set in its ground state and the probability that as a result of its

interaction with the quantum field, it will eventually be found in an excited state
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is examined. Also, to qualify as a realistic detector, the detector, when it is on an
inertial trajectory in flat spacetime, is not expected to respond in the Minkowski

vacuulnl.

The response of such a detector in an arbitrary spacetime would, in general,
depend on the following three elements: (i) the nature of the coupling between
the detector and the field, (ii) the motion of the detector and (iii) the state of the
quantum field. The simplest of the different possible detectors is the detector due
to Unruh and DeWitt [11, 12]. In the following three subsections, we introduce
the Unruh-DeWitt detector and analyze its response in flat as well as curved

spacetimes.

1.3.1 The Unruh-DeWitt detector

The Unruh-DeWitt detector consists of an idealized point particle with inter-
nal energy levels labeled by the energy F and coupled to the quantum field by
a monopole interaction. Suppose the Unruh-DeWitt detector moves along the
worldline described by the functions x#(7), where 7 is the proper time as mea-
sured by the clock in the detector’s frame. The interaction of the Unruh-DeWitt

detector with a scalar field @ is described by the interaction Lagrangian
Lint (x(7)) = em(7) ®[z(7)], (1.74)
where ¢ is a small coupling constant and m(7) is the detector’s monopole operator.

Consider a Unruh-DeWitt detector that is assumed to be in its ground state
|Fo) and is set in motion on an arbitrary trajectory in a particular spacetime.
This detector, in general, will not remain in its ground state but will undergo a

transition to an excited state |F) due to its interaction with the scalar field. The
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amplitude for its transition to the excited state |F) will be given by

A(E, Eo) = (E| @ (U] T {exp ic (/_O:o dr m(7) CI)[:L'(T)]) }|n1;i> @ |Eo), (1.75)

where 7' is the time ordering operator, |¥;) is the initial state of the quantum field
and |Uy) is the state of the quantum field after its interaction with the detector. If
we assume that the coupling constant ¢ is very small, then the transition amplitude

can be approsimated by the first order perturbation theory as follows:
A(E, Fo) = ic (E| @ <q;f|{/_°:o dr m(7) @[x(r)]}m 2 |E). (1.76)

If the time evolution of m(r) is assumed to be
m(r) = M7 1 (0) =i, (1.77)

where Hy is the Hamiltonian of the detector so that Ho|E) = E|E) and Hy|Fy) =

Fo|Eo), then the transition amplitude is given by
AQ) =M [ dr e lola(r)]| W), (1.78)

where Q = (£ — Fy) and
M = ic(E|m(0)|Ey). (1.79)

We shall now examine whether the Unruh-DeWitt satisfies the demand we
had made earlier for a detector to be realistic, viz. that the detector should not
respond in the Minkowski vacuum state when it is on an inertial trajectory in flat
spacetime. Earlier, in subsection 1.1.3, we had seen that, in flat spacetime and in

(3 + 1) dimensions, the quantized scalar field ® can be decomposed in terms of

the Minkowski normal modes as follows (cf. equations (1.48) and (1.49)):
d’k , :
(I)(t,X) — / (&ke—z(wt—k.x) + &;r{ez(wt—k.x)) 7 (180)

V(27)° 2w
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where w = |k|. If we now assume that the initial state |¥;) of the quantum field
is the Minkowski vacuum state |0ys), then it is clear from the expression for the
transition amplitude (1.78) that transitions can take place only to the one-particle

state of the quantized scalar field, i.e. for [U;) = |1x). Then

(U /| P[a( exp —i(wt — k.x). (1.81)

Ploa) = /\/ 2m) 39w

We must now take into account the fact that x is not an independent variable
but is determined by the detector’s trajectory. Let us assume that the detector

follows an inertial world line, i.e.
x(7) = X0+ V(1) = x0 + v7 (1 — 0?72, (1.82)

where xo and v are constants and |v| < 1. For such a situation the transition

amplitude (1.78) is proportional to a Dirac delta function, i.e. we obtain that

M

4w

Aine(Q) =

e 6 (Q+ (w—kv)(1 = v?)7/?) =0 (1.83)

The last equality in the above equation follows from noting that since k.v <
|k||v| < w and ©Q > 0; the argument of the delta function is always greater than
zero. The transition in the detector is essentially forbidden on the grounds of
energy conservation which is a direct consequence of Poincaré invariance. The
Unruh-DeWitt detector does not respond in the Minkowski vacuum state when in
inertial motion in flat spacetime and therefore satisfies the demand we had made

of realistic detectors.

If, on the other hand, instead of an inertial trajectory and the Minkowski
vacuum state, we had chosen a more complicated trajectory and an arbitrary
initial state |W;), the integral (1.78) would not have yielded a delta function and

the result would, in general, be nonzero. In such a case, it is of interest to calculate
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the transition probability to all possible final states |U ;) of the quantum field. This
can be obtained by squaring the modulus of the transition amplitude and then
summing over the complete set of final states |W;). The transition probability can

then be expressed in a more formal and concise manner as follows:

P(Q) = > JAQ)" = [M[* F(Q), (1.84)
I0y)
where
FO) = [ dr [ ar e 80 G fa(r), (7). (1.85)

(Since the quantity | M |2 depends only on the internal structure of the detector and
not on its motion, we will hereafter drop this term and concentrate on the detector
response function F(Q).) The detector response function F(£2) is independent of
the details of the detector and is determined completely by the Wightman function
Gt [z(7), z(7")] which is defined to be

G [2(7), 2(7")] = (W;]|@(2)D(2")|T;). (1.86)

For trajectories in flat spacetime which are integral curves of timelike Killing
vector fields, for e.g. the inertial and the accelerated trajectories, the Wightman
function corresponding to the Minkowski vacuum state is invariant under time

translations in the reference frame of the detector [10]. Hence

GF (7). 2(7)] = (Oar|®(x)®(2")|0n)
= Gt (r -1
= GT(A7T) (1.87)
and the double integration in (1.85) for such a Wightman function reduces to a

Fourier transform of the Wightman function multiplied by an infinite time inter-

val. The transition probability is divergent, simply because the detector is kept
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switched on for an infinite time interval. Such a divergent integral is frequently en-
countered in quantum theory, like, for instance, when transition probabilities are
evaluated in time dependent perturbation theory using Fermi’s golden rule [61].
This divergence is usually handled by concentrating on the transition probability
rate rather than on the transition probability itself. We can, therefore, interpret
the Fourier transform of the Wightman function as the probability of transition
per unit time of the detector. That is, the transition probability rate of the

detector is described by the following integral:

R(Q)::/j;dAre—MATG*(ATy (1.88)

1.3.2 Inertial and uniformly accelerated Unruh-DeWitt
detectors in flat spacetime

Let us now evaluate the transition probability rate of inertial and uniformly ac-
celerated Unruh-DeWitt detectors in flat spacetime. In this subsection, we shall
assume the initial state of the quantum field to be the Minkowski vacuum state,

i.e. |U;) =]0p) and we shall work in (3 + 1) dimensions.

The Wightman function for a massless scalar field in (3 + 1) dimensions in

the Minkowski vacuum state is given by (see, for instance, ref. [1], pp. 52-53)

Gr(x,2") = (Oum[@(2)®(2")|0n)

= ! (1.89)
a2 ((t =t —ie)’ — [x —x|*)’ '

where € — 0t.
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Transition probability rate of an inertial detector

For the case of an inertial trajectory in flat spacetime (cf. equation (1.82)) the

Wightman function in the Minkowski vacuum state (1.89) reduces to

—1
472 (AT —i€)?’

Gt (AT) =

me

(1.90)

where, we have absorbed a positive factor (1 — Vz)_l/2 into €. Substituting this
Wightman function in equation (1.88), we find that the rate of transition proba-

bility is described by the integral

1 o e—iQAT
ine 2)=—— / dA 5 | 1.91
Rinc() 472 J_o T ((AT — 16)2) (1.91)

Since ) > 0, this integral can be performed with the aid of an infinite semicircular
contour in the lower half of the complex Ar-plane. Since the pole of the two point
function (1.90) is at A7 = ¢, it does not contribute to the integral and the
detector response is zero. In other words an inertial detector does not respond in
the Minkowski vacuum, the conclusion we had reached earlier by analyzing the

transition amplitude of the inertial detector.
Transition probability rate of a uniformly accelerated detector

Now, consider the following transformations of the Minkowski coordinates [39, 40]
t =¢&sinh(gr) ; ax=¢Ecosh(gr) ; y=y and z=z, (1.92)

where ¢ is a constant. (Note that these transformations correspond to choosing
A= ¢ and s = (gé7) in equation (1.27).) In terms of the Rindler coordinates

(1,€,y,2), the line element in flat spacetime reduces to
ds* = g?dr? — d¢* — dy? — d=*. (1.93)
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The Rindler coordinates cover only the right quarter of flat spacetime which cor-
responds to the region > [¢| in the t-x plane. From equation (1.92) it can easily

seen that

-t =2 and tanh(g7) = (/). (1.94)

These relations then imply that curves of constant 7 are straight lines passing
through the origin, while curves of constant ¢ are hyperbolae in the ¢-z plane.
As we had noted in subsection 1.1.2, each of these hyperbolae then represent the
spacetime trajectory of an observer who is accelerating uniformly along the xz-axis

with a proper acceleration ¢71.

The Wightman function corresponding to such a uniformly accelerated ob-
server is obtained by substituting the Rindler transformations (1.92) in equa-

tion (1.89). The result is

Gt (A7) = — {16%29_2 sinh®(gAT/2 — ie)}_l , (1.95)

acc

1

where, without any loss of generality, we have set £ = ¢7'. Using the expansion

o0

cosec’rr =777 > (x—mn)7, (1.96)
we can express (1.95) as
1 & _
Gt (A7) = 1 (AT — i+ 2ming™") 2 (1.97)
m n=—oo

Substituting (1.97) into (1.88) we obtain that

Racc(ﬂ):—;? 3 | ((A e )2). (1.98)

e T —1€+ 2ming~!
This integral can be performed on an infinite semicircular contour in the lower half

of the complex Ar-plane. The poles in the lower half of the complex Ar-plane
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contribute to the integral and we obtain the transition probability rate of the

uniformly accelerated detector to be

1 Q
Racc(Q) — gm, (199)

which is a thermal spectrum with a temperature T' = (¢/27) (we have set the

Boltzmann’s constant to unity).

Earlier, in subsection 1.1.3, we had found that the expectation value of
the Rindler number operator in the Minkowski vacuum state was a thermal dis-
tribution. We had also noted that the Rindler transformations correspond to
trajectories of uniformly accelerated observers. We now find that the response of
a uniformly accelerated Unruh-DeWitt detector in the Minkowski vacuum state
is a thermal spectrum. From the concurrence of these two results, we may be
tempted to conclude that the uniformly accelerating Unruh-DeWitt detector is
detecting the Rindler particles in the Minkowski vacuum state and hence is a
particle detector. But this reasoning would be incorrect, simply because there
exists a clear counter example to such a reasoning. If the canonical quantization
is carried out in a uniformly rotating coordinate system in flat spacetime, the
expectation value of the rotational number operator in the Minkowski vacuum
state turns out to be zero; whereas the response of a uniformly rotating Unruh-
DeWitt detector proves to be nonzero [9, 10]. Therefore, we must not think of the
Unruh-DeWitt detector as detecting particles. In fact, the transition probability
rate of the Unruh-DeWitt detector is proportional the power spectrum of the two
point correlation function of the quantum field. Hence, we should think of the

Unruh-DeWitt detector as a ‘fluctuometer’ rather than as a particle detector.

Here, we have evaluated the response of inertial and uniformly accelerated
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Unruh-DeWitt detectors assuming that the quantum field is in the Minkowski
vacuum state. The response of these detectors in n-particle and coherent states

of the quantum field have also been analyzed in literature [62].

1.3.3 Unruh-DeWitt detectors in Schwarzschild and de-
Sitter spacetimes

We shall now evaluate the transition probability rates of Unruh-Dewitt detectors
that are stationed at a constant radius in Schwarzschild and de-Sitter spacetimes.
Since the normal modes for the Schwarzschild and de-Sitter spacetimes are not
known in a closed form in (3 + 1) dimensions, we shall carry out our analysis of
the detector response in (1 + 1) dimensions. The quantum field we shall consider

here is a massless, real scalar field.

The Schwarzschild spacetime in (1 + 1) dimensions is described by the line

element (see, for instance, ref. [42], section 100)

2M 2MN !
ds® = (1 — —) dt* — (1 — —) dr?. (1.100)
r r
Under the transformation (cf. ref. [63], equation (25.31))
r
= 2M 1 (— — 1) 1.101
r=r4 {57 , ( )

the Schwarzschild line element reduces to the Regge-Wheeler metric given by

ds® = (1 — ﬂ) (dt* — dr*?). (1.102)

”
The Kruskal-Szekeres (KS, hereafter) coordinate system is related to the Regge-
Wheeler (RW, hereafter) coordinate system by the following transformations (see,

for e.g., ref. [63], section 31.4)
v =¢" M ginh (t/4M) ; u ="M cosh (t/4M) (1.103)
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and the line element in the KS coordinate system is given by

32M3
ds* = ( ) e M (dv? — du?). (1.104)
r
The metrics in the RW and the KS coordinate systems, given by equations (1.102)
and (1.104), respectively, are conformally related to the flat space metric. Since

the action for a massless scalar field in (14 1) dimensions is conformally invariant,

the normal modes of the scalar field in these coordinates are just plane waves.

We can define a vacuum state with respect to KS time coordinate v and
study the response of a detector stationed at a constant r* in the RW coordinate
system [41]. It is easy to see from equation (1.103) that the curves of constant r*
are hyperbolae in the v-u plane of the KS coordinates. Hence they are similar
in form to the trajectories of a uniformly accelerated observer in the Minkowski
t-x plane. It turns out that the response of an Unruh-Dewitt detector stationed at
constant r* in the vacuum state defined with respect to the KS time coordinate v
is exactly similar to the response of an accelerated detector in the Minkowski
vacuum (see, for instance, ref. [1], section 8.3; also see ref. [14]). This well known

result can be obtained as follows.

The Wightman function for a massless scalar field in (1 + 1) dimensions in
the KS coordinate system is given by (cf. ref. [1], section 8.3)
GF(r,2") = —— In{|(v —v' —ie)’ = (u—u)*|}. (1.105)
For an observer stationed at a constant r*, when the transformations (1.103) are
substituted in the Wightman function (1.105), it reduces to
Gt(z,2') = —% ln{‘Z "M sinh ((1 — ZM/T)_1/2 AT/8M — ic) ‘} , (1.106)

where 7 is the proper time in the detector’s frame and r is related to r* by (1.101).

The proper time 7 in the frame of the detector is related to the Schwarzschild
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coordinate t as follows: 7 = (1 — 2M/r)1/2 t. Since the above Wightman function
is invariant with respect to translations in the detector’s proper time 7 we can
define the Fourier transform of Wightman function to be the transition probability
rate of a detector stationed at a constant r*. Let us now assume that the detector
is stationed at r* = oo (i.e. r = o0). Then, the detector’s proper time is the
same as the Schwarzschild time ¢. Substituting the KS Wightman function for an
observer at r* = oo in the integral for the transition probability rate (1.88) we

obtain that

. At
2¢" ™ ginh (——ic) ‘} (1.107)

R —iQAt {
R(Q) = - /_OodAte In =

Integrating this expression twice by parts, we find that it reduces to the following

integral (see, for instance, ref. [64], section 4.4):
R(Q) = —i/oo dAt —mf{sz\m inh (ﬁ oy )}_2 (1.108)
=5 | e sinh | o7 — e :

which is the integral we had dealt with in the last subsection. The result is a

thermal spectrum with a temperature 7' = (1/87 M), i.e. [48]

1

R(Q) x m.

(1.109)

For a detector stationed at a finite r (> 2M), its transition probability rate again
proves to be a thermal spectrum with a temperature that is related to the temper-
ature measured at r = oo by the corresponding red-shift factor (see, for instance,

ref. [63], section 25.4)

T(r) = (87TM\/1 - 2M/r)_1. (1.110)

(We have set the Boltzmann’s constant to be unity.)
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A similar analysis can be carried out for the case of the de-Sitter spacetime.

In (1 4+ 1) dimensions, de-Sitter spacetime is described by line element [65, 66]
ds® = (1 — H*r*)dt* — (1 — H*r*)" " dr?, (1.111)

where H is a constant. Defining a new coordinate r* which is related to r as

follows:
. 1 | {‘1—|—HT
" Tom "1 Hr

}, (1.112)

we find that the de-Sitter spacetime in terms of the new coordinate r* is described

by the line element

ds* = (1 — H*r?) (dt* — dr*?). (1.113)

This metric is conformal to the flat space metric. Performing the following trans-
formations

v =" sinh(Ht) and u = e cosh(Ht), (1.114)

we find that the line element (1.111) reduces to

ds* = H7*(1 — Hr)? (dv® — du?). (1.115)

Just as constant r* trajectories in KS coordinate system and the uniformly
accelerated trajectories in the Minkowski t-x plane are hyperbolae, constant r*
trajectories in de-Sitter spacetime are also hyperbolae in the v-u plane. The study
of the response of a detector stationed at constant r* in a vacuum defined with
respect to the time coordinate v in the de-Sitter spacetime is hence similar to the
study of the detector response in the Schwarzschild spacetime discussed above. For
a detector that is stationed at r = 0 and is kept on for an infinite time interval
we obtain a thermal response with a temperature T' = (H/2m) (see refs. [67, 68];

for a different derivation, see ref. [69], section 9.4). The temperature as measured
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by detectors stationed at a nonzero r (r < H™') is related to the temperature as
measured at » = 0 by the corresponding red-shift factor (see, for e.g., ref. [63],

section 25.4), i.e.

T(r) = (2n B V1= H22) (1.116)

where, as before, we have set the Boltzmann’s constant to unity.

We have restricted our discussion in this section to the response of the
Unruh-DeWitt detectors. As we have mentioned earlier, the Unruh-DeWitt de-
tector is coupled to the quantum field through a monopole coupling. Detectors
can be coupled to the quantum field in different ways. The response of detectors
that are coupled to the quantum field through a derivative coupling as well the
response of detectors that are coupled to the energy-momentum tensor of quan-
tum field have been studied in literature [70, 71, 72]. In general, the response of
these detectors turns out to be different from the response of the Unruh-DeWitt

detector.

1.4 Pair production in a constant electric field
background

In the last three sections, we have been discussing the behavior of quantum fields
in classical gravitational backgrounds. In particular, we have been interested in
the following aspects of quantum fields in curved spacetimes: (i) the concept of a
particle and (ii) the phenomenon of particle production. We find that in a curved
spacetime, the particle concept, in general, proves to be coordinate dependent.
This feature is a hurdle that will have to be overcome if we are to provide a

covariant description of the phenomenon of particle production.
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As we have mentioned at the beginning of this chapter, phenomena such
vacuum polarization and particle production take place in classical electromag-
netic backgrounds too. Just as the evolution of a quantum field in a particular
spacetime can be studied in different coordinate systems, its evolution in a given
electromagnetic background can be analyzed in different gauges related by gauge
transformations. The evolution of quantum fields in classical electromagnetic
backgrounds has been studied in literature with the hope that such a study will
offer some insight to understand the gravitational case better [33, 38]. In this
section and the next we shall study the evolution of a quantum field in a con-
stant electromagnetic background by the method of normal mode analysis and

the effective Lagrangian approach, respectively.

The system we shall consider consists of a complex scalar field ® interact-
ing with the electromagnetic field represented by the vector potential A*. Tt is

described by the action (see, for e.g., ref. [73], p. 98)

S[@, A" = /d“x,C(CI),A“)
_ /d% {(@(I) +igA, D) (040" — igA“ D)

1
—m PP* — ZFWFM}, (1.117)

where ¢ and m are the charge and the mass associated with a single quantum of

the complex scalar field, the asterisk, as usual, denotes complex conjugation and
F.,=0,A,—0A,. (1.118)

We shall assume that the electromagnetic field behaves classically, hence A* is
just a c-number, while we shall assume the complex scalar field to be a quantum

field so that @ is an operator valued distribution. Varying the action (1.117)
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with respect to the complex scalar field ®, we obtain the following Klein-Gordon
equation:

((au FigA,) (9" +igA") + m2)q> — 0. (1.119)

The electromagnetic background we shall consider in this section is a con-
stant electric field described by field vector E = KX, where F is a constant and
x is the unit vector along the positive x-axis. This electromagnetic background

can be described by either the time dependent vector potential

A =(0,—FEt,0,0) (1.120)
or the space dependent one

Ay =(—Fz,0,0,0). (1.121)

In the following two subsections we shall illustrate how the creation of particles

corresponding to the quantum field ® is described in the two gauges A} and Aj.

1.4.1 Quantization in the time dependent gauge: Bogol-
ubov coeflicients

Let us begin by quantizing the complex scalar field ® in the time dependent gauge
AY [38, 74, 75, 76]. In the case of the time dependent gravitational example we
had discussed earlier in section 1.2, the metric we had considered, viz. (1.56),
was Minkowskian in the asymptotic past as well as in the asymptotic future.
Because of this feature we were able to define a particle in the asymptotic domains
unambiguously. But the vector potential A} representing the constant electric
field has a time dependence without these asymptotic features and hence it is

not easy to provide a particle interpretation. The usual strategy adopted in such
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cases 1s the following: We obtain a complete set of orthonormal solutions which
can be identified as positive and negative frequency solutions in the asymptotic
past, t.e. as t =+ —oco. We can then identify as positive frequency modes those
solutions which have a decreasing phase, say, in the WKB limit. We can obtain,
in a similar manner, the positive and negative frequency modes in the asymptotic
future, i.e. as t — oco. Because of the time dependence of the vector potential
AY, a mode which is purely positive frequency in the infinite past will evolve into
a combination of positive and negative frequency modes in the infinite future; a

phenomenon we had interpreted earlier as particle production.

Substituting the vector potential (1.120) in the Klein-Gordon equation

(1.119), we obtain that
(a,? — V? = 2iqEtd, + ¢ £ + m2) ®(t,x) = 0. (1.122)
The mode functions for scalar field ® can be decomposed as
u(t,x) < fx(t) exp ik.x, (1.123)

where k = (k;, ky, k.) = (kz, k1), the function fi(¢) satisfies the following differ-

ential equation:
d’ fx

T (m® + K3 + (ke + q2)?) fic =0 (1.124)

and k; = |k |. Introducing the new variables

r = alt+ (k/VqE)
A = (k1 +m?) /qF (1.125)

vo=—(1—i\)/2,
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we find that, in terms of these variables, the differential equation satisfied by the

function fx reduces to
&’ fi
dr?

If fx(A; 7) is a solution, then so are the functions fif(A; 7), fu(A; —7) and fi(A; —7).

£ 1) fu=0. (1.126)

This solution set can be taken to be
{Dy*((l +i)r), Do((1 = )7), Dye(—=(1 +4)7), Dy(—(1 — i)r)}, (1.127)

where D, (z) is the parabolic cylinder function (see, for e.g, ref. [77], p. 1067).

Only two of these four functions are linearly independent.

From the asymptotic properties of the parabolic cylinder functions (see, for

instance, ref. [77], pp. 1065-1066), we find that as 7 — —o0
D,(~(1—i)yr) — (VZIr])" e ™/ expi(r?/2) (1.128)

and

Dor(=(1+i)7) — (VZ[r])" e exp—i(r2/2). (1.129)
Whereas, as 7 — o0
D,((1—i)r) — (V21)" e ™/ expi(r?/2) (1.130)
and
Dy ((1+14)7) — (\/ﬁr) ™" 1 exp —i(72/2). (1.131)

It is clear from the asymptotic forms of the parabolic cylinder functions that
D,(=(1 —¢)7) is the positive frequency mode as 7 — —oo (since the positive
frequency mode should have a decreasing phase in this limit), whereas D,»((141)7)

is the positive frequency mode as 7 — oo. Evolving D,(—(1 —i)7) to 7 — oo, we

39



find that (cf. ref. [77], p. 1066)

D,(=(1—-i)7) = — (F(—I/)) elmv=1)/2 D,«((14+4)7)
+e™ D,((1 —i)r), (1.132)

where I'(—v) is the Gamma function. The Bogolubov coefficients can be read off

from the above expression; we find that

a(k) B ( dr e—(A—i)W/4) and ﬁ(k) . e_(/\-|—i)7r/2 (1 133)
=\ T =) - ' -
Therefore,
la(k)]? =1+ exp —(7A) and 1B(k)|? = exp —(7)); (1.134)
clearly
la(k)|* — [8(k)]* = L. (1.135)

These results imply that the constant electric field background produces |3(k) ? =

exp — <7T(m2 + ki)/qE) number of particles corresponding to the quantum scalar
field. (Note that |3(k)|? is independent of k,.)

1.4.2 Quantization in the space dependent gauge: tunnel-
ing probability

Let us now carry out the normal mode analysis in the space dependent gauge A%
given by equation (1.121) [38, 78, 79]. Substituting the vector potential A% in the

Klein-Gordon equation (1.119), we obtain that
(a,? — V? = 2iqEx0; — ¢° E*2* + m2) ®(t,x) = 0. (1.136)

Since the vector potential Af is independent of time coordinate ¢ as well as the

y and z coordinates, the normal modes of the scalar field can be decomposed in
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this gauge as

Uk, (1,X) eTiwt gikixy Juk, (@), (1.137)

where, as before, k; = (ky, k) and gk, (z) satisfies the following differential

equation:
dQkaJ_
dax?

+ ((w + qE:L')2 — ki — m2) Gk, = 0. (1.138)

(Note that k&, = |ki|.) A difficulty arises if we attempt here the same analysis
we had carried out in the time dependent gauge Aj. Since the time dependence
of the normal modes above are of the form exp —iwt for all times, the Bogolubov
coefficient 3 is trivially zero. The vacuum state defined with respect to the positive
frequency modes exp —iwt remains a vacuum for all times and we will not obtain
any particle production in the manner we had obtained in the time dependent
gauge. Therefore, if only a nonzero 3 is to be interpreted as particle production
we will then be led to results that are gauge dependent. It is in such a situation

that the tunneling interpretation comes to our rescue.

Let us look at the situation more closely. Substituting the following vari-

ables
p = Vi + (w/VaP)
A = (k2 +m?) /qE (1.139)

v o= —(1—i))/2

in the differential equation for gk, , we find that it reduces to

dQkaJ_
dp?

+(p* = N)guk, = 0. (1.140)

This differential equation is similar to the one we had encountered in the time

dependent gauge (for the function fx(t)) with the sign of A changed; this change
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is equivalent to v <» v*. So the solution set for g,x, is still the same with some

change of signs:

{DA+ 000, D (1= 0)0), DUA=(1+0)p), Durl=(1 = D))} (1141
The first pair are the left and right moving modes in the far right (i.e. as p — o0),
while the second pair corresponds to right and left moving modes in the far left
(i.e. as p — —o0). (We define a right moving mode as the one which has an
increasing phase in space.) A meaningful theory can be constructed out of any

independent pair of these solutions.

Notice that the differential equation (1.140) can be rewritten as

dQkaJ_
dp?

—P? Gk, = —AGuk, (1.142)

which then resembles a Schrodinger equation for an inverted oscillator correspond-
ing to an energy eigenvalue —\ < 0 (cf. equation (1.139)). What is usually done
in literature at this stage is the following: Since the natural definition of par-
ticles in the far left does not match with the natural definition of particles in
the far right, one can attempt an interpretation for particle creation in terms of
‘tunneling’ across the inverted oscillator potential in the ‘effective Schrodinger
equation’ (1.142) above (see, for e.g., ref. [80], pp. 284-285). This approach leads
to the same result we had obtained in the time dependent gauge. To see this,
consider a mode which is right moving in the p > 0 region (i.e. as p — oo). This
is given by D,«((1 — ¢)p). We look at its behavior in the far left region, i.e. as
p — —oo; we can express Dy«((1 —1)p) as a superposition of D,(—(1 4 ¢)p) and
D+ (—(1 —1)p) as follows (see, for instance, ref. [77], p. 1066)

Dy«(1=1d)p) = €™ Dy(—(1—1i)p)

V2r G +1)/2 _ ;
+ (r(—y*)) Dy(—(1+4)p). (1.143)
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Asymptotically, as p — oo (see, for e.g., ref. [77], pp. 1065-1066)

Do((l=i)p) — (VZp)" ™/ expi(p?/2)

= Bexpi(p®/2) (1.144)

while, as p — —o0

et H1)/2 L
Dpe((1=i)p) —> (ﬁr(_y*) )(ﬂm) eI exp—i(p/2)

+ (V21pl)" ™1 expi(p?/2)

= Alp]” exp—i(p*/2) + Clp|” expi(p®/2). (1.145)

In this expression the first term represents the incident wave and the second the
reflected wave (since the direction of propagation of the wave is that in which its
phase increases in the relevant limit). Let us now assume that a wave of amplitude
R is incident on the potential, T' of which is transmitted through the potential and
a wave of unit amplitude is scattered back. We can then identify the coefficients

R and T' by comparing equations (1.143), (1.144) and (1.145). We find that

R(k) = (g) _ ( 27}?:(:;”/4) . T(k) = (g) — exp—ir”, (1.146)
therefore
IRK)|> =1 +exp—(7)) IT(k)|* = exp—(7A) (1.147)
and
|R(K)]* — |T(k)|* = 1. (1.148)

It is this ‘tunneling probability’ |T'(k)[* = exp—<7r(m2 + ki)/qE) that is in-
terpreted in literature as rate at which particles are being produced by the back-

ground electric field. Also, this result exactly matches the quantity |[3(k)|2 we had
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obtained in the time dependent gauge. The tunneling interpretation thus rescues
us out of a gauge dependent result we would have obtained had we considered
only a nonzero Bogolubov coefficient 3 to imply particle production in both the

gauges A} and A}.

Thus, we find that, the phenomenon of particle production has to be de-
scribed by two different approaches, viz. Bogolubov transformations in time de-
pendent gauges and the tunneling interpretation in the case of time independent
ones, if we are to obtain gauge independent results. In such a situation, it is
desirable to look for a single approach that can lead us directly to results that are
gauge invariant. We shall find that the effective Lagrangian approach is able to
provide us with such a feature. In the following section, we introduce the effec-
tive Lagrangian approach for a simple toy model with two interacting degrees of
freedom and then go on to illustrate as to how this approach can help us obtain

gauge invariant results for the case of a constant electromagnetic background.

1.5 The effective Lagrangian approach

Consider a theory which describes the interaction of two mechanical systems hav-
ing the dynamical variables C' and ¢. (This discussion closely follows the discus-
sion in section 3 of ref. [38].) The quantum theory of the complete system can be

constructed from the exact path integral [81, 82]

K(Cy, q2,12]|C1, 1, t1) = /DC/D(] exptS(C,q), (1.149)

where

S[C,q] = /dt/;[c, q] (1.150)
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is the action describing the total system. The above path integral is often im-
possible to evaluate. It would therefore be useful to have some approximate ways
of studying the system. The effective Lagrangian method is a reliable approxi-
mation scheme that has been developed for handling (1.149). This method is of
value when one of the variables, say, C', behaves nearly classically while the other
variable is fully quantum mechanical. In such a case, the problem can be attacked

in the following manner.

Let us suppose that the path integral over the variable ¢ can be performed

exactly for an arbitrary C'(¢). That is, we can evaluate the quantity

Flgtalq, ti)owy = /Dq exp1S[C, 4]

= expiSes[C(1)], (1.151)

treating C'(¢) as an arbitrary function of time. If we can then perform the path
integral

K(Ca oy o] Cru i 1) = /DCexpiSeff[C] (1.152)

exactly, we would have completely solved the problem. Since this is not possible,
we can evaluate (1.152) by invoking the fact that C is almost classical. This
means that most of the contribution to (1.152) comes from nearly classical paths

satisfying the condition
0Sess[C]
—— =0. 1.153
50 (1.153)
It is easy to evaluate (1.152) in this approximation and thereby obtain an ap-
proximate solution to our problem. In fact, quite often, we will be content with
obtaining the solutions to (1.153), and will not bother to calculate (1.152). Equa-

tion (1.153) will contain some of the effects of the quantum fluctuations in ¢ on

(' and is often called the semiclassical equation. The quantity S.;; is called the
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effective action for the €' system. It will not always be possible to express the
functional S.¢[C(¢)] as an integral over time of a local density. Whenever it is

possible, we can define an effective Lagrangian through the following relation:

S = /dt,ceff. (1.154)

The way we have defined our expressions, the quantities K and S,y depend
on the boundary conditions (gz,t2, ¢1,1). It is preferable to have an effective ac-
tion which is completely independent of the ¢-degree of freedom. The most natural
way of achieving this is to integrate out the effect of ¢ for all times by considering
the limit of t3 — oo and ¢; — —oo in our definition of the effective action. We will
also assume, as is usual, that C'(¢) becomes a constant asymptotically. In such
a limit the kernel essentially represents the amplitude for the ¢ system to make
a transition from the ground state in the infinite past to the ground state in the

infinite future. Hence
F(qa,tg — oolqu, ty — —00)y = expiSepr[C(1)]
= N(az,q1) (Oout|0in)c(y,  (1.155)

where <Oout|0m>c(t) stands for the vacuum-to-vacuum transition amplitude for the
g-system in the presence of the external source C(t) and N(gz,¢1) is a normal-
ization factor independent of C'(t). Taking logarithms on both sides of the above

equation, we obtain
SerflC(1)) = =i 1n (|{00u 0} o) + constant. (1.156)

Since the constant term is independent of C' it will not contribute in (1.153).
Therefore, for the purpose of our calculation we may take the effective action to

be defined by the relation
SerflC(1)] = =i 1n ({00 ]020) ) (1.157)
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in which all references to the quantum mode ¢ have been eliminated. Notice that
the way we have defined F', the effective action S.ss contains the kinetic energy of
(' and any potential energy of €' which depends only on C'. That is, if the original

Lagrangian was of the form
L(C,q) = Lc(C) + Ly(q) + Linelq, ), (1.158)
then the effective Lagrangian will have the form
Leps(C) = Le(C) + Leorr (C); (1.159)

the first term Lo goes for a ride and second term L., 1s the result of integrating

out the degree of freedom g¢.

An external perturbation can cause transitions from the initial ground state
to an excited state. In other words the probability for the system to be in the
ground state in the infinite future (even though it started in the ground state in
the infinite past) could be less than unity. This implies that the effective action
Sess need not be real. The imaginary part of S.; contains information about the
rate of transitions induced in the g-system by the presence of C(t). Also, if we
use S.ss directly in (1.153) we have no assurance that the solution to C' will be

real.

Let us suppose that the action S[C, g is of the form

S[C, q]

SclCl+ Sylal + Sintle, 4]

= [ {,cc(c*) +Lo(q)+ Lont(C, q)}, (1.160)

where Lo and L, are the free parts of the Lagrangian corresponding to the €' and

the g degrees of freedom and L;,; represents the interaction between C' and ¢. Let
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us also assume that the variation of C(t) is adiabatic. In such a situation, it can

be shown that the vacuum-to-vacuum transition amplitude is the given by (see

either, ref. [73], p. 180 or, ref. [83], section 4.2)

t}gl[)lo tll_i}{loo Flg, ol t)ewy = expiSeps[C]
/Dq exp1S[C, 4]
= expiSc[C] x /Dq exp (Sq[q] + Sint|C, q])
— expi (SC[C] +5W[C])

= expi {/dt (/;C(C) +L‘cm(0))}
= expiSc[C]

X constant exp —i (/ dt EO(C)), (1.161)

where FEo(C) is the ground state energy of the ¢ system in the presence of C.
From the above equation it is easy to identify that the quantity L., is related to

the ground state energy of the ¢ mode as follows:
Leorr = —Fo(C). (1.162)

This result, which is valid when C(¢) varies adiabatically with time, provides a
means of computation of the effective Lagrangian if the C' dependence of the

ground state can be ascertained.

The transitions to higher states, indicated by the existence of an imaginary
part to S.,., can also be discussed in terms of the above relation. S, can become
complex only if Ey (and therefore L.,,.) turns out to be complex. The appearance
of an imaginary part to the ground state energy indicates an exponential decay
probability for this state which is precisely what we expect if transitions to higher

states are possible.
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Though, we have presented our discussion here assuming that ' and ¢ are
systems with a single of freedom, our discussion is applicable to field theoretic
situations as well. For instance, the C' could describe a set of variables like the
components of a vector field and ¢ those of a complex scalar field. In the context
of field theory, the vacuum-to-vacuum transition amplitude would correspond to
vacuum polarization and the transitions to excited states would correspond to
particle production. Notice that the effective Lagrangian approach is applicable
only when C' behaves almost classically (see our discussion following (1.152)).
Therefore, the effective Lagrangian approach can be used to study phenomena
such as production of particles corresponding to a quantum field by a classical

background.

1.5.1 Effective Lagrangian for a constant electromagnetic
background

We shall now apply the formalism we have developed above to the evaluate the

effective Lagrangian for a constant electromagnetic background.

The system we shall consider here consists of a complex scalar field ® inter-
acting with an electromagnetic field represented by the vector potential A* and
is described by the action (1.117). (Notice that the vector potential A* would
correspond to the degree of freedom C' and the complex scalar field to ¢ in our
discussion above.) The effective Lagrangian for the electromagnetic field can be
obtained by integrating the degrees of freedom corresponding to the quantum

field ®. It can be expressed as

Eeff — Eem + Ecorra (1163)
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where L., 1s the Lagrangian density for the free electromagnetic field, viz. the

third term under the integral in the action (1.117) and L., is implicitly given by

exp i/d4:1; Leorr (A")
= [Do [Dorexpi [t {(a@ FigA,®) (94D — igA“D)

—m2<1><1>*}. (1.164)

Thus, we need to evaluate the functional integral over ® for a given background

electromagnetic field.

As we have mentioned earlier, the evaluation of the above functional integral
is an impossible task if A*(z) is an arbitrary background field. Therefore, let us
assume that A,(x) varies slowly with the spacetime coordinates x# so that we can

write

A(x) ~ —%wa” +0((0F)e?), (1.165)

where F,,’s are treated as constants. This corresponds to assuming that the
classical background is a constant electromagnetic field F,,. We have seen ear-
lier that, in the adiabatic limit £.,.. is proportional to the ground state energy
of the system. The ground state energy Fo(F},) of the complex scalar field @
in a constant F,, will then determine the effective Lagrangian for the constant

electromagnetic background.

The task of evaluating the ground state energy is particularly easy if the
background field satisfies the conditions (E.B) = 0 and (B* — E?) > 0, where E
and B are the constant electric and magnetic fields respectively. (The following
derivation is adapted from ref. [84], section 129.) In such a case, the electromag-
netic background can be expressed as a purely magnetic field in some Lorentz

frame. Let B = By, where B is a constant and ¥y is the unit vector along the
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positive y-direction. We can choose the gauge A* = (0,0,0,—Bx) to describe
such a background. The Klein-Gordon equation (1.119) in such a gauge is then
given by

(07 — V2 = 2iqB0. + *B** + m?) &(t,x) = 0. (1.166)

Because the vector potential is independent of time ¢ and also the  and y coor-

dinates, the normal modes of the scalar field ® can be decomposed as follows:
Uy, O e WhekLxL g (7)), (1.167)

where, as usual, k; = (k,,k.), x1 = (y,z) and fox, (x) satisfies the differential

equation

dszkJ_
dz?

+ (w? = (qBr — k.)?) fux, = (m® + ) fux,. (1.168)

This differential equation can be rewritten as

dszkJ_ 222 _
- d§2 —I_q 5 fWkJ_ — €fwa_7 (1169)
where
k- 2 2 2
fzx—qB and e =w’—m’ — k.. (1.170)

Equation (1.169) resembles the Schrodinger equation for a harmonic oscillator
with mass (1/2) and frequency 2¢B. So, if f,x, has to be bounded for large «,

the energy e of the oscillator must be quantized, i.e.

_ IN 7 2 12
e, =2qB (n + 5) = (w —m” — ky) : (1.171)

Therefore, the allowed set of frequencies for the normal modes are

wn = (m*+ 12+ qBEn+ 1), (1.172)

The ground state energy per mode is 2(w,/2) = w, because the complex scalar

field has twice as many degrees of freedom as a real scalar field. The total ground
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state energy is given by the sum over all modes k, and n. The weightage factor

for the discrete sum over n, in a magnetic field is obtained by the correspondence

dk, dk, gB\ dk,
27T§—>Zn:<2ﬂ') o

Hence the ground state energy is

(1.173)

Fo= Lo = ( )Z/ (2 +m?+qBn+1)"" ()

Now, consider the quantity

o 2 82E0 B 2 82/3007,,,
=~ (35) st = (55) oo e

which can be evaluated in the following manner:

I = Z/ k2—|—m —|—qB(2n—|—1)) 0

_ 2 -1

- 4#7;)(7” —|—qB(2n—|—1))

= L) dse exp —qB(2n s

_ 1 /OO s o= exp —(¢Bs)
4m Jo 1 —exp—(2¢Bs)
1 g e~ms

= — ds | —— . 1.1
87T/0 ° (sinh(qu)) (1.176)

Then, L., can be obtained by integrating the above expression twice with respect

to m2. We obtain that

1 % ds 2 qBs
corr — —e "’ N — |- 1.1
£ 1672 /o 3 (smh(qu)) (1.177)

This expression has a divergence in the lower limit of the integration. This di-
vergence can be regularized by subtracting the contribution due to L., with the
constant B set to zero. Also, the integration with respect to m? produces a term

like (¢;m? + ¢2) with two (divergent) integration constants ¢; and cy. These two
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divergences can be handled by redefining the field strengths (renormalization) and

hence we shall ignore these divergences and carry on with our discussion here.

The quantity L., 1s the quantum correction to the Lagrangian density
describing the classical electromagnetic background. Being a Lagrangian density,
we would expect L., to be a Lorentz as well as a gauge invariant quantity. In fact,
Schwinger, using his proper time formalism (we will discuss this formalism later in
section 3.1), has been able to explicitly show that this is indeed true, at least for
the case of a constant electromagnetic background [33]. The only nonzero gauge
invariant quantities that can be constructed out of a constant electromagnetic
field are (E* — B?) and (E.B). Hence, the effective Lagrangian for a constant
electromagnetic background can depened only on these two quantities. Let us

now define two constants a and b by the relations
E*-B*=¢a*-V? and E.B = ab. (1.178)

Then, for a constant electromagnetic background L., = Leorr(a,b). For the case
of the constant magnetic field we are considering here ¢ = 0 and b = B. Therefore,

Lcorr can be written in a manifestly invariant way as follows:

1 %0 ds 2 qbs
corr — —e "’ . . 1.1
£ 1672 /o 3 (smh(qbs)) (1.179)

Since L., has to be Lorentz invariant, it must be valid in any frame in which

(B*— E?) > 0 and (E.B) = 0. In all such cases,

1 /OO ds _ o, gsvB? — E?
1672 Jo  s? sinh(¢svB2 —E?) )

Notice that this expression for L., is invariant under the following transforma-

Lo = (1.180)

S

tion: |E| — 7|B|, |B| — —¢|E|. We shall make use of this property later in our

calculation.
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We shall now consider the case with arbitrary E and B for which ¢ and b
are not simaltaneously zero. It is well-known that by choosing our Lorentz frame
suitably, we can make E and B parallel, say along the y-axis. We will describe
this field (E = Fy; B = By) by the vector potential A* = (—FEy,0,0, Bx).
(y is the unit vector along the direction of positive y-axis.) The Klein-Gordon

equation (1.119) corresponding to this vector potential is given by
(8,52 — V? = 2iqEy0; + 2iqBx0, — ¢*F*y* + ¢*B*z* + m2) d(t,x)=0. (1.181)

Since the vector potential is independent of ¢ and z, the normal modes for the

scalar field ® can now be decomposed as follows:
Uk, (1, %) o< exp —i(wt — k.2) for (x,y), (1.182)
where f, . (z,y) satisfies the differential equation
(02 + 02+ (w + qBy)* — (k. — ¢B2)?) fur. = m*fun. (1.183)
which clearly separates into = and y modes. Writing

Jor(@,y) = gr.(x) Quly) (1.184)

we find that g, (x) satisfies the Schrodinger equation for a harmonic oscillator

— + (k, — qBx) gr, = 2¢B (n + 5) Jk. (1.185)

and @, (y) satisfies the following differential equation:

s vamra = (oo 0

Changing to the dimensionless variable

w

NI (1.187)

n=y\/qk +
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we obtain
d*Q.,
dn?

1
+0*Qu = 7 (m* + ¢B(2n + 1)) Qu. (1.188)

This expression shows that the only dimensionless combination which appears in

the presence of an electric field is

T = qLE (m2 + ¢B(2n + 1)) : (1.189)

Thus, purely from dimensional considerations, we expect the ground state energy

to have the form

FEy = i 2qB G(1), (1.190)

n=0

where (i(7) is a function to be determined. Introducing the Laplace transform F
of GG, by the relation
G(r) = /Oo dk F(k) e, (1.191)
0

we can write
Lor =24BY /Oo dk F(k) exp—{(m® + qB(2n+ D)k/qE}.  (1.192)
n=0 0

Summing the geometric series and redefining the variable k = ¢F's, we obtain that

e = o) [[on wak (2

= (¢B) (qE)/Ooodse‘m2“’ (%). (1.193)

We can now determine the form of F' by using the fact that £.,., must be invariant

under the following transformation: |E| — ¢ |B|, |B| — —i |E|; a property of L.,

we had pointed out earlier. Under such a transfomation, we find

Lo = —(qB) (¢F) /0 T ds e (%) . (1.194)
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Comparing the two expressions (1.193) and (1.194) and using the uniqueness of

Laplace transforms with respect to m?, we obtain that

Flaps) | __ (Pl
(M) B (sinh(ins)) ’ (1.195)
or equivalently
F(qFEs) sin(qFs) = F(igBs) sin(igBs). (1.196)

Since each side depends only on either F or B alone, each side must be independent

of £ and B. Therefore,
F(qFEs) sin(qEs) = F(igBs) sin(igBs) = A(s) (1.197)

with the result

Leorr = (¢B) (¢F) /OOO ds e (sin(qu?(s?ih(qu)) : (1.198)

In the limit of £ — 0 this L., then reduces to

Loor = (¢B) /OOO % s (%) . (1.199)

Comparing this expression with equation (1.177) we obtain that

A(s):( ! ) (1.200)

1672s
Thus, we arrive at the final answer for L., for a constant electromagnetic back-

ground

1 ©ds _ s qls qBs
corr — = e . . . 1.201
£ 16#2/0 3 (SIH(C]ES)) (smh(qu)) (1.201)

In the situation we are considering here E and B are parallel making (E* — B?) =
(a*—b*) and E.B = ab. Therefore, the results above can be written in a manifestly

invariant form as

1 ©ds _ qas qbs
corr — = e . " . 1.202
£ 16#2/0 3 (sm(qas)) (smh(qbs)) (1.202)
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This result is now valid for any (E* — B?) and (E.B).

The effective Lagrangian for a constant electric field background (the con-
figuration we had considered in the last section) can be obtained by setting b = 0

in the above expression for L.,... Setting b = 0, we obtain that

1 % ds 2 qas
Ecorr = / 5 s N . 1203
1672 Jo s © (sm(qas)) ( )

The sine function in this integral has poles along the path of integration at s =
(nm/qa) where n = 1,2,.... This integral can be evaluated by going around each
one of these poles on small semicircles in the upper half of the complex s plane.
(This choice of the upper half plane is suggested by the general principle in field
theory that m? should be treated as the limit of (m?* — i¢), where € — 0%. In the
above integral for L., this is equivalent to treating (ga) as the limit of (ga +i¢).)
The residues of all these poles contribute to the imaginary part of L., with the

result that

Im Ecorr =

W5 (SH) twmmtiary, 20

n=1
where we have set « = E. The n-th term in this expression then corresponds to
the probability of n-pairs of particles being produced (per unit volume per unit
time) by the background electric field. Note that the above expression for L .,
is non-analytic in ¢; a perturbative series expansion even to all orders in ¢ would

not have produced this result.

In the last section, when we had carried out a normal mode analysis of
the quantum scalar field in the time dependent gauge A}, we had obtained the
number of particles produced in a single mode to be |3(k)|? (where |3(k)|? is given

by equation (1.134)). The relative probability for pair creation in a single mode
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is then given by

o= () () o

where A is given by equation (1.125). Therefore, the probability that no pair

creation occurs in a single mode is then given by

P(k) = (1 = R(k)) = ( ! (M)). (1.206)

14 exp—

The vacuum persistence probability will then be given by

(0]} = T P00 21}( 1—<M>)

14 exp

= exp—{z 1n(1+exp—(7r)\))}
K
_ / 4
= exp—2 | d*zImL.,,, (1.207)

where in the last equality we have introduced the imaginary part of the effective

Lagrangian in the standard manner. This allows us to identify

2/d4:1; ImL., = Z In (14 exp—(7A))
k

x|

k,n

(~1)

n

) exp —(nmA). (1.208)

Changing the summation to an integration by the rule

o dk dk,
Z_”// 27r/_ 2—7:/ 2 27r / dk/ 2mkydky,  (1.209)

where, again, we have used the notation k; = |k|. We can now rewrite the n-th

term in the above summation as

(( Hl)(w)l ko [ mdlht) exp— {mk Ffat}
() ) o 4

)] e
(

w

(27)
q

E)*V T) ( 1)2”+1) eXp—(mez/qE)' (1.210)

(2m)3 n

~~
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In arriving at the last expression, we have interpreted a dp(0) as giving the rate
per unit volume per unit time of physical process; since k, and (¢Et) have the
same dimensions we had performed the integral over k, as an integral over (¢Et)

for an interval T'. We thus obtain the final result

ImZL.,, = (gb)* f: ((_l)nH) exp —(nmm?/qE) (1.211)

1673 “— n?

which exactly matches the result (1.204) we had obtained by evaluating the effec-

tive Lagrangian from the ground state energy of the quantum field.

On the other hand, if we set @ = 0 (this condition corresponds to the case

of a pure magnetic field) in the expression (1.202), we obtain that

1 % ds 2 qbs
corr — —e "’ . ~ ). 1.212
£ 1672 /o 3 (smh(qbs)) ( )

(Note that with b = B, this expression is the same as equation (1.177).) This
integral has no poles along the path of integration and hence does not have an
imaginary part to it, which implies that a constant magnetic field does not produce
particles. From these results, we can clearly conclude that a constant electromag-
netic background can produce particles if and only if (a* — b*) > 0, which is the

same as the gauge invariant condition (E? — B?) > 0.

1.6 Backreaction on the classical background

Until now, we have been studying the evolution of a quantum field in a given
electromagnetic or gravitational background completely neglecting the backreac-
tion of the quantum field on the classical background. If a particular background

is capable of producing particles then the particles that have been produced will
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certainly react back on the classical background. For instance, consider the elec-
tric field between a pair of capacitor plates. We would expect such a background
to produce particles. The particles that have been produced will be attracted
towards the capacitor plates thereby reducing the strength of the electric field

between the plates.

Even in the absence of particle production, the polarization of the vacuum
will effect the classical background non-trivially. For e.g., it is the vacuum po-
larization that leads to a nonzero attraction between Casimir plates (the Casimir
force). This attraction will reduce the distance between the Casimir plates unless
they are are held behind by an external agency. Such effects have to be accounted
for if we are to study the evolution of the quantum fields in classical backgrounds
more completely. In this section, we shall discuss a particular proposal that at-
tempts to take into account the backreaction effects due to vacuum polarization

as well as particle production.

Let us now consider a system which consists of a massless, real scalar field
¢ coupled minimally to gravity. Such a system is described by the action (see, for

instance, ref. [1], p. 43)

Slgun®) = [ d'a V=g L(g.u.®)

R

_ /d4:1;\/—g {167 +3 gwaﬂcba”q)}, (1.213)

where ¢,, is the metric tensor describing the gravitational background and we
have set G = 1 for convenience. Just as we had defined an effective Lagrangian
for the electromagnetic background in the last section, we can define an effective
Lagrangian for the gravitational background by integrating the degrees of free-

dom corresponding to the quantum scalar field as follows (see, for e.g., ref. [4],
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section 6.11):

exp @ Seplgm] = exp i/d4$ V=9 Less(guv)

/DCI) exp 1 S[P, g ). (1.214)

The variation of the effective action S5y with respect to the metric tensor then

leads to the following equation (see, for e.g., ref. [1], section 6.1):
1 .
G = R — §ng = 87 (Oput| Ty |0in), (1.215)

where |0;,) and |0,,:) are the in and the out-vacuum states respectively and Tw

is the energy-momentum operator corresponding to the quantum scalar field.

As we have mentioned in our discussion in the last section, the effective
action is, in general, a complex quantity. Hence, the solutions to the semiclassical
equation for the classical background (that is obtained by varying the effective
action) will not always be real. For the gravitational case we are considering here,
the metric g, induced by the transition element <Oout|Tw|0m> in the semiclassical
equation (1.215), will, in general, be a complex quantity. This is an undesirable
feature. A simple prescription to avoid such a feature would be to throw away
imaginary part of the effective action, thereby clearly ensuring that the solutions
to the semiclassical equation are always real. But such a prescription would be
completely ad hoc. Also, since it is the imaginary part of the effective action that
reflects particle production, by throwing away the imaginary part we would in
effect neglect the backreaction of the particles that have been produced on the
classical background [32]. For these reasons, it is generally assumed that the back-
reaction of a quantum field on the classical metric is given by the expectation value
of the energy-momentum tensor of the quantum field [27, 28, 29, 30, 31]. Since

an expectation value is a real quantity, such a proposal ensures that the metric
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induced by the quantum field is always real. Also, the expectation value of the
energy-momentum tensor of the quantum field reflects both vacuum polarization
as well as particle production. Thus, this proposal takes both these effects into

account in the backreaction.

But, the semiclassical theory we are considering here is incapable of spec-
ifying a particular state for the quantum field. Hence, the expectation value of
the energy-momentum tensor of the quantum field has to be evaluated in a state
that is specified by hand. So, the complete analysis of the backreaction problem

amounts to solving the semiclassical Einstein’s equations

Gy =87 (1), (1.216)

A

where (1),,) is the expectation value (evaluated in a specified state) of the energy-
momentum operator corresponding to the quantum field ® and the following

Klein-Gordon equation satisfied by ®:

L_gaM (vV=99"0,) ® =0, (1.217)

ﬁ

self-consistently.
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Chapter 2

Finite time detectors

The original motivation behind the idea of detectors was to provide an operational
definition for the concept of a particle in a general curved spacetime (see our
discussion at the beginning of section 1.3). With this motivation in mind, the
response of different types of detectors (the Unruh-DeWitt detector, derivative
coupled detectors, a detector that is coupled to the energy-momentum tensor of
the quantum field ete.) have been studied in literature [11, 12, 70, 71, 72]. In
subsections 1.3.2 and 1.3.3, we had reviewed the analysis of the response of inertial
and uniformly accelerated Unruh-DeWitt detectors in flat spacetime as well as
the response of these detectors when they are stationed at a constant radius in
Schwarzschild and de-Sitter spacetimes. The response of detectors have always
been evaluated for their entire history, viz. from the infinite past to the infinite
future in the detector’s proper time. But, in any realistic situation, detectors can
be kept switched on only for a finite period of time. Due to this reason the study

of the response of a detector for a finite proper time interval becomes important.

There also exist other motivations to study the response of finite time detec-

tors. Consider a detector that is coupled to the field in such a way that it responds
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to the energy-momentum content of the quantum field. We can possibly utilize
this detector to analyze the backreaction of the quantum field on the gravitational
background as follows. This detector can be set in motion on a certain trajectory,
in the spacetime of our interest and switched on for a finite proper time interval
during its motion. Since we have always assumed a detector to be a point like
object which can be described by a single classical worldline (see our discussion
at the beginning of section 1.3), the response of this finite time detector will then
reflect the particle content of the quantum field in that localized region of space-
time. We can then attempt to relate the response of this detector to the term
that is responsible for the backreaction of the quantum field on the background

metric in that localized region of spacetime.

Another motivation to study the finite time response of detectors is as
follows. In a time dependent background without any asymptotically flat regions,
like for instance, a matter dominated Friedmann universe, a timelike Killing vector
will not be available at all. In the absence of a timelike Killing vector field, positive
frequency modes and hence particles can not be defined unambiguously. In such
a situation, a finite time detector can be used to provide an operational definition
of the particle concept. Consider a comoving particle detector in the Friedmann
universe that is switched on for a finite proper time interval. The response of such
a detector will then reflect the particle content of the quantum field during the

period when the detector was kept switched on.

The original idea of a finite time detector is due to Grove [85]. There
has been a few attempts in literature in the recent past, when the response of a
detector has been actually evaluated for a finite proper time interval [86, 87, 88].

The authors in ref. [86] study the response of a Unruh-Dewitt detector that is
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turned on and off abruptly with the aid of a rectangular window function. They
encounter an ultraviolet divergence and resort to a regularization procedure to
remove this divergence. But, no realistic detector can be switched on and off
abruptly. With this motivation, the authors in ref. [87] analyze the response
of a Unruh-DeWitt detector that is switched on and off with a smooth window
function. They point out that no divergences arise in the response function of
the detector when it is switched on and off smoothly. They also show that in
the limit when their window function matches a rectangular window function the
ultraviolet divergence reported in ref. [86] does appear in the detector response

function.

We reanalyze this problem in this chapter [89]. We begin by noting that
a detector which is kept on only for a finite time interval T will be affected by
the transients related to the process of switching. This has the consequence that,
even an inertial detector in flat spacetime will respond in the Minkowski vacuum
if it is switched on for a finite T'. This effect, as we shall see, needs to be clearly
identified before one studies the response of a detector on an arbitrary trajectory
for a finite T'. Further, we expect the response to vanish in the limit of 7" — 0
for any realistic detector on any trajectory. This is simply a physical requirement
arising from the demand that ‘a detector which was never switched on should
not detect anything’. While this demand sounds reasonable, its mathematical
implementation turns out to be fairly subtle. We will see that spurious results

can arise if one does not implement the limiting procedure with care.

The response of a detector, as we had mentioned in section 1.3, depends on
the following three elements: (i) the state of the quantum field, (ii) the trajectory

of the detector and (iii) the nature of coupling that exists between the field and
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the detector. Here, we shall assume the coupling between the detector and the
field to be of the linear monopole type, i.e. the detector is the Unruh-DeWitt one.
We consider inertial and uniformly accelerated detectors in flat spacetime. The
quantum field we consider here is a massless scalar field and we shall assume that
the quantum field is in the Minkowski vacuum state. We shall study the response
of these detectors when they are switched on for a finite time interval smoothly
as well as abruptly. Studying the response of detectors for these different window
functions can help us identify the origin of the divergences that may arise in the

detector response functions.

This chapter is organized as follows. In section 2.1, we comment on certain
limiting procedures in the response function of the Unruh-DeWitt detector. In
section 2.2, we study the response of the detector which it is operational only for
a finite interval of time; the cases of smooth window functions as well as that
of abrupt switching are considered. In section 2.3, we discuss the conclusions
that can be drawn from the analysis we have carried out in subsections 2.2.1,
2.2.2 and 2.2.3. In the same section, we also discuss the wider implications of
our analysis. Finally, in section 2.4, we present the limitations of the detector

concept.

2.1 Aspects of finite time detection

In this section, we point out certain aspects of finite time detection. We also
illustrate here how spurious results can arise if the limiting procedures are not

implemented with care.

We had seen earlier, in subsection 1.3.1, that up to the first order in per-
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turbation theory, the amplitude for transition of a Unruh-DeWitt detector from

its ground state with energy Fy to an excited state with energy F, is given by
AQ) =M [ dr e lola(r)]| W), (2.1)

where Q = (£ — Fy) and
M =ic(E|m(0)|FEy), (2.2)

m being the detector’s monopole operator. (We will hereafter drop the term M
in the transition amplitude for the same reasons we had given in subsection 1.3.1.)
In the expression for the transition amplitude above, |U;) is the initial state of the
quantum field, |¥;) is the state of the quantum field after its interaction with the
detector and x#(7) is the spacetime trajectory of the detector at proper time 7.
We will hereafter assume that the initial state of quantum field is the Minkowski

vacuum state, i.e. |W;) = |0p).

If we now expand the scalar field ® in terms of the standard Minkowski
plane wave modes, it is clear from equation (2.1) that the nonzero contribution to
the transition amplitude arises only from the state |W;) = |1k) (since |U;) = |0ar)).

For the case of an inertial trajectory in (1+1) dimensions, i.e.
(1) = 29+ vt(7T) = 19 + VYT, (2.3)

where x¢ and v are constants, ¥ = (1 — v?)™"/2 and |v| < 1, the transition ampli-

tude (2.1) turns out to be
e—ikl’o

\aTw

where w = |k|. The result of this integral is a Dirac delta function, i.e. we obtain

Aine,w(Q) = /Oo dr eiQT eiﬁT(W—kv)7 (24)

that
Ainees(Q) = [ = e 5p(a) = 0, (2.5)
w
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where a = (2 + v(w — kv)). The last equality in the above equation follows from
noting that since, kv < |k||v] < w and © > 0, the argument of the delta function
is always greater than zero. As we had noted in the last chapter, the transition

in the detector is essentially forbidden on the grounds of energy conservation.

The following points should be stressed regarding the above—apparently
simple—calculation: The amplitude is being calculated for the system to make a
transition from the state |Ey) in the infinite past, to the state |E) in the infinite
future. To do so we need to know the trajectory x#(7) for all 7, i.e. for —oco < 7 <
0o. No realistic detector can be kept switched on forever. Suppose the inertial
detector was kept switched on only during the time interval —T < 7 < T'; then
the amplitude will be nonzero:

Aine,W(Q, T) = f/m /_T dr GZQT eZ’VT(w—ku)

_ % (2 Sir;(“T)). (2.6)

And, the probability for transition for a fixed w will be

Pinew( Q,T) = [Ainen(Q, 1)
_ L(M) (2.7)

W a

which is finite for all finite 7. For small T', P;,., o< T? and hence vanishes as

T — 0; for large T', we use the relations

pim (SO = { (g S (2021
= lim {&;(a)sm(aT)}

T—o0 Ta

_  Jim {z5p(a)} , (2.8)

T—o0
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i.e.

Jim {W} - é(SD(a). (2.9)

T—o0

Clearly, the rate of transitions Rinew(2,T) = (Pinew(Q,T)/T) has the following
behavior: Ripe, o T for small T and R ox dp(a) for large T'. Hence Ripnew

vanishes in both the limits.

The above analysis should teach us the following lessons. Firstly, even
an inertial detector will respond if it is switched on and off. This is merely a
manifestation of the energy-time uncertainty principle; a detection process lasting
for a time 27" can not measure energy differences with an accuracy greater than
(1/2T). So for (a2T) < 1, the rate Rine,, will be significantly nonzero. Secondly,
the rate R;,e ., i1s a more reliable quantity to compute than P;,. ,, especially if one
is considering the T" — oo limit. In particular, P;,. ., is infinite if we take T' — oo
limit naively in (2.7). Thirdly, if we want to study the response of accelerated
detectors which are switched on only for a finite time, we must subtract out the
result which is already present in the inertial case. This subtraction is mandatory
since we want the response of the detector to reflect the effects that are uniquely
due to its acceleration. Finally, the limits also need to be handled with care to

obtain sensible results. We shall say more about the limiting procedures later on.

For the case of a uniformly accelerated trajectory in (1 + 1) dimensions, the

transformations from the Minkowski to the accelerated frame are
x = & cosh(gr) and t =& sinh(g7), (2.10)

where 7 is the proper time of an observer with a proper acceleration £~! (cf. sub-
section 1.3.2). In what follows we shall set ¢ = g~* without any loss of generality.

The transition amplitude for a detector on such an accelerated trajectory turns
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out to be

1
\aTw

For a wave traveling to the right, i.e. when & = w, the above integral can be

Ao () = /OO dr e exp ig™? (wsinh g7 — k cosh g7) . (2.11)

expressed in a closed form and the result is

Ao Q) = g (g™ (i) exp — (702 4), (2.12)

4w

where I'(z) is the gamma function [77]. This is clearly nonzero. The probability

for transition Py, for a particular w will then be given by

Pacc,w(ﬂ) = |Aa007W(Q)|2

-2 2

_ g N -1 —mfg!
= r ( 1Qq ) e~
1 1
= 2.13
2wy (Q (279~ — 1)) (2.13)

which is a thermal spectrum in 2 with a temperature T' = (g/27). We had encoun-
tered this thermal spectrum earlier, in subsection 1.3.2 when we had evaluated

the transition probability rate of a uniformly accelerated Unruh-DeWitt detector.

The finite proper time integral for the transition amplitude of the acceler-

ated detector, obtained after substituting for « and ¢ from (2.10) in (2.1) is given

by
1
Avee (T = J(Q,T), 2.14
LT = T 2.14)
where
T .
J(Q,T) = / dr eV exp — (iwg_le_gT) (2.15)
-T

and we have assumed that k = w, i.e. the Minkowski normal mode is traveling to

the right. This integral for J(Q,T) can be rewritten as

1 _—g7

o0 . T . . e : o
J(,T) :/ dr 7 gmiwaT e —/ dr 7 gmiwaT e —/ dr ¥ g7 e
—oo —co T
(2.16)
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After some simple algebraic manipulations, we obtain that
JQT) = g7 (g™ e {F(—iﬂg‘l)

fwg™ls™! o 100 o
—/ dre ™ 7~ -1 —/ dr e 774 1_1}, (2.17)
) :

twg—ls
where s = e/7. Consider now the limit 7' — 0, i.e. when the detector is not
switched on at all. In this limit, s — 1 and two integrals in the above expression

add up to be the gamma function thereby reducing J(2,7T) to be zero. In the

other limit, ¢.e. when T' — 00, s — oo and 57! — 0, so that

JQ) = JOT — o)

= g7 (w7 T(—i0g™") exp —(x0/29) (2.18)

and (|J(Q)|2/47rw) yields the thermal spectrum we had obtained earlier in (2.13).

Thus we obtain reasonable results for both the limits 7" — 0 as well as T — oo.

There is another feature that needs emphasis as regards both (2.13) and
(2.7). These are probabilities for transition to fized final states |1) characterized
by a given momentum k. Normally one would like to integrate over all £ so as to
find the net probability for the detector to have made a transition from |Fy) to

| ). This will lead to an integral

Lie = /OOO %w (Sin ((gﬁz;ﬁ)) (2.19)

in the case of (2.7) and to an integral

% d
Lm:/ K (2.20)
0

w
in the case of (2.13). Both these integrals are formally divergent. However, con-

sider the limit

Jm () = [ e (7 )
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- —/ —5DQ—|—w) (2.21)

If Q@ > 0, w > 0 the integrand identically vanishes and we may take this integral
to be zero, thereby recovering the earlier result. (Also see ref. [87] for a similar
discussion.) This result shows that (1;,./T) is formally divergent for all finite T
but can be interpreted to be zero as T' — oo! Such a contradiction arises because of
an illegitimate interchange of limits. We will elaborate on the limiting procedures

later on.

The integral (2.19) is divergent in both the lower and the upper limits
of w. The divergence for small w (infra-red divergence) is a feature of massless
scalar fields in (1 4+ 1) dimensions. For the (3 4+ 1) dimensional case, we will
find, later in this chapter, that no infra-red divergences arise and only logarithmic
divergences for large w (ultra-violet divergences) are encountered. These ultra-
violet divergences are the divergences that have been reported earlier in refs. [86]
and [87]. We shall see later that the divergences in (2.19) for a finite 7' can be

attributed to the abrupt switching of the detector.

We shall gather here some of the results from subsection 1.3.1, we will need
for our further discussion. The probability of transition of the Unruh-DeWitt
detector is determined by the detector response function F(£2) which is described

by the following integral (cf. equation (1.85)):

/Oo dr/ dr' =) G [o(r), (7). (2.22)

Since we have assumed the initial state of the quantum field to be the Minkowski

vacuum state, the Wightman function is defined as

Gt [z(7), 2(7)] = (0pr|®(2)D(2")|0nr). (2.23)
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For inertial and uniformly accelerated trajectories in flat spacetime, the Wightman
function corresponding to the Minkowski vacuum state is invariant under time
translations in the reference frame of the detector. For such trajectories, the
transition probability rate of the Unruh-DeWitt detector is given by the integral

(cf. equation (1.88))

R(Q) = /_ O:O dAT e=1957 G+ (A7), (2.24)

The Wightman function for a massless scalar field corresponding to the
Minkowski vacuum state in (3 + 1) dimensions is given by equation (1.89). The
trajectories of inertial and accelerated uniformly accelerated detectors are given

by equations (1.82) and (1.92) respectively. The Wightman function (1.89) then

reduces to
—1
G (A7) = 2.25
ine( A7) A2 (AT — 1€)? (2.25)
for the case of the inertial trajectory and
I & . 12
Glo(AT) = T2 < (A7 —ic+ 2ming™") (2.26)

for the case of the accelerated trajectory (cf. equations (1.90) and (1.97)). Note
that the Wightman function (2.26) corresponds to that of a uniformly accelerated

detector with a proper acceleration g.

To understand some of the subtlities mentioned earlier regarding the limit-

ing procedures, we shall now present the following discussion.

Consider a Unruh-DeWitt detector which is moving on a trajectory a*(r)
and is switched on during the interval 7 = —T to 7 = T'. The response of such a

detector is governed by the integral
T T , )
F(Q,T) = / dr / dr' e7 =) GH(r, ). (2.27)
-T -T

73



We shall further assume that the trajectory of the detector is along the integral
curve of a timelike Killing vector field so that G*(7,7') = G* (7 — 7'). It is clear
from the above equation that F — 0 as T — 0 irrespective of any other details.

Also, we should recover the standard results when 7" — oco.

We shall now rewrite the integral (2.27) in different variables and then take

the limits T" — 0 and T" — oo. Changing the variables to
v=(r-7) and y=(r+7), (2.28)

we obtain that

/ dT/ dr' e =) G (r — 1) = / /2T |$ e G (), (2.29)

2T +|z|

where the factor (1/2) is the Jacobian of the transformation from the (r,7’) co-
ordinates to the (x,y) coordinates. After integrating with respect to y, we find

that
2T

F(Q,T) = dr 7 GF(z) (21 — |z)). (2.30)

2T

Let us now consider the limits T" — oo and T' — 0 of this integral. When

T — oo, we get

FQ) = FO.T — o)

T—o0

= lim {(ZT) G () — dx e ¥ GF (x) |:1;|} ) (2.31)

2T

where CN?"'(Q) is the Fourier transform of G (z). Clearly,

R(Q) = lim {f(Q’T)}

T—o0 27T

T—o0

~ Jim {GJ’(Q)—% [ deemiee G+(:1;)|:1;|}
= GH(), (2.32)
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provided the second integral is well defined. This expression is finite and represents
a constant rate of transition; we have thus recovered the standard result in the

T — oo limit.

Let us next consider the T' — 0 limit which is rather tricky. We need to

evaluate

F(Q,T—0)=lim { N dr 7 G () (2T — |:1:|)} . (2.33)

T—0 2T
The integral over x is confined to a small range (=27, 2T") around the origin. This
implies that we can expand the integrand in a Taylor series around the origin to

obtain the required limit. We write

' 022
e—zQx G+(x) ~ (1 —iQx — Qx + - )
2
o R PR C UEE RN WEEY
Substituting this expression into (2.33) and performing the integration we obtain

that

FQT) ~ AT°GH(0)+ 43i4 (G*"(0) — Q2GH(0) — 2i0G7(0)) + O(Q*'T*)

~ 4TGH(0), (2.35)

to the lowest order. All derivatives of G (z) in (34 1) dimensions behave as ¢

at origin and in particular, Gt(0) = (1/47%€*) giving

FQ,T) ~ ( r ) . (2.36)

m2e2

The above expression shows that care should be exercised when the limits
T — 0 and € — 0 are taken. It is clear from the fundamental definition of the
integral in (2.27) that we must have F(Q,T = 0) = 0 for all regular integrands.

If the integrand has a pole in the real axis (requiring an ie prescription to give
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meaning to the integral) then we should arrange the limiting procedure in such
a way that F(Q,7 = 0) = 0. This can be achieved by using the rule that ¢ — 0

limit should be taken right at the end, after the limit 7" — 0 has been taken. Since

T2
lim ¢ lim — ¢ =0, (2.37)
e—0 T—0 62
while
2
lim < lim T— =00 (2.38)
T—0 | e—0 ¢2 ’

only the former ordering will provide physically reasonable results. This prescrip-
tion is also necessary to ensure that G+(0),G1(0),... ete. exist in the Taylor

expansion for G*(z). For ¢ = 0, this expansion ceases to exist.

In (1 + 1) dimensions G*(z) has a logarithmic dependence in z; hence in

the limit of small T" the detector response function will be modified to the form
F(Q,T) < T? In(e?). (2.39)

Taking T — 0 limit first will give the sensible result F(Q,T = 0) = 0 while
if € — 0 limit is taken first we will obtain a logarithmic divergence. We had
mentioned this logarithmic divergence earlier in the discussion following equa-
tions (2.19) and (2.20). We shall see explicit examples of such ambiguities (and

their resolution) in the following section.

Having thus pointed out some generic features of finite time detection, we
shall now analyze the response of detectors that are switched on for a finite proper

time interval with different window functions.
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2.2 Detector response with window functions

We shall now calculate the response of inertial and uniformly accelerated Unruh-
DeWitt detectors that are switched on and off with the aid of three different
window functions. Hence, instead of working with (2.27), we will consider the

integral of the form
FOT) = / T / T O W TYW (, T) G a(r), ()], (2.40)

where W(r,T) is a window function with the following properties:

1 for |7|< T
WinT)~ { 0 for |r|>T. (2.41)
The abrupt switching corresponds to
Wi(r,T)=0(T —7)4+ (T + 7). (2.42)

More gradual switching on and off can be achieved with the window functions like

Wi(r, T) = exp — (%) (2.43)
Or = () o

The motivation to study the detector response with smooth window functions W;
and Wy are twofold. One is to carefully identify any divergence that may arise
when a finite time detection is performed. And, the other is to check whether
a certain lack of the smoothness in the window function is responsible for the

appearance of divergences in the detector response, as it has been reported in

refs. [86] and [87].
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In the following three subsections we shall evaluate the response of inertial
and uniformly accelerated finite time detectors that are switched on and off with

the window functions Wy, W5 and W3, in that order.

2.2.1 Gaussian window function

The detector response integral with the window function W is given by the inte-

gral

FOT) = [ dr [ a7 TG fa(r).a ()

x exp—(1/T) exp—(7//T)*  (2.45)
which can be rewritten as

FOT) = [ dr [ e 0 G o). o)

X exp — {21? {(T +7)? + (17— T’)Q}} . (2.46)

Let us first consider the response of a detector on an inertial trajectory. Substitut-
ing the Wightman function (2.25) for the inertial trajectory in the above integral
and performing the transformations (2.28) the integral for the detector response

function simplifies to

Fine(Q,T) = —(81?) _O:ody exp— (y*/217?)
< [ daems (exp(;%;T?))

_ _(\/?)TQ?) [(Q,7), (2.47)

where




Writing the gaussian function in the above integral as a Fourier transform

exp — (:1;2/2T2) = (%) /:: dk e exp — (k2T2/2) (2.49)

and interchanging the order of integration, we obtain

(0,7 = (\/%) /_0; dk exp — (K*T7/2) /_O:o dz (%) L (2.50)

When £ > ), the integral over x can be performed as a contour integral by closing
the contour in the upper half of the complex z-plane and the second order pole at
x = 1€ gives a non-trivial contribution to the integral. When k& < € the contour
has to be closed in the lower-half of the complex z-plane and since the integrand is
analytic in this half the integral vanishes. Hence the lower limit of the k-integral

is Q. After some manipulations and substituting this result in (2.47), we obtain

Qe 0 )
Falt )= (5] 0 [T ape =), (251)
where
L (kT+3) 4 r= (QT+5) (2.52)
p= \/§ T an r = \/§ T . .

Before proceeding further let us check whether the expression (2.51) gives
sensible results for the limits 7' — 0 and 7" — oo. Since this is an inertial detector
we must have F(Q,T — oo) = 0; also for a detector on any trajectory we demand
that F(Q,T = 0) = 0. These two limits can be obtained from the above result.
When T — oo, the lower and the upper limits of the p-integral in (2.51) coincide
thereby giving a null result as expected for the inertial detector. (Note that for

large r, the expression

r/roo dp eV ~ (6_;) {1 +0 (:—2)} (2.53)

vanishes exponentially.) Hence, there is no ambiguity in this result.
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Studying the limit 7" — 0 of (2.51), when the window function is sharply
peaked at the origin, has to be done more carefully. In this case, it matters
crucially whether the limit 77" — 0 is taken first and the condition € — 0 1is
incorporated later or vice-versa. The earlier alternative is to be adopted (as
mentioned earlier) for the reason that e helps us to identify the poles in the
contour integrals; hence unless and until all the other limits in the problem have

already been taken care of, the limit on ¢ should not be incorporated. Then, as

T—0,r— (e/\/§T) and Fi,.(Q,T) can be rewritten as
Finel . T) ) [ dpe
ine ) = e e
27 (e/3/2T) P P

[ = [ P e ) L (2sa
_\/§T o pe - o pe : ( : )

The last term in the above expression is the error function and its asymptotic

form for large arguments is as follows

2 /l’d ey 6_952(1 L3 ) (2.55)
VT Jo e = Vr \x 223 4ab ' '

Substituting the above expression in (2.54), we obtain the detector response as

T — 0 to be

eQe 2
Fine(Q,T —0) = ( 1 ) —0 (2.56)

me?

for finite e. This expression has the same form as (2.36) and clearly illustrates
the need to keep € # 0 till the end. Note that the detector response function as
well the rate of transition Rin.(,7T) = (Fine(Q,T)/T) vanish as T — 0. The
non-commutativity of the limiting procedure as regards 7' — 0, ¢ — 0 in the

detector response functions is evident due to the presence of factors like (¢/T').

If the condition € — 0 is incorporated first in (2.51), the expression factorizes

to

1 o 2 QT
f/ine Q,T - / d P — . 257
1) =5 @rpm ( \/5) (257)
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If we now take the limit T' — 0 we obtain that

1 oo 2 1
Fline 0T =0) = 5 /0 dpe? p= — (2.58)

47
As we have mentioned earlier, we expect the detector response function to go to
zero in the limit of T" — 0 irrespective of any other details. We find that F;,,.(Q,7T)
does not go to zero if we set T' = 0 after we have set € = 0. On the other hand,
Fine(Q, T) vanishes if we take the limit 7' — 0 before we set € = 0. Therefore, it
is quite clear that the procedure of setting € to zero only after the T' — 0 limit

has been taken is the proper one.

If we are only interested in finite, nonzero values of T' then we can set e = 0
in the integral (2.51). The response of the inertial detector for a finite 7' can then

be written in a closed form as

Fat.1) = oo o) — (orpv2) 1 (L))

2" 2
where I'(a, b) is the incomplete gamma function [77]. For QT >> 1, this expression

has the asymptotic form

Foe(T) ~ (GXP—<92T2/2>) |

2.
47 Q2T2 (2.60)

This shows that an inertial detector, switched on for a finite period of time, gives

a nonzero response which goes to zero as T' — oc.

Let us now carry out the same analysis for the accelerated detector. For
this case, when the Wightman function (2.26) is substituted into (2.46) and the

transformations (2.28) are performed, we find that

Fuce ,T) = — (81?) /_O:o dy exp — (y2/2T2)
X i /_0; dv e (exf()w_ﬁx;f)zw)) . (2.61)
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where b, = (¢ — 2mg~'n). With the aid of (2.49), the above integral can then be

simplified to the form

Facc(Q,T):—( ¢3T2?) i L, T), (2.62)

where

I, T) = (%) /_0; dk exp — (K*T7/2) /_0; dz (%) (2.63)

When £ > €, the = integration can be performed by closing the contour in the
upper half of the complex z-plane and the poles corresponding to the values of n

between —oo and zero contribute non-trivially to F,..(Q,T) giving

Faca (2, T) Z ¢on o bn /2T /jX) dp’ e " (p' —1"), (2.64)
where
1 b 1 b
= — (kT + = d = —(OT+ =]. 2.
P /5 ( + T) an r 7 ( + T) (2.65)

When k < €, the contour can be closed in the lower half of the complex z-plane
and the poles corresponding to the values of n between one and infinity contribute

non-trivially, with the result

1 2 2 1”2
FaccQ(QaT) — an b n/2T / dp e P p/ + T/). (266)
T —r!
The complete result is
facc(Qa T) = Faccl(Qa T) + facc?(Qv T)v (267)
i.€.
o 2 2 oo 2
Faeel 0, T) = = 30 efm e/ / dp’ e " (p' — ')

n=—0oo

_I_ Zeﬁbn b2 /2T / dp e —p'? p —I—T). (2.68)
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Let us again check the two relevant limits. In the limit 7" — oo the lower
limits of the first and the second integrals in the above expression reduce to oo
and —oo respectively, so that only F,..2(2, T') contributes to the detector response.

Evaluating the integral and then setting e = 0, we obtain the standard result:
Race(2) = lim {

Face(2,T)
T—o0
1 0
- = <e2m—19—1)' (2.69)

T

When T — 0, we can perform the same analysis we had carried out earlier
for the inertial detector. Since only the n = 0 term in the series (2.68) contributes

non-trivially; we obtain that

eQe 2
Fuee (0, T —0) = ( 5 ) — 0. (2.70)

me?

This is identical to the inertial detector result and shows that the transition prob-

ability (as well the rate) will go to zero as T'— 0.

The fact that both accelerated and inertial detectors give identical results
for the T" — 0 limit is to be expected on physical grounds. The curvature of
the trajectory can not make its presence felt for infinitesimal intervals and the
response of the detector can not depend on parameters like ¢ which characterize

the detector trajectory.

Note that, for any T, the detection is now due to two effects: (i) The
trajectory being noninertial and (ii) the detector being kept switched on only
for a finite time. The second effect is present even for a detector on an inertial
trajectory. As we have mentioned earlier, it will be physically more useful to

subtract the inertial response from the accelerated detector response to obtain
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the effects that are uniquely due to (i). In this case, F,(Q,T) = (facc(ﬂ, T)—

Fine(Q, T)) vanishes trivially for 7" — 0.

It is possible to state some of these results in a greater generality for the
gaussian window function. Note that for a detector moving along any trajectory

for which G [2(7),z(7")] = G*(7 — ') the response function is

e o . 1
_ 1= (r=1") ot o . 2 12
F(Q,T7) = /—oodT/—oodTe GT(r—71') exp {—2T2 [T + 7 }}

1 o] o] .
= - / dy exp — (y2/2T2) / dx e G () exp — (:1;2/2T2)

2 Joxo —oo
= g T /Oo dx e G () exp — (:1;2/2T2) . (2.71)

We can write

flx) [0 G ()| = £ (ia%) 79 G ()] (2.72)

for any function f(x) which has a power series expansion around x = 0. Hence

we have

F(Q,T7) = g T /_O:o dx exp (% aa—(;) [e7 % G ()]

= exp (21? %) [F(Q)]. (2.73)

The expression in the square brackets is the result for the infinite time detector.

(Note that F(2) = F(Q2,T — 0).) The corresponding rates are

R(Q,T) = exp (2% aa—(;) R(Q)]. (2.74)

(Also note that R(Q) = R(Q,T — o0).) This formula allows us to systematically
calculate finite time corrections as a series in (1/7"). To the lowest order, the

correction is

RO, T) = R(Q) + 2% a?ﬂ(?) 10 (%) . (2.75)

84



In the case of uniformly accelerated detector, up to the lowest order, we obtain

that

Raeel QT Rue() {1 2T e
1) = Rl ®{1- o ((ﬂ - 1)2)
X {ezﬂzg_l (1—mQg™ ) —1-— Wﬂg_l} } (2.76)

The above expression thus gives corrections to the standard thermal response of

an accelerated detector up to order (1/77?) for a large 7.

2.2.2 Window function with an exponential cut-off

Having studied the detector response with a gaussian window function, we shall
now study the same with the window function W;. In this case the response

function turns out to be

FO.1) = [ dr [T a0 G (), o) o= { (174 17D}
(2.77)

Introducing the window functions as Fourier transforms, i.e.

exp—(I7/T) = [ dk fk) ™ where  f(k) :% (le) (2.78)

and substituting the transformations (2.28), we obtain the response function of

an inertial detector to be
1 [o'e) o0 o0 .
FalT) = = () [ ks [ dafia) [ dyetieror
T —o0
[(k—q)/2-0]
e ()
(x — ie)
When the y and the g-integrals in the above expression are performed, in that

order, the result is

Fone,T) = ( )/ ak () (k) [ da (%) (2.80)
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Performing the contour integral after substituting for f(k), we find that the de-

tector response function reduces to

Fine(,T) = (66;2) 7 /QOO dk (%) (2.81)

If ¢ is kept nonzero, the above expression, up to the lowest order in T', clearly dies

down as T? as T — 0. We can rewrite the above integral as

s 00 - Qr
: _ —pe/T P
Fne(Q,T) = (H) /QT dpe (7(1 +p2)2), (2.82)

where p = KT. When T — oo the limits of the above integral coincide giving a

null result as expected.

We again note the crucial role played by the e factor. The limits ¢ — 0,

T — 0 do not (again!) commute in the function exp —(pe/T'):

%1_1% {11_1%1 exp —(pc/T)} =1, (2.83)
whereas
11_1%{%1_% exp —(pc/T)} = 0. (2.84)

If € is set to zero in the integral (2.82), we obtain that

/QOTO dp (%) . (2.85)

When the limit 7' — 0 is taken in the above integral, it reduces to

Fline(Q,T) = (%) /OOO (16_%752)2 = (#) (2.86)

i.e. the detector response is nonzero even as T — 0. As we have emphasised

FloQ,T) = (iQ)

s

several times by now, a physically sensible result (that the response of the detector
is zero when it is not switched on at all) can be obtained only if € is kept nonzero

until all the other limits have been taken.
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If we are interested only in the T' # 0 case, then we can set € = 0 in (2.82).
When ¢ is set to zero, we find that F;,.(Q,T) can be expressed in a closed form

as follows:

1 1 Qr
Ene(Qa T) = ﬁ {m — 7 (7'[' -2 ELI’CtELH(QT)

— sin 2 [arctan(Q7)] ) } (2.87)
For QT > 1, this function behaves as

1
Fiue0,7) > (G- (2.88)

We once again see that the inertial detector responds in the Minkowski vacuum

if it is switched on only for a finite 7. As T" — oo, this response dies as (1/T?).

Let us next consider the case of the accelerated detector. The response

function of the accelerated detector is given by the integral
1 e 0 %] o0 )
facc(Q,T) = — (8—2) Z / dk f(k)/ dq f(q)/ dy ctu(k+q)/2
T n=—oc ¥ T —00 —00
oo cirl(k—q)/2-Q]
X / da (—) ., (2.89)

—o0 (x — ibn)2
where b, = (¢ — 2mg~'n). When the y and the ¢-integrals are carried out, in that
order, the detector response function reduces to
1 oo o o (k=)
Fael 0, T) = — (—) S kgt sk [Cde (S—— ). (@290)
2n) = J-= o (x —1iby,)
The above contour integral can be performed in the same fashion as it was carried

out in the previous subsection to give the following result:

I & o, [ oy [ P QT
Fed®T) = 25 X Ay ey
I & /°° by (P QT
— n dp P’ _— 2.91
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where p = kT. When T — oo, the exp —(pb,,/T') factors in the integrand reduce
to unity and the lower limit of the integrals are oo and —oo respectively. Since
the limits coincide, the first integral vanishes. In the second integral, only the
second term contributes, the first term being an odd function it reduces to zero
on integration under symmetric limits. Thus, in the T' — oo limit, we recover the

thermal spectrum after ¢ is set to zero:

acc Q T
Ruce(Q) = lim { }

T—o0

0
_ Z —27g~10n

_ ( Wg_l _ ) (2.92)
As we have mentioned several times by now, (F,..(Q2,T)/T) is to be interpreted as
the transition probability rate of the detector. When the T' — 0 limit is considered
keeping € # 0, all the integrands in (2.91) decay exponentially thereby giving a

null result.

Before concluding this section we shall provide an asymptotic formula for
the detector response with any smooth window function of the form W (r/T).
This is a direct generalization of the results in (2.71) to (2.75). For such a window

function we can write

FOT) = [ dr [T ar eSO W D) WD) G - 1)

= W (ia%,T) W (—ia%,T) F(Q). (2.93)

Expanding W(r,T) = W(r/T) as a Taylor series around 7 = 0 and assuming that
Wi(0)=1, W'(0) =0, i.e.

v (z)

I

W (0) + W'(0) (%) 4 %W”(O) (%)2

f )

I

L+ W) ( (2.94)
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we obtain that

FOT) ~ (1_”;;@ aa—(;) FO)

~ F(Q)— (WJ’:EO)) 0 [éf)(?Q)] (2.95)
This gives the rate to be
R(Q,T) = R(Q) — (W;g())) 82[;?2(?)] +0 (%) (2.96)

for any window function and trajectory. Note that the response of a detector for
a finite T" depends on the derivatives of the window function—for e.g. W"(0).
Hence, if the detector is switched on abruptly, these derivatives will diverge
thereby leading to divergent responses. We shall discuss such a case explicitly

in the following subsection.

2.2.3 A rectangular window function (sum of two step
functions)

In this section we study the response of a detector that has been switched on and
off abruptly. The detector response integral for this case is given by (2.27) and

when the transformations (2.28) are carried out it reduces to (2.30), i.e.
2T ,
F(Q,T) = dr 7 GF(z) (21 — |z)). (2.97)
—2T

For the response of an inertial detector that is turned on and off abruptly, the

integrals to be evaluated are

Fonea (T Ly g, <
ine 5 = — o ) 2.98
i ) (2%2) /—2T ’ (x — ze)2 ( )
and
1 2T —iQz
EneQ(QaT) ) dx ‘ |x| (299)

Am? Joor T (2 —ie)®
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so that

Ene(Qa T) - Enel(Qy T) + Ene?(Qa T) (2100)

The evaluation of the above integrals is discussed in detail in appendix A.1. The
result is

—Qu

1 o Qu ) o
Fo(LT) = 2/ gy v2 B ezmT/ do e v. 2
472 0 (v+¢) 0 (v+e—2iT)
) o e—Qv v
- e—mT/ dv — 1 (2.101)
0 (v+e+42T)

For a finite T, if we take the limit € — 0, the second and the third integrals in the
above result remain finite; but the first integral diverges logarithmically. Hence
Fine(Q,T) is divergent for all finite T'. This is the ultra-violet divergence that has

been reported in ref. [86].

It was shown towards the end of the previous subsection that the response
of a finite time detector and its rate involve the derivatives of the window func-
tion. The rectangular window function we consider here is continuous but has
derivatives which diverge at 7 = —T and 7 = T. The origin of the logarithmic
divergences in F;,. and R;,. when € is set to zero for a finite T' can be attributed

to these divergent derivatives.

The two relevant limits, viz. T' — 0 and T' — oo, however, give sensible
results. When 7" — 0, the second and the third integrals exactly cancel the first
and hence F;,,.(Q,T = 0) = 0, provided we keep € # 0. For large T, i.e. when
T — oo the rate Rine(Q,T) = (Fine(Q,T)/T) vanishes because F,. is bounded
(when € # 0) and well defined.

For a small T and a finite ¢, such that T" < € the integrands in (2.101) can
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be Taylor expanded in T' and the result up to O(T?) is

1 2072 677
Fine(Q,T) = (—2) {2Q2T2 L(Q) + L(Q) + —13(9)} (2.102)
T €
where
o] QEZ/ e Qey
; 2.103
(y + 1 (y + 1 ( )
and
o] e—QEZ/ Yy
() = / d . 2.104

Since the quantities [y, I and I3 are independent of T', from the above expression

it is easy to see that F;,.(€2,T) dies down as T in the limit of 7" — 0.

For the finite time response of an accelerated detector, the integrals to be
evaluated are almost similar to those of the inertial case. The response function

is given by

—ZQT 7'

Fuce(Q,T) = Z/ dr/ dr (2.105)

iy — 7! —ib,)*

where b, = (¢ — 2mg~'n). After carrying out the transformations (2.28) we obtain

the response function to be

Faee(2,T) Z Facern(Q,T) + Frcean (2, T), (2.106)
where
Facern(,T) = — (2%) _2; dx % (2.107)
and
Foon(Q,T) = 4; / de (Z__Qilb'“’)t (2.108)

The evaluation of the above integrals is discussed in detail in appendix A.2. The

result is

o0

1
Fael 0 T) = 15 > {47TQT®( ) an+2/ dv

—Qv v

v—l—b)

s

n=—0oo
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—Qu

_Aar / do e v
o (v4b, —2T)

—Qu

—e—mT/oodv ¢ vt (2.109)
0 (v +b, +2iT)

where O(n) =1 for n > 0 and zero otherwise.

The nature of divergence in this expression is the same as that of (2.101).
This is because, for a finite 7" when € is set to zero it is the second integral in the
above expression that diverges logarithmically (when n = 0 in the sum), which is
exactly the term that exhibits a divergence for case of the inertial detector. As we
have mentioned before, the response of the inertial detector has to be subtracted

from the response of the accelerated detector to give sensible results.

In the limit 7" — 0, for a nonzero e, the expression (2.109) reduces to
zero, the first term vanishing identically being proportional to T'; the second term
being cancelled by the third and the fourth. Whereas in the infinite time limit,

concentrating on the transition probability rate we obtain that

Face($, T)}

Ruce(Q) = 1im{ 7

T—o0

1 & o, 1 0

the thermal spectrum seen by the accelerated detector, the other terms in (2.109)

vanishing when divided by the infinite time interval.

2.3 Discussion

To clearly illustrate the conclusions we wish to draw from the analysis we have
carried until now in this chapter, we tabulate here the response of an inertial

detector for T — 0, finite T" and T" — oo, when the limits on € and 7" are taken
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Table 2.1: Fine(Q,6,T) and Rine(2, €, T) in different limits

Gaussian  Exponential

Rectangular

lim  lim  Fne(Q,6,7T)
T—0e¢—0

lim  lim  Fne(Q,6,T)
e—0T—=0

lim  lim R (Q,6,T)
T —o00e—0

lim  lim R (Q,6,T)
e—= 0T — o0

lim T #0 Fine(Q6,T)
e —0

lim e€#0 Fine(Q¢eT)
T—0

lim e€#0 Rin(QeT)
T — oo

(1/47)

Finite

(1/272)

Finite

In(e) — In(T)

(Divergence)
0
In(e)
(Divergence)
0
In(e)
(Divergence)

0
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in different orders. Note that F;,. and R;,. are functions of ¢ before it is set to
zero. In the last column of table 2.1, whenever divergences arise we have just
quoted the divergent terms dropping the finite expressions. The second and the
fourth rows of the above table imply that when ¢ is kept nonzero the response of
an inertial detector and its rate go to zero as T' — 0 and T" — oo, respectively,
for all window functions. This is just reiterated in the last two rows. When the

e — 0 limit is taken first, and the T' is set to zero after, as the first row of the



above table shows, the detector response does not go to zero and in fact, for the
case of the rectangular window function, logarithmic divergences are encountered.
When the T" — oo limit is considered after having set ¢ = 0 (third row) and
when the detector has been switched on with the rectangular window function,
logarithmic divergences appear in the detector response rate. Finally, for a finite T
when € has been set to zero (fifth row) logarithmic divergences arise again in the
detector response for the case of the rectangular window function. The divergences
that are listed in the first and the fifth rows of the above table for the case of the

rectangular window function have been reported earlier in literature [86].

The role played by € in producing the finite result for the different limits
is by now obvious. In fact, by keeping e finite till the end we are effectively
introducing an ultra-violet cut-off. This can be seen by expressing the Wightman

function (1.89) as

3
™ W

d°k ot i )
— / (2 )3 5 e—zw(t—t )+ik.(x—x") e—ew7 (2111)
T W

where w = |k|. The results for the limits 7' — 0 and 7" — oo remain sensible even

after the cut-off is removed, provided it is done right at the end.

The logarithmic divergences that appear in the response of a detector (for
a finite T') when it is switched on abruptly can be attributed to the discontinu-
ities that arise in the derivatives of the window function. These divergences are
certainly not the infinities that are inherent to quantum field theory, for had they
been so, the response functions of the detectors would have diverged irrespective

of the manner in which the detectors are switched on and off.

We shall now touch upon the relevance of the analysis we have carried in
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this chapter in a somewhat broader context.

In bringing together the principles of quantum theory and general relativity
one notices a major issue of conflict: General relativity is inherently local in its
description while the conventional formulation of field theory uses global structures
to define even the most primitive concepts like the vacuum state. This point has
been repeatedly made in the literature related to quantum gravity. However,
it should also be noted that there is another, operational angle to the quantum
theory as well. Quantum mechanics emphasizes the role of operational definition of
physical quantities including that of the quantum state. As a matter of principle
the same philosophy should be applicable to the field theory as well. In other
words, one would like to define concepts like vacuum state etc. in field theory using
purely operational procedures similar to the ones used, for example in defining

the spin of an electron by using a magnetic field selector.

It is, however, well-known that such procedures are exceedingly difficult to
formulate in the case of a relativistic field. The role of detectors assumes special
importance in this context. The work by Unruh and DeWitt comes closest to the
operational definition of quantum states in field theory. In a simplified sense this
detector model captures the essence of the actual particle detection which takes
place in the laboratory. There is, however, one difficulty in the original Unruh-
DeWitt model. This model uses the definition for detection which is based on
asymptotic states. The calculations are done to estimate the transition probability
from past infinity to future infinity. In any laboratory context, any detection is

local in both space and time.

The analysis we have carried out in this chapter makes a first attempt at
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investigating the possibility of a localized detection, in space as well as time. We
have resolved the difficulties which arise in such a detection and we have provided
general formulas to calculate the response of detectors which have been coupled
to the field only for a finite interval of time. It will be worthwhile to investigate
how these finite time detectors respond in curved spacetimes while on geodesic
and non-geodesic trajectories. (Earlier, in subsection 1.3.3, we had found that
the response of a Unruh-DeWitt detector that is stationed at a constant radius in
Schwarzschild and de-Sitter spacetimes is similar to the response of a uniformly
accelerated detector in Minkowski vacuum state. Hence, the analysis we have
carried out in this chapter can be trivially extended to detectors stationed at
a constant radius in these two spacetimes.) Since these toy-models mimic the
physical situation as regards locality in space and time, we can expect the results
to shed some light on the operational definition of quantum processes in curved

spacetimes.

2.4 Limitations of the detector concept

It has been repeatedly pointed out in literature that, though the transition proba-
bility rate of a uniformly accelerated Unruh-DeWitt detector (for an infinite time
interval) yields the same result as the expectation value of the Rindler number
operator in the Minkowski vacuum state, this concurrence is purely coincidental.
There exist other noninertial frames in which the expectation value of the number
operator (corresponding to the noninertial coordinate system) in the Minkowski
vacuum does not match the response of the Unruh-DeWitt detector [10]. For
example, in a rotating coordinate system the expectation value of its number op-

erator in the Minkowski vacuum state proves to be zero, whereas the transition

96



probability rate of a rotating Unruh-DeWitt detector turns out to be nonzero (see,
for instance, refs. [10, 13]; however, see ref. [90]). This should not come as a sur-
prise since the Unruh-DeWitt detector does not respond to the particle content of
the quantum field but acts as a fluctuometer that measures the power spectrum of
fluctuations in the quantum field. (We had, in fact, discussed this aspect earlier

towards the end of subsection 1.3.2.)

In fact, all the detectors that have been constructed along the lines of the
Unruh-DeWitt detector (the derivative coupled detector, the detector coupled to
the energy-momentum tensor of the quantum field) respond to fluctuations in the
term that couples the detector to the quantum field. For instance, a detector
that is coupled to the energy-momentum tensor of the quantum field responds
to the power spectrum of the fluctuations in the energy-momentum tensor of the
quantum field, whereas, ideally, we would have liked our detector to measure the

expectation value of the energy-momentum tensor [72].

Another drawback of the detector idea is that the response of different detec-
tors have always been evaluated only up to the first order in perturbation theory.
Evaluating higher order corrections to the detector response is an involved task
and it is not clear whether any generic statements can be made about these correc-
tions. These corrections can prove to be important when we attempt to compare
the results obtained from the canonical quantization procedure with those of the
detector response. Also, a detector that we have considered here has a classically
well-defined trajectory and hence occupies a single worldline. Whereas a coordi-
nate system covers an entire patch. The fact that a particular coordinatization of
a spacetime actually matches the worldlines of certain observers in that spacetime

is a very special feature. One could equally well choose a different coordinatiza-
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tion of that spacetime which nevertheless happens to coincide in the vicinity of
one particular detector’s worldline. This feature has in fact forced Padmanabhan
and Singh to conclude that while it may be possible to maintain formal covariance
with elaborate regularization procedures, operational covariance is completely lost

at a very fundamental level in quantum theory (see ref. [72]; also see ref. [91]).

Recently, Ford and Roman have put forward a proposal for measuring the
energy-momentum content of a quantum scalar field with the help of detectors [92].
They set a bunch of finite time Unruh-DeWitt and derivative coupled detectors in
motion on certain trajectories and then attempt to relate the combined response
of all these detectors to the expectation value of the energy-momentum tensor of
the quantum field. Other than the fact that these detectors have to be switched
very rapidly to actually measure the expectation value of the energy-momentum
tensor at any particular point in spacetime, the prescription due to Ford and

Roman still possesses all the drawbacks we have discussed in the last paragraph.

There are quantum states; there are detector measurements. What we mean
by a particle can not be sensibly expressed without any reference to a detector.
All we can predict and discuss are the experiences of detectors. A finite time
particle detector is an operational idea that offers some scope for a localized view
of a quantum particle. However, in quantum field theory, the concept of a particle,
as defined through Fock spaces is a global one. Also, in a curved spacetime, in
general, the definition of a particle is not unique. Until we understand these
different aspects better, the connection between particles and the response of
detectors is bound to be obscure. The construction of a detector that actually
responds to the particle content of the quantum field would possibly help us bridge

this gap in our understanding.
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Chapter 3

Quantum field theory in classical
electromagnetic backgrounds

Just as there exists a semiclassical regime for the gravitational field, wherein we
can analyze the behavior of quantum fields in classical gravitational backgrounds,
a similar domain exists for the electromagnetic field too [93, 94]. The existence of
such a domain allows us to study the evolution of quantum fields in classical elec-
tromagnetic backgrounds. Phenomena such as vacuum polarization and particle
production take place in electromagnetic backgrounds too (see our discussion in
section 1.4 and subsection 1.5.1). In this chapter, we shall study the evolution
of quantum fields in classical electromagnetic backgrounds with the same motiva-
tion we had mentioned earlier, viz. that such a study will provide us with some
insights to understand the gravitational case. In fact, we will see later in this
chapter, that there do exist some common features in the behavior of quantum
fields in electromagnetic and gravitational backgrounds which can be exploited to

help us improve our understanding of the semiclassical regime.

This chapter is organized as follows. In section 3.1, we outline Schwinger’s

proper time formalism to evaluate the effective Lagrangian for a given classical
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electromagnetic background. In section 3.2, we examine the validity of the tun-
neling interpretation by comparing this approach with the effective Lagrangian
approach for a time independent magnetic field background. We also discuss in
detail the implications of this comparison to the study of particle production in
time independent electromagnetic and gravitational backgrounds. In section 3.3,
we present the limitations of the Klein approach that is invoked to explain the
phenomenon of particle production in time independent electromagnetic back-
grounds. In section 3.4, we propose the conjecture that the effective Lagrangian
will prove to be zero if all the invariant scalars (gauge invariant scalars in the case
of electromagnetism and covariant scalars in the case of gravity) describing the
classical background vanish identically. We also present examples of electromag-
netic and gravitational backgrounds to support our conjecture. Evaluating the
effective Lagrangian explicitly, using Schwinger’s proper time formalism, we show
that it vanishes in these backgrounds. In the same section, we also discuss the
wider implications of our conjecture. We conclude this chapter with section 3.5,
wherein we make a few remarks regarding the boundary conditions that are im-
plicitly assumed in the evaluation of the effective Lagrangian using Schwinger’s

formalism.

3.1 Schwinger’s proper time formalism for eval-
uating effective Lagrangians

The system we shall mostly deal with in this chapter is the same system we had

considered earlier in section 1.4 and also in subsection 1.5.1. It consists of a

complex scalar field @ interacting with an electromagnetic field represented by
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the vector potential A*. It is described by the action
S[®, A4 = /d“x,C(CI),AM)
_ /d% {(@(I) +igA, D) (040" — igAr DY)

1
— 0P — ZF“”FW}, (3.1)

where, as before, ¢ and m correspond to the charge and the mass associated
with a single quantum of the complex scalar field, the asterisk denotes complex
conjugation and

F.,=0,A,—0A,. (3.2)
We shall assume that the electromagnetic field behaves classically and we shall
consider the complex scalar field to be a quantum field. Also, we shall assume
that the electromagnetic field is given to us a priori, i.e. we will not take into ac-
count the backreaction of the quantum field on the classical background. In such
a situation, we can obtain an effective Lagrangian for the classical electromag-
netic background by integrating out the degrees of freedom corresponding to the

quantum field as follows (see our discussion at the beginning of subsection 1.5.1):
exp @'/d‘lx,ceff(AM) = /ch /ch* exp i/d“x,C(CI),AM). (3.3)

(Note that we have set h = ¢ = 1.) The effective Lagrangian can be expressed as
Lepsr = Lem + Leorr, (3.4)

where L., is the Lagrangian density for the free electromagnetic field, the third

term under the integral in action (3.1) and L., is implicitly given by

exp i/d4:1; Leorr(AL)
= [Do [Dorexpi [t {(a@ FigA,®) (970" — igA D)

_m2q>q>*}. (3.5)
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Integrating the action for the scalar field in the above equation by parts and
dropping the resulting surface terms, we obtain that (see, for instance, ref. [73],

p. 193)

exp i/d4:1; Leorr(Ay) = /DCI) /DCI)* exp —i/d4:1; d*Do

= (det D), (3.6)

where the operator D is given by

A

D=D,D"+ m? and D, =(0,+1qA,). (3.7)

The determinant in equation (3.6) can be expressed as follows

expi/d4x£cor,, = (det b)_l
= exp—Tr(ln b)

= exp—/d4:1; (t,x| In D |t,x), (3.8)

and in arriving at the last expression, following Schwinger [33, 34], we have chosen
a complete and orthonormal set of basis vectors |t,x) to evaluate the trace of the

operator In D. From the above equation it is easy to identify that
Leorr =1 (t,x|In D|t,x). (3.9)

Using the following integral representation for the operator In D

A

InD=-— /OO ds exp —i(D — i¢€)s, (3.10)
0

S

where ¢ — 07 the expression for L., can be written as

o ds .o, .
ECOT’T’ = _Z / _Se_l(m _ZE)S [Xj(t7x78|t7x7 0)7 (3'11)
0 S
where
K(t,x,s]t,%,0) = (t,x] ™% |t, %) (3.12)
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and

H = D,D" = (9, +iqA,) (0" + iqgA"). (3.13)

That is, K (¢,x,s|t,x,0) is the kernel for a quantum mechanical particle (in 4 di-
mensions) described by the Hamiltonian operator H. The variable s, that was
introduced in (3.10) when the operator In D was expressed in an integral form,

acts as the time parameter for the quantum mechanical system.

The integral representation for the operator In D we have used above is
divergent in the lower limit of the integral, i.e. near s = 0. This divergence
is usually regularized in field theory by subtracting from it another divergent
integral, viz. the integral representation of an operator In ﬁo, where Dy = (00, +
m?), the operator corresponding to that of a free quantum field. That is, to avoid

the divergence, the integral representation for In D is actually considered to be

A A oo N R
InD —1InDy = —/ il (exp —i(D —i€)s — exp—i(Dy — ic)s) : (3.14)

0 S

Or equivalently, the quantity £°  which corresponds to the case of a free quan-
tum field, can be subtracted from L., to obtain finite results. The quantum
mechanical kernel K°(¢,x, s|t,x,0) corresponding to the operator Dy is the ker-
nel for a free particle in four dimensions in the coincidence limit. It is given by

K°(t,x,slt,x,0) = (1/167%is*) (see, for instance, ref. [81], p. 42). Substituting

this quantity in the expression for L., above, we obtain that

1 oo ds o2 -
0 _ —i(m~-—1e)s
Leorr = = (167r2) /0 3 C . (3.15)

This is the expression which has to be subtracted from L., to yield a finite result.
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3.2 Examining the validity of the tunneling in-
terpretation

In subsection 1.5.1, we had obtained an effective Lagrangian for a constant elec-
tromagnetic background by integrating out the degrees of freedom correspond-
ing to the quantum scalar field. We had found that the effective Lagrangian
thus obtained can be expressed in terms of the two gauge invariant quantities
G =F"F, =2(B?—-E?) and F = ¢**"F,,F\,, = —8(E.B), where E and B
are the constant electric and the magnetic fields respectively. Also, we had found
that the effective Lagrangian had an imaginary part only when G < 0. The ap-
pearance of an imaginary part in the effective Lagrangian implies an instability of
the vacuum and we had attributed the cause of this instability to the production
of particle, anti-particle pairs corresponding to the quantum field by the electro-
magnetic background. We had then interpreted the imaginary part of the effective
Lagrangian as the number of pairs that have been produced, per unit four-volume,

by the external electromagnetic field.

The derivation of the effective Lagrangian for a constant electromagnetic
background we had presented in subsection 1.5.1 is adapted from ref. [84] and is
originally due to Heisenberg and Euler [95]. This derivation wherein the effective
Lagrangian is related to the ground state energy of the quantum field is applicable
only when the background is varying adiabatically. In a more generic situation,
wherein the background is dependent on space and/or time coordinates, one can
utilize Schwinger’s proper time formalism, we have introduced in the last section,
to evaluate the effective Lagrangian. Throughout this chapter we shall adopt

Schwinger’s formalism to evaluate effective Lagrangians.
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As we had mentioned in subsection 1.5.1, the evaluation of the effective
Lagrangian for an arbitrary electromagnetic background proves to be an impos-
sible task. Due to this reason, there has been numerous attempts in literature
to obtain the effective Lagrangian using Schwinger’s technique for a given non-
trivial electromagnetic background [96, 97, 98, 99, 100, 101, 102]. In spite of all
these efforts, there exist very few examples for which the effective Lagrangian is
known in a closed form. Quite often, the phenomenon of particle production in
classical electromagnetic backgrounds is studied in literature by the method of
normal mode analysis. In this approach, as we saw in section 1.4, the normal
modes of the quantum field are obtained by solving the wave equation it satisfies
in a given electromagnetic background (in a particular gauge). The coefficients of
the positive frequency normal modes of the quantum field are then identified to
be the annihilation operators. The evolution of these operators therefore follow
the evolution of the normal modes. Then, by relating these operators defined in
the asymptotic regions (either in space or in time) the number of particles that

have been produced by the electromagnetic background can be computed.

Consider an electromagnetic background that can be represented by a time
dependent gauge. If we choose to study the evolution of the quantum field in such
a gauge, then a positive frequency normal mode of the quantum field at late times
will, in general, prove to be a linear superposition of the positive and negative fre-
quency modes defined at early times. The coefficients in such a superposition are
the Bogolubov coefficients o and 3 (see subsection 1.1.3). A nonzero Bogolubov
coefficient 3 would then imply that the in-vacuum state is not the same as the
out-vacuum state. This in turn implies that the in-out transition amplitude is less

than unity which can be attributed to the excitation of the modes of the quantum
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field by the electromagnetic background [74, 75, 76, 103, 104, 105]. These exci-
tations manifest themselves as real particles corresponding to the quantum field

(see our discussion in section 1.2 and subsection 1.4.1).

On the other hand, consider an electromagnetic background that can be
described by a space dependent gauge (by which we mean a gauge that is com-
pletely independent of time). If the evolution of the quantum field is studied in
such a gauge, then due to the lack of dependence on time, the Bogolubov coeffi-
cient 3 proves to be trivially zero. This could then imply that the electromagnetic

background which is being considered does not produce particles.

An interesting situation arises when the same electromagnetic field can be
described by a (purely) space dependent gauge as well as a (purely) time de-
pendent gauge. If we choose to study the evolution of the quantum field in the
time dependent gauge, in general, § will prove to be nonzero thereby implying
(as discussed above) that particles are being produced by the electromagnetic
background. But, in the space dependent gauge, (3 is trivially zero thereby dis-
agreeing with the result obtained in the time dependent gauge. Therefore, to
obtain results that are gauge invariant, the phenomenon of particle production
has to be somehow explained in the space dependent gauge. In literature, a tun-
neling interpretation is usually invoked to explain the phenomenon of particle
production in such a situation [106, 107, 108, 109]. In this approach, an effective
Schrodinger equation is obtained after the quantum field is decomposed into nor-
mal modes in the space dependent gauge. The nonzero tunneling probability for
this Schrodinger equation is then attributed to the production of particles by the

electromagnetic background.
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We had encountered exactly such a situation in section 1.4 when we had
reviewed the quantization of a complex scalar field in a constant electric field
background. We had found that, in the time dependent gauge A, the positive
frequency normal modes of the quantum field at ¢ = 400 are related by a nonzero
Bogolubov coefficient 3 to the positive frequency modes at t = —oo. We had then
interpreted the quantity |5|2 as the number of particles that have been produced
in a single mode of the quantum field at late times in the in-vacuum. Whereas,
when we had analyzed the evolution of the quantum field in the space dependent
gauge Ab, because of time independence, 3 proved to be trivially zero thereby
disagreeing with the result we had obtained in the gauge A}. We had invoked
the tunneling interpretation in such a situation to explain particle production
in the space dependent gauge A5. We had obtained, after the normal mode
decomposition of the quantum field, an effective Schrodinger equation along the
z-direction (cf. equation 1.142)). We had then interpreted the nonzero tunneling
probability, |T|2, for this Schrodinger equation as the number of particles that have
been produced in a single mode of the quantum field. The tunneling probability
IT|* evaluated in the gauge A%, in fact, exactly matched the quantity |3]* obtained
in the gauge A} (cf. equations (1.134) and (1.147)). Also, these two quantities
agreed with the pair creation rate we had later obtained from the imaginary part

of the effective Lagrangian (see our discussion following equation (1.204)).

The fact that the quantities |3|* and |T|* agree, not only with each other,
but also with the pair creation rate obtained from the effective Lagrangian, for
the case of a constant electric field has given certain credibility to the tunneling
interpretation. In fact, we have not seen in literature another example of a time

independent electric field background for which the tunneling probability |T|2 has
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been shown to match the imaginary part of the effective Lagrangian. Our aim, in

this section, is to probe the validity of the tunneling interpretation.

Now, consider an arbitrary electromagnetic background that can be de-
scribed by a space dependent gauge. Also assume that, when the evolution of
the quantum field is analyzed in such a gauge, there exists a nonzero tunneling
probability for the effective Schrodinger equation. Can such a nonzero tunneling
probability be always interpreted as particle production? We attempt to answer
this question in this section by comparing the results obtained from the effective
Lagrangian with those obtained from the tunneling approach. We carry out our
analysis for a spatially varying, time independent magnetic field when it is de-
scribed by a space dependent gauge. We find that there exists—in general—a
lack of consistency between the results obtained from the tunneling approach and
those obtained from the effective Lagrangian [110]. This inconsistency clearly
calls into question the validity of the tunneling interpretation as it is presently

understood in literature.

In the subsection that follows immediately, we show that the imaginary
part of the effective Lagrangian for a time independent, but otherwise arbitrary,
magnetic field is zero. In subsection 3.2.2; we calculate the tunneling probability,
which happens to be nonzero, for a particular spatially confined and time indepen-
dent magnetic field when it is represented by a space dependent gauge. And, in
subsection 3.2.3, we discuss the wider implications of our analysis to the study of
particle production in time independent electromagnetic and gravitational back-

grounds.
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3.2.1 Effective Lagrangian for a time independent mag-
netic field background

Consider a background electromagnetic field described by the vector potential
A" = (0,0, A(2),0), (3.16)

where A(z) is an arbitrary function of . This vector potential does not produce
an electric field but gives rise to a magnetic field B = (dA/dx) z, where Z is the
unit vector along the positive z-axis. According to the Maxwell’s equations, in
the absence of an electric field, the magnetic field is related to the current j(x) as
follows

V x B =j. (3.17)

Then, the current that can give rise to the time independent magnetic field we

= — (T4 (3.18)
J_ dxz Y7 .

where ¥ is the unit vector along the positive y-axis. If we assume that j is finite

consider here is given by

and continuous everywhere and also vanishes as |#| — oo, then the magnetic field

we consider here will be confined to a finite extent along the z-axis.

The operator H (cf. equation (3.13)) corresponding to the vector potential
(3.16) is given by
H =02 —V?+2iqAd, + ¢*A°. (3.19)

Then, the kernel for the quantum mechanical particle described by this Hamilto-

nian can be formally written as

K(t,x,s]t,%,0) = {t, x| exp—i(d,> — V* + 2iqAd, + ¢*A?)s |t,x). (3.20)
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Using the translational invariance of the Hamiltonian operator H along the time
coordinate ¢t and the spatial coordinates y and z, we can express the above kernel

as follows

K(t,x,s|t,%x,0) / / Pz il =p2)s
00 27'[' o] 27'[' — 00 27

< (el exp—i(—d2 + (p, — gA)D)s|a), (3:21)

where we have used the notation d2 to represent the differential operator (d?/dz?).

Performing the w and p, integrations, we obtain that

e _ 1 o dpy —iGs
R (x5 4,%.0) = — /_Oo 2 (e ) (3.22)
where
N d2 9

The quantity (x| eiGs |z) is then the kernel for a one dimensional quantum me-
chanical system described by the effective Hamiltonian operator G. It can ex-

pressed, using the Feynman-Kac formula, as (see, for instance, ref. [82], chapter 7)
(] exp —ilis |x Z U (2)) e, (3.24)

where Wg is the eigenfunction of the operator G corresponding to an eigenvalue

K, ie.

+(py — qA)* g = BV, (3.25)

so that K (¢,x,s]|?,x,0) reduces to

1 e d
K(t,x,5|t,%,0) = —/ pyzm P emiEe, (3.26)

4d7s J—o 27

(It is assumed that the summation over E stands for integration over the relevant
range when FE varies continuously.) Since the potential term, (p, — ¢A(x))?, in the

Hamiltonian operator Gis a positive definite quantity, the eigenvalue £ can only
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lie in the range (0, 00). Substituting the expression for K (¢,x,s|?,x,0) in (3.11),

we find that L., is given by

—00 27

) o oo ( m2
Lowr = =3 [ S S Ns(@)f [7 et gan)
47 %

(We will not bother here to subtract the quantity £2  from L., since this regu-
larization is not necessary for the conclusions we wish to draw from our analysis.)
Differentiating the above expression for L., twice with respect to m? and then
carrying out the integration over the variable s, we obtain that

v PLey 1 dp, Vi ( >|
Ecorr - a(mg)z - E/ Z (m2 _I_ E (328)

—00 27

The quantity (m* 4+ E — ie)~! in the above expression, can be written as

1 1 . ,
(m) =7 (m) +umdp(m” + E), (3.29)

where P is the principal value of the corresponding argument. Since F is a positive
semi-definite quantity, the argument of the delta function above never reduces to
zero. Therefore the second term in the above expression vanishes with the result

that £, is a real quantity thereby implying that L..,, is also a real quantity. In

corr

fact, integrating L] twice with respect to m?, we find that £, can be expressed

corr

as

1 o d
Loor = —/ Py ZI‘PE W a(na —1), (3.30)

4 J_oo 27

where a = (m? 4+ E) > 0 and ¢ has been set to zero. Then, clearly L., is a
real quantity. (To be rigorous, one has to take into account the two constants

of integration that will appear on integrating £. . with respect to m? (see our

corr

discussion following equation (1.175)), but these constants are irrelevant for our

arguments here.)
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Though we are unable to evaluate the effective Lagrangian for an arbitrary
time independent magnetic field in a closed form, we have been able to show that
it certainly does not have an imaginary part. Therefore we can unambiguously
conclude that time independent background magnetic fields do not produce par-

ticles. This, of course, agrees with Schwinger’s result for the constant magnetic

field background [33].

3.2.2 Tunneling probability in a time independent mag-
netic field background

We shall now calculate the tunneling probability for the a specific time indepen-
dent background magnetic field in a space dependent gauge. Consider the vector

potential

A" = (0,0, By L tanh(xz/L),0), (3.31)

where By and L are arbitrary constants. This vector potential does not produce

an electric field but gives rise to the following magnetic field
B = Bysech’(z/L) 2, (3.32)

where z is the unit vector along the positive z-axis. The magnetic field B goes to
zero as || — oo, i.e its strength is confined to an effective width L along the z-
axis. In the absence of an electric field, according to the Maxwell’s equation (3.17),

the magnetic field given by (3.32) can be produced by the current

j= (%) sech(x/L) tanh(z/L)y, (3.33)

where, as before, ¥ denotes the unit vector along the positive y-axis. The current

j is finite and continuous everywhere and also goes to zero as |z| — oc.
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In an electromagnetic background, described by the vector potential A*,

the complex scalar field satisfies the following Klein-Gordon equation
(DD +m*)® = {(9, +iqA,) (D +iqA,) + m*} & = 0, (3.34)
Substituting the vector potential (3.31) in the above equation, we obtain that
(0} — V? + 2igBoL tanh(z/L)d, + ¢* B L* tanh®(x /L) + m?)®(t,x) = 0. (3.35)

Since the vector potential (3.31) is dependent only on the spatial coordinate x,

the normal modes of the scalar field ® can be decomposed as follows

Juk, (1,%X) x eIt kXL Yok, (1), (3.36)

where k; = (ky, k) and x; = (y,2). Substituting the normal mode g.x, in

(3.35), we find that ¢k, satisfies the following differential equation

d2
Py

02 (w2 — (k, — qBoLtanh p)* — k? — m2) L =0, (3.37)

where p = (/L) and we have dropped the subscripts on ¢. This differential

equation can be rewritten as

2
_Ccll—f + (ky L — gBoL* tanh p)* ¢ = (w? — k2 — m?) L? (3.38)
)

which then resembles a time independent Schrodinger equation corresponding to
a potential (k,L — qBoL?tanh p)?/2 and energy eigenvalue (w? — k2 — m?*)L?/2.

The potential term in the effective Schrodinger equation above reduces to a finite

constant as |z| — oo. Therefore, there exist solutions for 1> which reduce to e***z®

:l:Zle’

as £ — —oo and e as © — +o0o, where kz, and kg are given by

ki = (w? = (ky + qBoL)? — k2 —m?)'/?,
(3.39)
kr = (w?— (k, — qBoL)? — k? —m?)'/”.
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We shall confine our attention to values of w and & such that &7, and kg are real.

The differential equation (3.37) can be solved by the following ansatz [111]

= e sech’p f(p) (3.40)

where

a=1k_L : b=1kyL and ky = (kr +k1)/2. (3.41)

Substituting the above ansatz in (3.37), we find that f satisfies the following

differential equation

u(u —1) % +(14+a+b—2(b+1)u) % +(¢*Bo’L* —b(b+1)) f =0, (3.42)

where the variable u is related to p by the equation: u = (1 — tanhp)/2. The
above equation is a hypergeometric differential equation and its general solution is
a linear combination of two hypergeometric functions (cf. [59], pp. 562 and 563),

i.e.

flu)y = AF(b—I—%—I—c,b—I—%—c,l—l—a—l—b,u)

1 1
_|_Bu—a—bF<§_a+c7§_a—c71—a—b,u), (343)

where A and B are arbitrary constants and

1 2 274 12

To calculate the tunneling probability for the effective Schrodinger equa-
tion (3.38), we have to choose the constants A and B such that ¢ ~ 7% as
& — 400 i.e. when u — 0. This can be achieved by setting A = 0 and B = 27°,
so that

1 1
f(u):2_bu_“_bF<§—a—|—c,§—a—c,1—a—b,u). (3.45)
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Substituting the above solution in (3.40) and using the relation (cf. [59], p. 559)

1 1
F<§—a—|—c,§—a—c,1—a—b,u)

= PF(%—a—l—c,%—a—c,l—a—l—b,l—u)
—I-Q(l—u)“_bF(%—b—c,%—b—l—c,l—l—a—b,l—u), (3.46)
where
p= (r(g(ibic)br) (F;_bbjc)) (3.47)
and

['(l—a—=0)T'(b—a)
Q:( - 1 ), (3.48)
F(i—a+c)F(§—a—c)

we find that, as @ — —oo, i.e when (1 —u) — 0,
W — Pet 4 Q ek, (3.49)

Consider a solution of the effective Schrodinger equation (3.38) which goes as
(Reik”’ + e‘ik”) as * — —oo and goes over to (Teika) as r — +oo (see our
discussion in subsection 1.4.2). Then it is easy to identify the expressions for R
and 7' from equation (3.49). They are given by

B - (B)Z(F(-—a+c)F(——a—c)F< b))

Q r(-—b—c)r(——b+cr

. (%) _ (F(;(;T;i)b ) (3.50)

so that
9 cosh 27k, L + cos2me
= 5l
2] (Cosh 2nk_IL + cos2me (3.51)
and
k h2nk, L —cosh2nk_L
|T|2 (R cosh 2k cosh 27 ‘ (3.52)
kr cosh 2nk_IL 4+ cos2mc
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The Wronskian condition for the effective Schrédinger equation (3.38) then leads

us to the following relation

k
|R|* — (i) T =1. (3.53)

So, the tunneling probability is nonzero for the time independent magnetic field

we have considered here. It is, in fact, given by |T'|* in equation (3.52).

The implications of our analysis are discussed in the following subsection.

3.2.3 Implications

A time independent magnetic field does not give rise to an electric field (in a
particular Lorentz frame) and a pure magnetic field cannot do any work on charged
particles. Therefore it seems plausible that such a magnetic field does not produce
particles. This expectation is, in fact, corroborated by the result we have obtained
in section 3.2.1, wviz. that the imaginary part of the effective Lagrangian for a
time independent, but otherwise arbitrary, magnetic field is zero. Our analysis in
sections 3.2.1 and 3.2.2 has been carried out assuming that the time independent
magnetic field is described by a space dependent gauge. In such a gauge,
is trivially zero and if we had considered only a nonzero (¢ to imply particle
production, then this result would have proved to be consistent with the result

we have obtained in section 3.2.1.

But this is not the whole story. According to the tunneling interpreta-
tion, in a time independent gauge it is the tunneling probability for the effective
Schrodinger equation that has to be interpreted as particle production. In sec-
tion 3.2.2, we find that there exists a nonzero tunneling probability for a spatially

confined and time independent magnetic field. If the tunneling interpretation is
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true, this result would then imply that such a background can produce particles

thereby contradicting the result we have obtained in section 3.2.1.

The tunneling probability can, in fact, prove to be nonzero in a more general
case and is certainly not an artifact of our specific example. This can be seen
as follows: Consider an arbitrary electromagnetic field described by the vector

potential

AP = ((x), 0, A(z), 0), (3.54)

where ¢(x) and A(x) are arbitrary functions of x. If the decomposition of the
normal modes is carried out as was done in (3.36), then the effective Schrodinger
equation for the z-coordinate corresponding to the above vector potential turns
out to be

d*y

g (= a ) = (0 — @) v = (k2 =) (3.55)

If we also assume that ¢(x) and A(x) vanish at the spatial infinities, then it is
clear that the solutions for ¢ will reduce to plane waves as |x| — oco. When
such solutions are possible, in general, there is bound to exist a nonzero tunnel-
ing probability for the effective Schrodinger equation. Thus, quite generally, the
tunneling interpretation will force us to conclude that the electromagnetic field
described by the above potential produces particles. In particular, the tunneling
probability will prove to be be nonzero even when ¢ = 0—the case which corre-
sponds to a pure time independent magnetic field. But for such a case, we have
shown in section 3.2.1 that the effective Lagrangian is real and hence there can be
no particle production. Thus we again reach a contradiction between the results
obtained from the tunneling interpretation and those obtained from the effective

Lagrangian.
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On the other hand, consider the following situation. If we choose A(z) to
be zero and ¢(x) to be nonzero in the above vector potential, then such a vector
potential will give rise to a time independent electric field. Such an electric field
is always expected to produce particles. But in the space dependent gauge we
have chosen here (3 is trivially zero and if we consider only a nonzero 3 to imply
particle production, then we will be forced to conclude that time independent
electric fields will not produce particles! It is to salvage such a situation, that the
tunneling interpretation has been repeatedly invoked in literature. But then, our
analysis in the last two sections show that tunneling probability can be nonzero

even if the effective Lagrangian has no imaginary part!

There appears to be three possible ways of reacting to this contradiction.

We shall examine each of them below:

(i) We may begin by noticing that in quantum field theory, there is always
a tacit assumption that not only the fields but also the potentials should vanish
at spatial infinities. If we take this requirement seriously, we may disregard the
results for constant electromagnetic fields (the only case for which explicit results
are known by more than one method!) as unphysical. Then we only need to
provide a gauge invariant criterion for particle production in electromagnetic

fields described by potentials which vanish at infinity.

This turns out to be a difficult task, even conceptually. To begin with,
we do not know how to generalize Schwinger’s analysis and compute the effec-
tive Lagrangian for a spatially varying electromagnetic field. The only other
procedure available for us to study the evolution of the quantum field in such

backgrounds are based on the method of normal mode analysis where we go on to

118



obtain the tunneling probability |T|2. But then, the potential term in the effective
Schrodinger equation is not gauge invariant, as can be easily seen from its form
in equation (3.55). So the tunneling interpretation, even if it is adhered to, has
the problem that it may not yield results that are gauge invariant. In fact, the
situation is more serious; the entire tunneling approach can be used only after a

particular gauge has been chosen. In some sense, the battle has been lost already.

Operationally also, it is doubtful whether the tunneling approach will yield
results that are always consistent with the effective Lagrangian. As the analysis
in the last two subsections shows, there is at least one case—that of a spatially
confined magnetic field—for which one can obtain a formal expression for effec-
tive Lagrangian and compare it with the results obtained from the normal mode

analysis. These results are clearly in contradiction with each other.

(ii) One may take the point of view that particle production in an elec-
tromagnetic field is a gauge dependent phenomenon. It appears to be a remedy
worse than disease and is possibly not acceptable. In addition to philosophical
objections one can also rule out this possibility by the following argument. We
note that we can produce electromagnetic fields in the laboratory by choosing
charges and current distributions but we have no operational way of implement-
ing a gauge. So, given a particular electromagnetic field, in some region of the
laboratory, we will either see particles being produced or not. It is hard to see

how the gauge can enter this result.

This point has some interesting similarities (and differences) with the ques-
tion of particle definition in a gravitational field. If we assume that the choice

of gauge in electromagnetic backgrounds is similar to the choice of a coordinate

119



system in gravity, then one would like to ask whether the concept of particle is de-
pendent on the coordinate choice. People seem to have no difficulty in accepting a
coordinate dependence of particles (and particle production) in the case of gravity
though the same people might not like the particle concept to be gauge dependent
in the case of electromagnetism! To some extent, this arises from the belief that
a coordinate choice is implementable by choosing a special class of observers, say,

while a gauge choice in electromagnetism is not implementable in practice.

(iii) Finally, one may take the point of view that tunneling interpretation
is completely invalid and one should rely entirely on the effective Lagrangian
for interpreting the particle production. In this approach one would calculate
the effective Lagrangian for a given electromagnetic field (possibly by numerical
techniques, say) and will claim that particle production takes place only if the
effective Lagrangian has an imaginary part. Further one would confine oneself
to those potentials which vanish at infinity, thereby ensuring proper asymptotic

behavior.

This procedure is clearly gauge invariant in the sense that the effective La-
grangian is (at least formally) gauge invariant. Of course, one needs to provide a
procedure for calculating the effective Lagrangian without having to choose a par-
ticular gauge. Given such a procedure, we have an unambiguous, gauge invariant
criterion for particle production for all potentials which vanish asymptotically. In
fact, the effective Lagrangian for a spatially varying electromagnetic background
can be formally expressed in terms of gauge invariant quantities that involve the

derivatives of the potentials and the fields.

This point could also have an interesting implication for gravitational back-
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grounds. The analogue of a constant electromagnetic background in gravity cor-
responds to spacetimes whose R, ,,’s are constants. The effective Lagrangian in
gravity can then possibly be expressed in terms of coordinate invariant quantities
constructed from R, ,,’s, just as it was possible to express the effective Lagrangian
for a constant electromagnetic background in terms of gauge invariant quantities

involving F),,’s.

We would like to stress here the following points. Equations (3.38) and
(3.55) resemble a Schrodinger equation only in a formal sense. The actual time
dependent differential equation that we ought to deal with is the functional
Schrodinger equation defined on the configuration space of all fields [94, 112].
It is possible that such an approach would lead to an unambiguous way of dealing
with particle creation. The results obtained from an analysis of the functional
Schrodinger equation might not, in general, agree with the tunneling probability
calculated for equations such as (3.38) or (3.55). It would be interesting to know
the conditions under which the particle creation rate obtained from an analysis
of the functional Schrodinger equation coincides with the tunneling probability
evaluated, say, for equation (3.55). However, given the mathematical difficulties
associated with solving functional differential equations, it is difficult to arrive at

clear conclusions regarding the results for arbitrary electromagnetic backgrounds.

Comparing the three choices listed above, it seems that the third one is
the most reasonable. Therefore, we conclude that the results obtained from the
effective Lagrangian can be relied upon whereas the tunneling approach has to be
treated with caution. It is likely, however, that the tunneling interpretation will
prove to be consistent with the effective Lagrangian approach if we demand that

an auxiliary gauge invariant criterion has to be satisfied by the electromagnetic
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background before we can attribute a nonzero tunneling probability to particle
production. But it is not obvious as to how such a condition can be obtained

from the normal mode analysis.

3.3 Limitations of the Klein approach

A criticism of our analysis in the last section would be that the nonzero tunnel-
ing probability we have calculated corresponds to just a scattering by the time
independent magnetic field and does not correspond to particle production. It
can be claimed that there ought to arise a Klein paradox for a nonzero tunnel-
ing probability to be interpreted as particle production [113, 114, 115, 116, 117].
But the Klein paradox and its eventual resolution in terms of pair creation can
not adequately explain particle production in time independent electromagnetic
backgrounds. In this section, we point out the inadequacies of the Klein approach

through a couple of examples.

Consider the following vector potential
A" = (4(),0,0,0). (3.56)

Let us assume that the function ¢(x) — ¢y as ¥ — +oo, where ¢y are finite
constants. Since the vector potential is independent of time as well as the y and

z coordinates the normal modes of scalar field ® can be decomposed as follows:
Uk, (1, %) e wteikLmy Yok, (1), (3.57)

where 1 i, satisfies the following differential equation (set A(x) = 0 in equa-

tion (3.55))
d*

w00 = (ki P - )y (3.59)
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and we have dropped the subscripts on . The conserved four-current, in the

presence of a vector potential A*, is given by
gt = —i{CI)(D“CI))* — CI)*(D“CI))}, (3.59)

where D, is given by (3.7). It is easy to verify with the help of the Klein-Gordon

equation (3.34) that

9,5" = 0. (3.60)
Let us now assume that
Y(z) — ke 4 RethLe (3.61)
as © — —oo and
U(x) — Tekr (3.62)

as © — 0o, where

kr = ((w—qos)” — ko[> = m?)"?
(3.63)
ki = ((w— qé-)? — ko> —m?)"?

and we shall concentrate on values for w and k| such that both kr an k; are real.
Also, we shall assume that kr and kj, are positive definite quantities. For such a
case, the conservation of the z-component of the four current j# leads us to the

following Wronskian condition:
\R|* + (kr/kp)|T|* = 1. (3.64)

The incident, reflected and the transmitted current densities (viz. the zeroth
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component of the four current j#) have the following forms:

Ji = (w—q¢-)
gl =R (w0 —q¢-) (3.65)

3 =T (w = qo4),

respectively. Let us now set k; = 0. Since we have assumed that kr and kj,
are real and positive definite quantities, if we now also assume that (w — g¢_) >
m, then it is clear from the above equation that the incident and the reflected
currents correspond to a flux of particles. If we choose values for ¢4 such that
lq(d4 — &_)| > 2m, then the current density j? will be negative for a certain range
of values of w. But a negative current density corresponds to anti-particles. Also,
a current of anti-particles to the right is equivalent to a current of particles to the
left. Hence, for those values of w for which j? is negative, we will have to flip the

sign of kg in the Wronskian condition (3.64). This leads to
|R|* =1+ (kp/kp)|T|? (3.66)

which implies that |R|? > 1. (Note that kg and &z, are positive definite quantities.)
That is, the reflected flux of particles is greater than the flux that was incident
on the electromagnetic potential. This is usually attributed in literature to pair
creation by the electromagnetic background. But, is this interpretation correct in
a more general background? We have constructed below at least two examples

where this interpretation will prove to be inadequate to study pair production.

Consider the case when ¢ = 0 but ¢(x) is otherwise arbitrary for any finite
x. Then the sign flip that was expected in the current densities at the left and

right extremes will not occur and | R|? will not be greater than unity. On the other
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hand, for any finite « if the potential ¢(x) varies sufficiently one would expect the
background to produce particles. But the standard interpretation would not be
able to help us obtain the number of particles that have been produced by the
background since it depends only on the currents at the asymptotics. Since the
electric field is the derivative of the potential, if the potential is not a monoton-
ically increasing function, then the resulting electric field will certainly produce
pairs but will accelerate them in opposite directions thereby possibly even nulling
the currents at the asymptotics. Hence, the standard interpretation which de-
pends so strongly on asymptotic currents will prove to be inadequate to give us

the number of particles that have been produced by the background.

Now, consider the following vector potential: A* = (¢(x),0, A(x),0). The
function ¢(x) will give rise to an electric field and A(x) to a magnetic field. Choose
any ¢(x) such that the difference between the maximum and the minimum of ¢(x)
is certainly greater than 2m. In such a situation, the background is expected to
produce particles. But if we choose A(x) such that it produces a strong magnetic
field for large = then even if the electric field is able to produce particles the
magnetic field will confine the resultant currents so that the currents actually die
down as |¢| — oo. And, in the absence of transmitted currents we would be
forced to conclude that no particles are being produced by the background. The
worst case is when A(x) = Bx where B is a finite constant. This gives rise to a
constant magnetic field for large |z| and there simply will not be any currents at
the right and left extremes for any finite but otherwise arbitrary ¢(x). And, this
example is just as physical or unphysical as the Schwinger’s example of a constant

electromagnetic background!

Also, some of the discussion we had presented as a criticism of the tunneling
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approach applies to the Klein approach too. For instance, even the Klein approach
does not give a gauge invariant criterion for an electromagnetic background to
produce particles. In fact, the condition |¢(¢4—¢—)| > 2m that has to be satisfied

for |R|*> > 1 is not even Lorentz invariant!

These two examples clearly point out the inadequacy of the Klein approach
to explain the phenomenon of particle production by time independent electro-
magnetic backgrounds. The effective Lagrangian approach on the other hand
holds more promise. But, as we have mentioned repeatedly, evaluating the effec-
tive Lagrangian even for a given classical background proves to be a difficult task.
In such a situation, it will interesting to ask whether we can we say anything about
the effective Lagrangian by knowing certain features of a classical background. In
the following section, we show that this is indeed possible and can be exploited

successfully.

3.4 Effective Lagrangian: a conjecture

As we have discussed in the last two sections, the effective Lagrangian approach
is probably the most unambiguous approach available at present to study the
evolution of quantum fields in classical electromagnetic backgrounds. This is not
only true of electromagnetic backgrounds but applies to gravitational backgrounds
too [118, 119, 120, 121, 122, 123, 124, 125]. Several non-perturbative features of
the theory can be understood if the effective Lagrangian can be evaluated ezactly

for an arbitrary background field configuration.

Symmetry considerations suggest that it should be possible to express the

effective Lagrangian, at least formally, in terms of invariant scalars describing the
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classical background (gauge invariant quantities involving the field tensor F,, and
its derivatives in the case of electromagnetism and coordinate invariant scalars
involving the Riemann curvature tensor R,,\, and its derivatives in the case of
gravity). The existence of an imaginary part to the effective Lagrangian—and
other features—should be related to the actual values of some of these scalars.
We had seen in subsection 1.5.1 that the effective Lagrangian for a constant
electromagnetic background depends only on the two gauge invariant quantities
Gg=F"F, =2(B*-E?) and F = ¢*"F,F\,, = —8(E.B). Further, we saw
that the effective Lagrangian had an imaginary part only if G < 0, thereby imply-
ing that constant magnetic fields cannot produce particles while constant electric
fields can. This result, of course, had been obtained only for constant F},,’s and
it is not easy to evaluate the effective Lagrangian for a more general case. Also,
for an arbitrary electromagnetic background, there is no a priori reason as to
why the effective Lagrangian cannot depend on invariant quantities involving the

derivatives of F,’s, for instance, say, O\ F'* 9 F),,,.

The situation is still worse in the case of gravitational backgrounds. The
gravitational analogue of Schwinger’s electromagnetic example would be the case
of a constant gravitational field, i.e. a spacetime whose R,,,,’s are constants. It
would certainly be a worthwhile effort to evaluate the effective Lagrangian for such
a background. Though, considerable amount work has been done in this direction
in literature (see, for instance, refs. [126, 127, 128]), we are yet to have a covariant
criterion for particle production by constant gravitational fields (analogous to
the criterion G < 0 Schwinger had obtained for the constant electromagnetic
background). Also, since the gravitational interaction is not renormalizable, it

is not easy at all to regularize the effective Lagrangian (see, for e.g., ref. [4],
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sections 6.11 and 6.12).

In this section, we investigate a related but more restricted question. We
ask: Can one find non-trivial background field configurations for which the (reg-
ularized) effective Lagrangian vanishes identically? That is, we are interested
in finding classical field configurations in which neither vacuum polarization nor
particle production takes place. Such configurations certainly enjoy some special
status because these are the ones for which lowest order semiclassical corrections
vanish. The vanishing of the semiclassical corrections imply that the presence of
the quantum field does not affect the classical background at all. Or, in other
words, classical field configurations for which the effective Lagrangian is zero are
stable in the sense that such backgrounds are immune to backreaction effects of
the quantum field. What kind of classical field configurations will have such a

feature?

The effective Lagrangian for the constant electromagnetic background re-
duces to zero when the gauge invariant quantities F and G are set to zero. Apart
form this case, at least one more non-trivial electromagnetic field configuration is
already known in literature for which the effective Lagrangian proves to be zero.
Schwinger, in his pioneering paper [33], also calculates the effective Lagrangian
for a plane electromagnetic wave background (for which gauge invariant quan-
tities F and G are zero) and shows that it vanishes identically. These results
suggest the following conjecture: The effective Lagrangian will be zero if all the
scalar invariants describing the background vanish identically. In this section,
we present examples of non-trivial electromagnetic and gravitational backgrounds
with vanishing scalar invariants to support our conjecture. We evaluate the effec-

tive Lagrangian explicitly using Schwinger’s proper time formalism for the case
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of a quantized scalar field and show that it identically vanishes in these back-

grounds [129].

In subsection 3.4.1, we present a time independent example from electro-
magnetism and in subsection 3.4.2, we evaluate the effective Lagrangian for the
electromagnetic wave background using our technique. In subsection 3.4.3, we
present an example from gravity. We explicitly evaluate the effective Lagrangian
and show that it vanishes identically in these backgrounds. Finally, in subsec-

tion 3.4.4, we discuss the wider implications of our analysis.

3.4.1 A time independent electromagnetic example

Consider a time independent electromagnetic background described by the vector

potential
A* = (¢(,y),0,0, ¢(z,y)), (3.67)

where ¢(x,y) is an arbitrary function of the coordinates « and y. The resulting

electric field E and the magnetic field B are then given by

do , 09, do . 09 .
E:—(—ix—l—a—jy) and B:(a—jx—a—iy), (3.68)

where x and y are the unit vectors along the positive # and y axes respectively.
According to Maxwell’s equations, in the absence of time dependence, the charge
and the current densities, viz. p and j that give rise to the above field configuration

are

9 | 0%

P:V-E:—(@—I-aw) and j:VxB:—(—_|__

where z is the unit vector along the positive z-axis. Therefore, if the functions

p and j are chosen such that they are finite and continuous everywhere and also
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vanish as (z%+y?) — oo, then the corresponding electric and magnetic fields given

by equation (3.68) will be confined to a finite extent in the -y plane.

It is obvious from equation (3.68) that G = 2 (B? —E?) = 0 and F =
—8 (E.B) = 0 for this background field configuration. (As an aside, note that
this is an example of a field configuration other than that of a wave, for which
(E? — B?) as well as (E.B) are zero.) It is, therefore, a good candidate to test our
conjecture. The operator H (cf. equation (3.13)) that corresponds to the vector

potential (3.67) is given by
H=8*— V24 2iqe(d; + 9.). (3.70)

The kernel for the quantum mechanical particle described by the Hamiltonian

operator above can then be formally written as
K(t,x,5]t,%,0) = (t,x|exp—i (0 = V? + 2iqp(0; + 0.)) 5] [t,x).  (3.71)

Using the translational invariance of the Hamiltonian operator H along the time
coordinate t and the spatial coordinate z, we can express the above kernel as
follows

K(t,x,s|t,%x,0)
o dw [ dp,

_ et ei(uﬁ—pg)s
oo 2T Jooo 2m

X (x,y| exp —1 [(—az — 65 + 2¢(w — pz)qb) 3} lz,y). (3.72)

Changing variables of integration in the expression above to p, = (p, — w)/2 and

po = (ps +w)/2, we find that

K(t,x,s|t,%x,0)

1 o0 o0 —4ipypy s
= (ﬁ) v [ dp et

X (x,y| exp —1 [(—az — 65 — 4qpuqb) 3} |z, y).  (3.73)
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Performing the integrations over p, and the p, in that order, we obtain that

K(t,%,s|t,%,0) = (%) | dotaps)
x (w,y| exp—i |(—02 — 02 — 4gpus) 5| |z, )
1

= (—) (x,y| exp—1 [(—az — ayz) 3} |, y)

4rs
1
- (16W2i32) ' (3.74)

Substituting this expression for K'(¢,x,s|t,x,0)in (3.11) we find that the resulting
Leorr i the same as that of a free field (cf. equation (3.15)). So, on regularization
L.orr 1dentically reduces to zero. This result then implies that neither any parti-
cle production nor any vacuum polarization takes place in the time independent

electromagnetic background we have considered here.

In arriving at the above result we have carried out the p, and the p, inte-
grals first and then evaluated the matrix element. We shall now illustrate that
such an interchange of operations is valid by testing it for the case of a simple
example. Consider the case when ¢(x,y) = x. This corresponds to a constant
electromagnetic background with the electric and magnetic fields given by E = —x

and B = —y. For this case, the operator H is given by
=82 =V + 2iqu(d; + 8.). (3.75)

The translational invariance of the above operator along the ¢, y and z directions
can then be exploited to express the quantum mechanical kernel for the above

operator as follows

© dw oo dp. o dpy el
K(t,x,s|t,x,0) = / _w/ apr= Py i(w?—pi—p2)s

o 2T Jooo 2 J—oo 27

X (x| exp—1 [(—di + 2¢(w — pz)x) 3} |z). (3.76)
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Carrying out the p,-intergration and changing variables to p, = (p. — w)/2 and

po = (p» +w)/2, we obtain that
[X’(t X, 8|t x O) = ; /Oo d /Oo dp. ¢~ tPupvs
9 <™ 9 <™ - 27T2(47TZS)1/2 e p’U e pu

X (x| exp —1 [(—di — 4qpu:1;) 3} |z). (3.77)

The matrix element in the above equation corresponds to that of a quantum
mechanical particle subjected to a constant force along the z-axis. The matrix

element above is then given by (see ref. [130], p. 194)

. 1 . 1
(] exp—i | (—d? — 4gp,) 5| |2) = (W) exp —4i (qpuxs + §q2p383) :
(3.78)

Substituting this expression in the kernel (3.77), we obtain that

1 0 0 1
K(t,x,s]t,%x,0) = ( )/ dpu/ dp, eXp—4i{§q2p383

{m31s

+pus(qe + pu>}
1 37 12 e 3
= d Y s ., 2
(87r3z'5) (4@'(]253) /_OO Pv XD (qzs(p +qx))

- () o

which is the result we have obtained in equation (3.74). This discussion confirms

the fact that, in equation (3.74), the evaluation of the matrix element after the

p, and p, integrals are carried out is a valid exchange of operations.

As we have mentioned earlier, the effective Lagrangian Schwinger had ob-
tained for the constant electromagnetic background identically vanishes when the
gauge invariant quantities G and F are set to zero [33]. Our result above agrees
with Schwinger’s result since a constant electromagnetic background would just

correspond to choosing the function ¢(x,y) above to be linear in the coordinates
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z and/or y. Having said that, we would like to stress here the following fact. In
evaluating the effective Lagrangian above we have not made any assumptions at
all on the form of the function ¢(x,y). Hence, our result above holds good for any
time independent electromagnetic background with vanishing G and F. Thus, in

a way, our result here is more generic than Schwinger’s result.

3.4.2 Effective Lagrangian for a plane electromagnetic
wave background

In this subsection, we rederive Schwinger’s result for the electromagnetic wave
background using our technique. The plane electromagnetic wave can be described
by the vector potential

A, =1(0,1,0,0)f(t — 2), (3.80)
where f(t — z) is an arbitrary function of (¢ — z). The operator H corresponding

to this vector potential is then given by
H =0}~ 0%~ 02— 0%+ 2iqfd. + ¢** (3.81)

and in terms of the null coordinates v = (¢ — z) and v = (¢ + z) the above operator

reduces to
| 2 2 : 2 f2
H = 40,0, — 9, — 0, + 2iqf(v)0, + ¢" f*(u). (3.82)
The corresponding quantum mechanical kernel can then be formally expressed as
[X](u7 x? y7 /U7 S|u7 x? y7 /U7 0)

= (u,x,y,v|exp—1 {(4&8@ — 0 — 65 + 2iqf0, + q2f2) 3} lu, x,y,v). (3.83)

Exploiting the translational invariance of the operator H along the x, y and the

v coordinates we can write the above kernel as
[X (u7 $7 y7 /U7 S|u7 $7 y7 /U7 0)
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:/m@zmé& < dpy i)
—00 27'[' —00 27'[' —00 27'['

% 2 (ul exp —i [(~4ip, 0y — 2qpo f + 2 17) 5| |u), (3.84)

where the factor 2 is the Jacobian of the transformation between the conjugate
momenta (w,p,;) and (py,p,) corresponding to the coordinates (¢,z) and (u,v)

respectively.

The matrix element in the above equation corresponds to the quantum

mechanical kernel for a time evolution operator given by
]:]1 = _4ipvdu - 2qpr(u) + quz(U). (385)

The normalized solution ¥ g(u) to the time independent Schrédinger equation for

the operator H, corresponding to an energy eigenvalue F is then given by

1/2
Yp(u) = (873}%) 1B/ oxp —i (h(w)/4py), (3.86)

where
W) = — [ du (20p. () = ¢ F(w) (3.57)
The matrix element can now be evaluated with the help of the Feynman-Kac

formula as follows (see, for instance, ref. [82], chapter 7):
(e ™ol = [ dE pu(e) () P
1
_ ( ) exp i (h(u) — h(a))/4p. }

8Tpy

X /OO dE expi(E(u —u')/4p,) e F*

— exp —i{(h(u) _ h(u'))/%} Sp(u—u —s/dp,)  (3.89)

and in the coincidence limit © = «’, the matrix element reduces to a Dirac delta
function i.e.

(u|exp —i[:[15|u> = dp(4p,s). (3.89)
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Substituting this result in equation (3.84), we obtain that

2 o dp, 2 % dp,
K(u,z,y,v,slu,z,y,v,0) = (7) / P 6_%5/ P dp(4pys)

(4mis)l/2 —oo 2T —oo 2T
2 < dp, /1
_ = Spip,
(47Ti3) /—oo 27 (43) D(p )
1
=t (3:90)

When this kernel is substituted in equation (3.11) we find that the resulting L.,
is the same as that of £2 . (cf. equation (3.15)), which on regularization reduces

identically to zero. Therefore, neither vacuum polarization nor particle production

takes place in an electromagnetic wave background (also, see ref. [131]).

3.4.3 An example from gravity

In this subsection, we shall present a gravitational background for which the
effective Lagrangian proves to be identically zero. The system we shall consider
in this subsection consists of a massive, real scalar field ® coupled minimally to
gravity. It is described by the action

Sl @ = [ d'a /=g L{g®)

1 1
= /d4:1; V—g {16% + 5gwa“cpa”q) -3 m2<1)2} . (3.91)

where m is the mass of a single quantum of the scalar field and g, is the metric
tensor describing the gravitational background and we have set G =1 for conve-
nience. An effective Lagrangian can be defined for the gravitational background

as follows (see our discussion in section 1.6):

exp i/d4:1; V=9 Lesi(guw) = /DCI) exp ¢ S[P, g ). (3.92)

The effective Lagrangian can then be expressed as L.;; = Lyr00 + Loorr, Where

Lyray = (R/167), the Lagrangian density for the gravitational background. Inte-
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grating the action for the scalar field in the above equation by parts and dropping
the resulting surface terms, we find that L., can then be expressed as (see, for

instance, ref. [1], p. 193)

exp i/d4:1; V=9 Leorr(gu) = /DCI) exp —i/d4:1; V—yg ((I)D(I))
= (detD) i

1 A

= exp—g Tr(ln D)

1 R
= exp—3 /d4:1; V=g ({t,x| In D |t,x), (3.93)
where the operator D is given by

D=—=09,(¢""v/—=g0, (3.94)
and, as we had done earlier done in the case of electromagnetism, we have intro-
duced a complete set of orthonormal vectors |¢,x), to evaluate the trace. From

equation (3.93) it is easy to identify that L., = (i/2) (¢, x|In D|t,x>. Using

equation (3.10) L., can then be written as
Loy = —= — e s (¢, %, 8], %, 0), (3.95)

where

K(t,x,slt,x,0) = (£, x|e" |t x) (3.96)
and the operator H is now given by

/\

To obtain finite results, the quantity that has to be subtracted from L., is then

given by

1 dS 2_,
0 _ —2(m~* —zi€)s
Leorr = = (32%2) /o Eh ' g (3.98)
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which corresponds to setting ¢g,, = 7,, in the operator IT above. (L0, given by
equation (3.15) is twice the £2 = above because the complex scalar field we had

considered in the last two subsections has twice the number of degrees of freedom

as a real scalar field we are considering here.)

A gravitational background can be described by fourteen independent scalar
invariants constructed out of the Riemann curvature tensor [132, 133]. To verify
our conjecture, we should evaluate L., defined in equation (3.95) for a back-
ground for which all these invariants vanish. And, of course, we need a back-
ground which is sufficiently simple for allowing the evaluation of L., in a closed

form.

One such example is given by the spacetime described by the line element
45 = (1+ (o, )t — 2f(z,y)dtdz — (1 — f(e,y))de* — da® — dy?,  (3.99)

where f(x,y) is an arbitrary function of the coordinates = and y. (This metric is
a special case of the metric that appears in [134]. It can be shown that all the
fourteen algebraic invariants for this metric vanish identically [135].) The nonzero

components of the Ricci tensor for the above metric are

00 _ p33 _ p30 _ l) >f 0
R = R = R = ( 51t 5 (3.100)

and the Ricci scalar R is zero. Since the Ricci scalar R is zero, the Einstein tensor
is given by G* = R" and the Einstein’s equations reduce to R* = 8z T"". A
pressureless steady flow of null dust with energy density p = R traveling along
the z-direction satisfies the above Einstein’s equations and therefore gives rise
to the metric (3.99). Since det(g,,) = —1, the operator H (cf. equation (3.97))

corresponding to this metric is given by
H =02~ 0%~ 0%~ 0% — (0} + 02 + 20,0.). (3.101)
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Using the translational invariance along the ¢ and z directions the kernel for the

time evolution operator above can be written as

o] dw oo dpz i(w2—p§)s

K(t,x,s|t,x,0) =

—oo% — 00 27

% (ylexp —i [(=0% = 02 + (w — p.)* £) 8] |2.y). (3.102)
Changing the variables of integration to p, = (p, —w)/2 and p, = (p. + w)/2, we
obtain that

1 0 00 :
I((t,X,SH,X, 0) — (ﬁ) / dpu / dpv €_4Zpupv5
T — oo

X (x,y|exp —1 [(—az — a; + 4p? f) 3} |z, y)
() [
X (x,y|exp —i [(—az — a; + 4p? f) 3} |z, y)

= ( ! ) <x,y|exp—i{(—a£—ay2) 3} |z, y)

4rs
- ( ! ) (3.103)
— \16m%s2/) " '
Substituting the above result in equation (3.95) we find that
1 % (s 2
_ e —i(mf—ie)s 104
Leorr (32%2) /0 3 7 (3.104)

which on subtracting the quantity £2 . given by equation (3.98) reduces to zero.
This result again implies that in the gravitational background we have considered

here neither any particle production nor any vacuum polarization takes place.

3.4.4 Discussion

The effective Lagrangian provides a simple way of estimating the amount of vac-

uum polarization and particle production in a classical background. For example,
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the background field is expected to induce vacuum instability and produce parti-
cles if and only if the effective Lagrangian has an imaginary part. If the effective
Lagrangian vanishes for a particular background field, then no vacuum polariza-

tion or particle production takes place in such a field configuration.

In principle, this is an observable phenomenon since physical effects oc-
cur if the effective Lagrangian happens to be nonzero. For example, consider a
constant electric field confined in space, say, the electric field between a pair of
capacitor plates. In such a case, the imaginary part of effective Lagrangian will
be nonzero and the particle production will take place. These particles that have
been produced will get attracted towards the capacitor plates thereby reducing the
strength of the electric field between the plates. To maintain the original config-
uration intact, an external agency has to correct for this effect. We can therefore
conclude that the above configuration—uviz., that of a constant electric field in
a confined region—is not immune to quantum backreaction effects. Such, physi-
cally observable, effects do occur even if the effective Lagrangian does not have an
imaginary part. A typical example would be the Casimir effect in flat spacetime.
It can be shown that for such a case the effective Lagrangian is nonzero and real.
The effective Lagrangian which depends on the separation between the plates,
can be related to the Casimir energy. The resulting observable physical effect is
the attraction between the Casimir plates. Left to themselves, the Casimir plates
will move towards each other because of a force which is a quantum backreaction
effect arising from the nonzero real part of the effective Lagrangian. Once again,
to maintain the original configuration—uwiz., the original separation between the

plates—an external agency has to correct for the quantum backreaction effect.

In contrast to the above examples, backgrounds with vanishing effective
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Lagrangian are ‘self-consistent’ in the sense that no backreaction of the quantum
field on the classical background occurs in these configurations. This is a feature of
certain backgrounds which does not seem to have been noted in literature before.

This aspect seems to be worthy of further study.

It should be possible to express the determinant of the operator D (and
hence the quantity L..,.) appearing in equations (3.6) and (3.93), at least formally,
in terms of the invariant quantities describing the background. In particular, one
would expect the effective Lagrangian to contain only those terms that are simple
algebraic functions of the scalar invariants (otherwise renormalization would not
be possible). If so, the effective Lagrangian would prove to be zero if all the
invariants describing the background vanish identically. Motivated by this fact,
we put forward the conjecture that the regularized L.,.. will prove to be zero
for background field configurations for which all scalar invariants are zero. In
other words, our conjecture implies that integrating out the degrees of freedom
corresponding to the quantum field does not introduce any quantum corrections to

the Lagrangian describing classical backgrounds with vanishing scalar invariants.

We had also tested our conjecture with some specific examples. For the
electromagnetic background we have considered in section 3.4.1 we had pointed
out that the gauge invariant quantities G and F are zero and it can be easily shown
that quantities such as 8AF“”8AFW and eAp“l’@nFApanFMy also vanish identically.
It is likely that all the gauge invariant quantities that can be constructed out
of the vector potential (3.67) vanish identically. For the gravitational example
considered in section 3.4.3, as mentioned before, it can be shown that all the
fourteen algebraic invariants that can be constructed out of the Riemann tensor

for the metric (3.99) vanish identically [135]. Therefore, the vanishing of L., for
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these backgrounds is consistent with—and supports—our conjecture.

We would like to point out here the following fact. The classical back-
grounds we have presented in sections 3.4.1 and 3.4.3 are non-trivial though all
the scalar invariants may vanish. They are not just flat space presented in an arbi-
trary gauge or a coordinate system. The fact that a particle in these backgrounds

will experience non-trivial forces acting on it ascertains this fact.

The examples that we had presented in sections 3.4.1 and 3.4.3 are time
independent examples. As we saw in 3.4.2, an example of a time dependent
background for which the effective Lagrangian proves to be zero is that of a plane
electromagnetic wave. For the electromagnetic wave background, all the gauge in-
variant quantities vanish identically. This can be argued as follows (see, ref. [131]).
The characteristic of a plane electromagnetic wave is that its field strength is of

the form

B = fu Fnua"), (3.105)

where n,, is a null vector and the amplitudes f,,’s are constants. Also, F},, and
“F., (*F,, is the dual of F},,) are orthogonal to n,. It is then clear that all gauge
invariant quantities with explicit derivatives vanish, since any n, must contract
either with F),, or itself. Thus, only polynomials in F}, and *F}, remain. But,
any scalar function involving [, and *F),, can be written only in terms of the
invariants G and F, both of which vanish here. Therefore, all gauge invariant
quantities involving the field tensor and its derivatives are zero for an electromag-
netic wave background. Hence, the vanishing of the effective Lagrangian in such

a background clearly supports our conjecture.

Ideally, one would have liked to evaluate the effective Lagrangian for an

141



arbitrary classical background field configuration. But, as we have pointed out re-
peatedly, evaluating the effective Lagrangian for an arbitrary classical background
proves to be an impossible task. Due to this reason, our approach to this entire
problem has been a more practical one. The conjecture we have put forward in
this section is only the first step in this approach. There exist deeper reasons in
proposing this conjecture (with the danger of sounding obvious) and attempting
to establish its validity with some specific examples. These motivations are as
follows. The effective Lagrangian may indeed prove to be zero for classical back-
grounds for which all the scalar invariants are zero, but the converse need not be
true. That is, the effective Lagrangian may prove to be zero even though some of
the scalar invariants describing the background are nonzero. Backgrounds with
vanishing effective Lagrangians but non-vanishing scalar invariants can help us
identify the terms that will appear in the effective Lagrangian for the most gen-
eral case. Classifying such backgrounds will certainly prove to be a worthwhile
exercise when evaluating the effective Lagrangian for an arbitrary background is

proving to be an impossible task.

3.5 Some remarks on the Schwinger’s formalism

Our discussion in the last three sections clearly points to the following fact: The ef-
fective Lagrangian approach proves to be more reliable than the other approaches
available at present to study phenomena such as vacuum polarization and par-
ticle production in classical backgrounds. Also, we have been able to utilize the
formalism due to Schwinger to evaluate the effective Lagrangian for non-trivial

electromagnetic and gravitational backgrounds.
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But, Schwinger’s formalism implicitly chooses a particular boundary (or
initial) condition in the evaluation of the effective Lagrangian. It is not at all
obvious as to what would such a boundary condition correspond to in a general
situation. Let us say that we are evaluating the effective Lagrangian for the
Schwarzschild spacetime using Schwinger’s formalism. What would the boundary
condition that is implicitly chosen in Schwinger’s formalism correspond to in such
a case? Will it correspond to choosing the initial state of the quantum field to be
the Boulware vacuum state or will it prove to be the Unruh vacuum? If it is the
former, then we would expect the effective Lagrangian to have no imaginary part,
whereas we would expect its imaginary part to be nonzero for the latter condition.
Also, if it is the latter condition, we would expect the nonzero imaginary part to

correspond to the total energy emitted by the black hole due to Hawking radiation.

Some insight into this aspect of Schwinger’s formalism can be gained by eval-
uating the Feynman Green’s function using the same formalism for the constant
electric field background in the two gauges A} and Aj given by equations (1.120)
and (1.121), respectively. The Feynman Green’s function G'p(x, ') satisfies the

following differential equation

N

D,Gp(z,2") = —dp(x — a'), (3.106)

where the operator Dis given by equation (3.7) and the subscript @ on the operator
D denotes that the differentials are with respect to coordinates (f,x). Using a
complete orthonormal set of vectors |t,x) the Feynman Green’s function can be

expressed as follows:

Grp(z,2') = (4, x|Gplt’, x). (3.107)
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Then, the differential equation satisfied by G'g(x,2’) can be formally written as

Do (t,x|Gplt',x') = —(t,x|t', x"), (3.108)

or simply as DGp = —1, which then implies that Gp = —D! (see, for e.g.,
ref. [136]). Therefore

Gr(z,2') = (L, x|D7, x'). (3.109)

Using the following integral representation for the operator D1
D! = z/ ds exp —z(b — i€)s, (3.110)
0

(where € — 07), the Feynman Green’s function can be written as

Gp(z,2') = —i / ds (t, x|e"iD=9s|y’ x')
0
_ _@'/ ds =719 [ (¢, x, 5]t %', 0), (3.111)
0
where
K(t,x,s|t',x',0) = (t,x|e” |t x') (3.112)

is the quantum mechanical kernel corresponding to the Hamiltonian operator H
(given by equation (3.13)) we have encountered earlier. The Feynman’s Green’s
function for the case of a constant electric field background can be evaluated in the

two gauges A} and AL using the above technique. It is given by the expression

K
Ghlee)) = — (féﬂ) exp —igB(t+)(x — 2')/2
oo ds o2 7
—i(m?—ie)s e AV VAY
8 /0 ssinh(gFEs) ‘ P s {(y vyt =4) }
gk 2 2
——(t—1 — A1
X exp Tranh(qEs) {( )+ (2 — ') } (3.113)

in the time dependent gauge A} and by the expression

K
Go(z,2) = _(q

16#2) exp iqE(t —t')(x + 2")/2
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oo ds o2 - )
—i(m?—ie)s e EAY VAV
8 /o ssinh(gFEs) ‘ P s {(y v+ =4 }

b ) {(t =1+ (x — ")} (3.114)

>< _—
P 4tanh(qFs

in the space dependent gauge A5. From these two expressions, it can be easily

seen that

Gz, 7") = Gp(z,2') exp ik (tz —t'2'). (3.115)

The gauge transformed mode in the gauge A4 is a product of the normal mode
in the gauge A} and the gauge factor exp i(¢Fxt). Hence, in the above relation
the phase that relates 3. to G} is the corresponding gauge factor. Therefore,
the above relation implies that the Feynman Green’s functions evaluated in the
two gauges using Schwinger’s formalism are gauge transforms of each other. On
the other hand, compare the normal modes we had obtained earlier in these two
gauges Ajp and A4, They are given by equations (1.123) and (1.137). It can be
easily seen that the normal mode in the gauge A} is not equal to the product of
the normal mode in the gauge A} and the gauge factor exp i(¢FExt). Therefore,

the normal modes in these two gauges are not gauge transforms of each other.

Our analysis in this section shows that Schwinger’s formalism is able to
choose a particular boundary condition such that the resulting effective La-
grangian yields a gauge invariant result. It will be a worthwhile effort to carry
out a similar analysis in different coordinates corresponding to a particular curved
spacetime, say, for instance, the black hole spacetime. Such an analysis might
provide us with some clues to understand the reason behind the coordinate de-

pendence of the particle concept in a curved spacetime.
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Chapter 4

Limited validity of the
semiclassical theory

Our aim in the last two chapters has been two fold: (i) to improve our under-
standing of the particle concept and (ii) to look for an invariant description of the
phenomenon of particle production. To a certain extent, we have been successful
in our efforts. In chapter 2, we found that a finite time detector can possibly be
utilized to provide a localized definition of the particle concept. And, in chap-
ter 3, we illustrated as to how the effective Lagrangian approach proves to be
more reliable than the other approaches that are available at present to study the
evolution of quantum fields in classical backgrounds. Not only that, the effective
Lagrangian is an invariant quantity and hence it can directly lead to an invariant
description of the phenomenon of particle production. In the last two chapters, we
had studied the evolution of quantum fields in a given classical background and
we had not taken into account the backreaction of the quantum field on the clas-
sical background. In this chapter we shall analyze some issues of the backreaction

problem.

As we had discussed in section 1.6, the effective Lagrangian approach itself
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can be used to study the backreaction problem. Say, we are able to evaluate the
effective Lagrangian for an arbitrary background field configuration. Then, we
can vary the resulting effective Lagrangian and obtain the equations of motion
for the classical background field, thereby possibly even taking into the account
the backreaction of the quantum field on the classical background. Of course,
as we have repeatedly mentioned, the evaluation of the effective Lagrangian for
an arbitrary background proves to be an impossible task. Even if we had been
able to do so, such an approach has another drawback which we had pointed
out, earlier, in section 1.6. The effective Lagrangian is, in general, a complex
quantity and hence the resulting equations of motion for the classical background
can prove to be complex. The backreaction of the quantum field on the classical
background can then possibly be studied by dropping the imaginary part of the
effective Lagrangian and retaining only the real part. But, such prescription would
be ad hoc. Also, since the imaginary part of the effective Lagrangian reflects the
amount of particle produced by the background, dropping the imaginary part
of the effective Lagrangian would correspond to neglecting the effect of particle

production on the classical background.

In the case of gravitational backgrounds, as we have discussed in section 1.6,
a more natural and plausible proposal would be to consider the expectation value
of the energy-momentum operator of the quantum field as the term that induces
the non-trivial geometry [27, 28, 29, 30, 31, 32]. (See refs. [137, 138, 139], for a
discussion of the backreaction of the quantum field on classical electromagnetic
backgrounds.) Since the theory we are considering here, by itself, is incapable of
providing us with a preferred state for the quantum matter field, the expectation

value <TW> has to be evaluated in a state specified by hand that is also consistent
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with the dynamics. Therefore, the complete analysis of the backreaction of a
quantum field, say a massless scalar field, on the classical background metric

reduces to that of solving the Einstein’s equations

1 .
Gu = R — §gw R =871 (T,,), (4.1)

A

where (7},,) is the expectation value of the energy-momentum operator (in the
specified state) of the scalar field and the following Klein-Gordon equation

1
-9

0u (V=gg"0,) ® =0, (4.2)

ﬁ

self-consistently.

Apart from the fact that the energy scales involved should be far below
the Planck scale (~ 10'? GeV) for the semiclassical theory as proposed above to
be valid, the fluctuations in the energy-momentum densities of the quantum field

should not be too large either [140], i.e. we must demand

(Top(@) T (W) = (Tap(@)) (T (v)- (4.3)

So, equation (4.1) will prove to be inadequate to describe a situation when the
fluctuations in the energy-momentum densities are large. The goal of this present
chapter is to check the validity of the semiclassical theory that is based on the
equations (4.1) and (4.2) in time dependent background metrics like, for instance,

a Friedmann universe, for different states prescribed for the quantum field [141].

The calculations necessary for drawing the limits on the validity of the
semiclassical theory, with aid of the condition (4.3), will involve evaluating the
expectation values of the operators Tw and Tw Tag. These calculations will in-

volve divergences of quantum field theory, which arise because of the infinite
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degrees of freedom associated with the fields, and these infinities will have to be
regularized in a systematic manner. Since these issues will eventually sidetrack
our main concern, in this chapter, we shall study the backreaction problem for a
minisuperspace model of a Friedmann universe with a quantized massless scalar
field when all but one mode of the scalar field are ‘frozen’. (For a discussion on
minisuperspace, see, for instance, ref. [142].) In such a case, the divergences that

may arise because of the infinite degrees of freedom are avoided.

This chapter is organized as follows. In section 4.1, we discuss the minisu-
perspace model we intend to study and in section 4.2, we extend the criterion that
has been suggested earlier by Kuo and Ford to draw the limits on the validity of
the semiclassical theory to our model. In section 4.3, we utilize this criterion to
study the reliability of the semiclassical theory for our model when the quantized
scalar field mode is assumed to be in a (i) vacuum, (ii) n-particle or (iii) coherent
state. In section 4.4, we discuss the implications of our analysis on field theory
and we close this chapter with section 4.5, wherein we present the conclusions

that can drawn from our analysis.

4.1 Friedmann universe with a massless scalar
field: minisuperspace model

A massless scalar field ® that is coupled minimally to gravity is described by the

following action:

RO
Slgu ®] = [ e /=g (167 5 g 00 6”(1)) . (4.4)

Consider a homogeneous and and isotropic spacetime described by the line element
ds? = N*(1)dt* — (1) (da® + dy? + d=?) | (4.5)
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where N(t) is an arbitrary function of the time coordinate . We can exploit the
homogeneity of such a spacetime and decompose the scalar field into its Fourier
modes. For the case of the metric (4.5), the above action, after the @ terms have
been integrated away by parts and the scalar field has been decomposed into its
Fourier modes, reduces to
.9 C g
Sla ] = [ dta’ (—;T—VN {%}+§kj% {%—Nu)ﬂqkﬁ}), (4.6)

where ¢ (1) are the spatial Fourier transforms of the scalar field, w(t) = (k/a(t)),

k = |k| and V is the volume of the universe.

As is well-known, a quantum field has infinite degrees of freedom associated
with it. Due to this reason, divergences arise when we evaluate expectation values,
say, that of the energy-momentum tensor of the quantum field. Therefore, to avoid
these divergences, as we had mentioned at the beginning of this chapter, we shall
consider the evolution of just a single mode k of the scalar field. That is, we shall
carry out our analysis for a system with only a finite number of degrees of freedom

(in fact, just two) which is described by the following action:

Sla.q = [ dta® (—;T—VN {Z—z}+% {q—;—m?q?}). (4.7)

Varying the above action with respect to N and setting N = 1 after the variation,

we obtain the following equation of motion for the degree of freedom a:
a> _ 8w {1 (-z_l_ 2 2)} (4.8)

—_ = — { = w .

a2 3v 12 \1 )]

which is the Friedmann equation (or rather, its minisuperspace version) we will

be interested in.

In the semiclassical domain, when the single mode ¢ of the scalar field is
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quantized it satisfies the following Heisenberg equation of motion
qg=0. (4.9)

Let us now express the operator ¢ as follows:

i) = AQ() + ATQ (1), (4.10)
where A is an operator independent of time and () satisfies the same differential
equation as the operator ¢. As we have discussed towards the end of section 1.1, in
a gravitational background a timelike Killing vector field is essential to define the
positive frequency modes of the quantum field unambiguously. But the Friedmann
universe we are considering here is time dependent, and, in general, it will not
possess a timelike Killing vector field. We had encountered such a time dependent
situation, earlier, in subsection 1.4.1, when we had analyzed the evolution of
a quantum field in a constant electric field background in the time dependent
gauge A]. We had then defined the positive frequency modes of the quantum
field in the WKB limit. In the case of the Friedmann universe we are considering
here, we can carry out a similar decomposition of ¢} in the WKB limit. Note
that in the action (4.6) the mode ¢ resembles a time dependent oscillator with a
mass a” and frequency w (when N is assumed to be unity). Therefore, ) can be

decomposed in the WKB limit as follows [21, 23, 24]:

Q= a(t) f(t) + B) (1), (4.11)

where f(t) is to be identified as the positive frequency component of the scalar

field mode ¢. It is given by

(1) = miﬁ exp —z{ t: dt’w(t’)}, (4.12)
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where ty is an early time when the initial conditions for the differential equa-

tion (4.9) are specified. If we now define Q to be

Q@ =~ (alt) 70 = 5 (1)), (1.13)

then, we find that o and 3 satisfy the following set of coupled differential equations

G = (afa) B exp 2 {ff dt' ()}
(4.14)

B =(ifa) o exp—2i {ﬁ; dt’w(t’)}.

If the initial conditions for @) are chosen such that a(tg) = 1 and (3(¢g) = 0, then

the Wronskian condition corresponding to the differential equation (4.9) is
o~ 187 = 1. (4.15)

If we now substitute equation (4.11) in (4.10), we find that the operator ¢ is given
by

(1) = aln) J(1) +al (1) (1), (4.16)
where

a(t) = a(t) A + p(t) At (4.17)

and a(ty) = A. From the above relation it is easy to see that the quantities «
and [ are the Bogolubov coefficients that relate the annihilation and the creation
operators at the initial time ¢ (121 and AT) to those at any later time ¢ (a and
a?%9). The Hamiltonian corresponding to the scalar field mode at any time ¢ > ¢,

is given by

= (da+(1/2)) w. (4.18)



The decomposition of operator ¢, as we have carried out in equation (4.16 corre-

sponds to an instantaneous diagonalization of the Hamiltonian H.

In the semiclassical domain, when the single mode ¢ of the scalar field
has been quantized as discussed above, the semiclassical equation corresponding

to (4.1) for our minisuperspace model is then given by

a? 81

a3V
where [¢) is the state of the scalar field mode and H is given by (4.18). In the

(| Hv), (4.19)

Heisenberg picture we are considering here, the quantum state |¢) is independent
of time and it can be defined at the same time 75 when the initial conditions for the
differential equation (4.9) are specified. In the following sections of this chapter,
we shall examine the validity of the semiclassical equation (4.19) for different
states of the quantized scalar field mode §. The three quantum states of the
scalar field mode we will be interested in are the (i) vacuum (|0}), (ii) n-particle

(In)) and (iii) coherent (|A)) states. They are defined as follows:

Alo) =0
AtAln) = n|n) (4.20)
AX) = M.

4.2 Criterion for drawing the limits on the va-
lidity of the semiclassical theory

The semiclassical theory as described by the equations (4.1) and (4.2) does not
take into account the fluctuations in the energy-momentum densities of the quan-

tum field. Hence, as we had discussed at the beginning of this chapter, this

153



semiclassical theory can be relied upon only when the fluctuations in the energy-
momentum densities of the quantum field are small when compared to their ex-

pectation values.

Motivated by this fact, Kuo and Ford have suggested that the dimensionless

quantity [143]

C: Tapl) Tonl) ) = G Taple) ) G Tude) )y o)
(: Tupl) Tuly) +)

(where the colons represent normal ordering) be considered as a measure of the

Aapu(2,y) =

fluctuations in the energy-momentum densities of the quantum field. When the
fluctuations in the energy-momentum densities are negligible, this quantity will
be far less than unity and the semiclassical theory as described by equations (4.1)
and (4.2) will prove to be quite sound. And, when the fluctuations are large the
above quantity is expected to be of order unity reflecting a breakdown of the

theory.

The numerous components and the dependence on the two spacetime points
make the quantity A,p,..(x,y) an extremely cumbersome object to handle. For
the sake of simplicity, as Kuo and Ford themselves suggest, we can confine our at-
tention to either the evaluation of the purely temporal component of this quantity

in the coincidence limit (i.e when z — y)

T T, N (T )2
Agra(z) = ‘< o0() Too() + ) = {+ Too(2) : ) (4.22)
< . Too(l') Too(l') . >
(subscript K'F stands for Kuo and Ford) or the quantity
T T, N (T : )2
Agpi(x) = ‘< o(2) 00(:11) ) <2 oo(2) 1) ‘ (4.23)
(: Too(x) =)
The quantities Axp; and Agpy are related to each other by the equation
Axr1 )
Agpy = [ ————). 4.24
e <AKF1 +1 ( )
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In (4.19), the semiclassical equation for our minisuperspace model, the back-
reaction term is the expectation value of the Hamiltonian operator of the scalar
field mode. The validity of equation (4.19) will then depend on the magnitude of
fluctuations in the expectation value of the operator H. Since the minisuperspace
model we are considering here, has only a finite number of degrees of freedom, no
divergences occur in the expectation values. Hence no regularization needs to be
carried out. Then, the quantities that correspond Agpr; and Ay gy for the case of

our minisuperspace model are

2y — (H)?
Agsci(t) = ‘< <H>§ ) ) (4.25)
(subscript SC stands for semiclassical) and
H2) — (H)?
Asca(t) = ‘% . (4.26)

The magnitude of the two quantities Agey and Ageo will then reflect the amount
of fluctuations in <[:[> and therefore on the validity of the semiclassical equa-
tion (4.19). The two quantities Agcy and Ageq are related to each other by the
equation

Asot ) . (4.27)

Aoy = (7
e Ager + 1

(Ascr and Ages are expected to yield equivalent results.)

In the adiabatic limit, i.e. when the background metric is evolving very
slowly, the ground state energy of each mode of the quantum field just gets shifted
and no excitation of these modes takes place. Or, in other words, no particle cre-
ation takes place. In this limit the semiclassical equation (4.1) proves to be quite
reliable [144]. On the other hand, when the metric is evolving very rapidly, a large

number of particles get created, with the result that the expectation value of the
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energy-momentum density of the quantum field ceases to account for the backre-
action adequately. The adiabatic limit for our minisuperspace model corresponds
to the case when the scale factor a of the Friedmann universe is a slowly varying
function of time, i.e. when (a/a) — 0. In this limit, for the initial conditions we
have chosen viz. a(ty) = 1 and ((ty) = 0, equation (4.14) implies that 5 — 0.
So, when  — 0, we expect Agey and Agey to vanish thus suggesting a perfect
validity of equation (4.19). And, when 3 — oo, i.e. when (a/a) is large, we expect
Agcr and Ages to be of order unity implying that (4.19) does not describe the

backreaction problem adequately.

4.3 Ago for different quantum states of the
scalar field mode

In the following three subsections we shall evaluate the quantities Ageq and Ageo
for the (i) vacuum, (ii) n-particle and (iii) coherent states of the quantized scalar

field mode ¢. The evaluation of these quantities are quite straight forward.

4.3.1 For a vacuum state

Let us assume that the state of the scalar field mode ¢ is a vacuum state at the
time t = to. Then, the expectation values of the operators H and H? in such a
state are

(i) = (0] (a'a + (1/2)) 0y w = (|8 + (1/2)) w (4.28)

and

(H?) (of (ata+(1/2)) (ata +(1/2)) 0) w?

(3181 +3151" +(1/4)) w*. (4.29)
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Substituting these quantities in the expressions for Agey and Ageq above, we find

that they are given by

216)” +213[" )
A 1 = 2 1 y 430
> (w + (8 + (1/4) 430

:( 21" +2|8]" )
3181 + 318" + (1/4)

Asca (4.31)

4.3.2 For a n-particle state

If the quantum state of the scalar field mode ¢ is assumed to be a n-particle state,

then the expectation values of the operators H and H? are given by

A

(H) = (| (a'a+(1/2) |n)w

= (@n+D)[BF+n+(1/2)) w (4.32)
and

(1% = (n] (afa+(1/2)) (aa+(1/2)) In)w?
= {(n2+n) (14613 +6]3[")
F (P 318+ () bt (@33)

When these quantities are substituted in equations (4.25) and (4.26), we find that

Ager and Agey are given by the following expressions:

_ 2|8 +218]" n*+n+1
s {(1+4|ﬂ|2+4|ﬁ|4) (n2+n—|—(1/4))} (4.34)
and
_ 2181 +218/" )( n4+n+1 )}
Aoy = | |
" {(1+6|ﬁ|2+6|ﬁ|4 n®+n+(1/2) (4.35)
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4.3.3 For a coherent state
When the quantum state for ¢ is specified to be a coherent state, the expectation
values of H and H? are

() = (N (afa+(1/2)) [N w

{AP (14218P) + X a g+ 320" + |8+ (1/2)} w  (4.36)

(1) = (A (afa+(1/2)) (ala+(1/2)) |3 w?
= {(A1"+213P) (146157 + 611"
+ (20 +3) (N ap+ 23707 5) (1+2]8)
+ (M a2 B4 X 37 4 (3187 +3181") + (1/4)}&. (4.37)
The expressions for the Agcq and Ageg corresponding to the coherent state |A)

are then given by

Asor = {IAP (148151 +813[")
+2 (1+2187) (A2ag+ X0 ) +2 (1812 +18]") }

I (U 2180) 42 0B 4 a0t g B+ (1) (38)
and

Aser = {INP (1+8197 +819[")
+2 (1+2187) (\aB+ X2 3) +2 (I8 + Iﬂl“)}
LA +210P) (14615 +6191")
+ (27 +3) (A2ap+ 3o 57) (1+2]67)
(Vg e 3) 4 (3180 43187 +(1/4)) . (4.39)

158



Table 4.1: Age in the limit of 3 — 0

Vacuum n-particle Coherent
AP
Asor 0 0 (FFitram)

AR
Ascz 0 0 (|A|4 +2P + <1/4>)

Table 4.2: Age in the limit of  — oo

Vacuum n-particle Coherent
n24+nt1 AP (8 4 4c1) +2
Asci 2 (2n2 ¥ 2n—|—(1/2)) ((mz) (2+C1)+1)2)

n24n+l AP (8 + 4¢1)+2
Asca  (2/3) (—3n2+3n+(3/2)) (|/\|4(6-|—4c1+02)+|/\|2(12+6c1)+3)
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Ascr and Ages for the three quantum states in the two limits 4 — 0 and
 — oo are tabulated in tables 4.1 and 4.2, respectively. The quantities ¢; and ¢

in table 4.2 are given by
cp=2cos(la+b+2l) ; ¢ =2cos(2a+2b+41), (4.40)

where a, b and [ are the arguments of the complex quantities «, 3 and A, respec-

tively.

The results tabulated in tables 4.1 and 4.2 show that in the adiabatic limit,
i.e when 0 — 0, Ager and Agey identically vanish for the vacuum and n-particle
states whereas, for coherent states with a large value of A they die down as [A|7>.
And, in the limit when the Friedmann metric is evolving rapidly, i.e when § — oo,
we find that Agc; and Ages are of order unity for the vacuum as well as the n-
particle states (even when n is large). This result then implies that the fluctuations
in the backreaction term in the semiclassical equation (4.19) are large in vacuum
and n-particle states when a large amount of particles are being produced by
the gravitational background. Whereas, for the coherent state with a large A the
quantities Agcr and Ageo die down as |)\|_2 even when (3 — o0o. These results then
imply that the semiclassical theory for our minisuperspace model as described by
equation (4.19) is valid, during all stages of evolution, only if the scalar field mode

is assumed to be in states like coherent states.

4.4 Agp for different quantum states of the
scalar field mode

Had we been dealing with the complete field theory instead of a minisuperspace

model we would have encountered divergences when evaluating the expectation
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values of the operators involving quantum fields. These infinities would have had
to be systematically removed. In particular, it would have been necessary to

normal order the operators.

In this section, we shall evaluate the quantities that correspond to Axpy

and Az for our model. These quantities would be

<:[:[2:>—<:[:[:>2

Agri(t) = ‘ G (4.41)
and A A
AKF?(ZL) = ‘< A <::>I{[_2<::>H : > ’ (4'42)

where the colons imply normal ordering. For our model the operators have to
be normal ordered with respect to a. This has to be so, because, if the ex-
pression for <0|[:[|0> is normal ordered with respect to A, instead of &, it will
kill the |8|* term in (4.28) which otherwise will contribute to the backreac-
tion. Alternatively, one can try to regularize the expectation values by sub-
tracting the vacuum contribution, i.e the (0] (AJ[A +(1/2))10)w = (w/2) and
<0|(AJ[A + (1/2)) (AJ[A +(1/2))|0)w? = (w?/4) terms can be removed from (H)
and <[:[2>, respectively. The goal of this section is to point out a drawback when
the magnitude of either Agpy or Axps 1s used to decide the validity of the semi-

classical theory in the adiabatic limit.

4.4.1 For a vacuum state

Let us now assume that the state of the scalar field mode ¢ is the vacuum state |0).

When operators H and H? are normal ordered with respect to a, we obtain that

(:H:)yo = <OdT&

0)w

— |BPw (1.43)



and

tat

0> w?

aa'aa

<3H23>N0 = (0

= (18P +318I") . (1.44)

When the vacuum terms are subtracted from the expectation values of H and H?

as follows:
(2 H )y = (0] (da+ (1/2)) 0) w = (w/2) (4.45)

and

(122 )pg = (0] (afa+ (1/2)) (afa+ (1/2)) [0) w* — (w?/4). (4.46)

then the expressions for (: H Dvs and (: JiE )vs are the same as the quantities
<[:[> and <[:[2> given by equations (4.28) and (4.29), but without the (w/2) and
(w?/4) terms, respectively. Substituting these expressions in the equations (4.41)

and (4.42), we obtain that

14218/
AKF1(N0) = (Tlm)a

L+20p)
Agrano)y = (W (4.47)

and

3+2WP)
18° ’
3+2WP)
3+318°)°

Agpivsy = (
Agpavs) = ( (4.48)

where the subscripts NO and V'S represent regularization by normal ordering and

vacuum subtraction, respectively.
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4.4.2 For a n-particle state

Let us now evaluate the expectation values of H and H? in the n-particle state
when these operators are normal ordered with respect to a. They are given by

the following expressions:

(M )yo = (nld'a|n)w

= (IBF @n+1)+n)w (4.49)

and

= {u* (1+6197 +619/")
b (12007 +619") + (197 +319") Jot. (4.50)

When the vacuum terms have been subtracted from the expectation values, i.e

A

(11 :)yg = (n] (aTa+ (1/2)) [n)w — (w/2) (4.51)

and

(:H?:)yg = (n] (¥ + (1/2)) (ala+(1/2)) [n)o? — (w?/4), (4.52)

the expressions for (: H Dys and (: H? )vs are the same as the quantities <]:[>
and <[:[2> in equations (4.32) and (4.33), but without the (w/2) and (w?/4) terms,
respectively. Substituting these quantities we have evaluated in equations (4.41)

and (4.42), we obtain that

8" 202 +2n42) + |8 (20 4 1) —
B]" (4n? +4n+1) + (8" (4n? +2n) + n?

Agrino) = ( ) , (4.53)

Agranoy = (‘ BI' 2n* +2n4+2)+ 8] 2n+1)—n
K |6| 6n2—|-6n—|-3)‘|‘|6| (6n?2+2n+1)+ (n? —n)

) . (4.54)
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A (wr‘ (2n +2n +2) + |5 (2n2+4n+3)—|—n) )
KFL(VS) B (4n? +4n+ )+ |BF (4n2 +2n) 402 )’
and
Axrravs) = 81" (20 £ 2n +2) + |5 (20 +4n +3) +n . (4.56)
(181" +18) (612 +6n +3) + (n* + n)

4.4.3 For a coherent state

Let us now assume that the scalar field mode § is in a coherent state. When the

operators H and H? are normal ordered with respect to a, we find that

(:H:)yo = (Nata

A w

= (AP (1+208P) + Nap+ 270" " +|8]) w  (4.57)
and

atata a)\) w?

<:[:]2:>NO = (A
_ {|)\|4 (L+618°+618") + AP (3181 +1218]")
+ ()\zozﬁ+)\*20z*5*) {1—|-6|5|2‘|‘|)\|2 (2‘|‘4|5|2)}

+ (Ma2p2+ 210 57) 4 18] +3 |@|4} W2, (4.58)

For the case, when the vacuum terms are subtracted from the expectation values

of I and [? as follows:
(1 )ys = QL (@ +(1/2) N w = (@0/2) (4.59)
and
(117 2y = (M (@t (1/2)) (@a+(1/2) N o? = (@2/4), (4.60)

the expectation values, (: H Dyvs and (: JiE )vs are the same as the quantities

(H) and (H?) in equations (4.36) and (4.37) but without the (w/2) and (w?/4)
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terms, respectively. For the coherent state, Axp; and Agxpy are given by the

following expressions:

Axrivoy = {|)‘|2 (6|5|2‘|‘8|5|4)
+ (144180) (2 s+ 320 57) + (18P +2157) |

AP (2080 + V0B a0 8P ()

Axravoy = {PP (6151 +331)
+ (1 4198) (2 a s+ a7 5) + (191 +21517) |
(L6187 +6181") + AP (3197 + 1213
+ (N ap+ 270" 3) {14687+ A (2+4(8)}

+ (Ma? B+ X0 37 + |8 +3 Iﬁl“}_l, (4.62)

Agrivs) = {|)\|2 (2‘|‘10|5|2‘|‘8|5|4)
+(3a1) (Pa g+ A 5) + (3197 +201%) }

<A (L4 208F) + X a g+ 232 am g+ 82}, (4.63)
and

Axravsy = {IAF (2410137 + 313/
b (34182) (Fapta2at ) + (3101 + 2051 |
A1+ 2108) (14615 +61[")
+ (22 +3) (Pap+xZams) (1+2)57)

+ (Ma? B2+ 20" 37) + (3161 +315") }_l. (4.64)
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Table 4.3: Axp in the limit of  — 0

Vacuum n-particle Coherent

Axpinvoy 0 (1/n) 0
Agraoy 1 (I-21) 0
Axpwsy o () (&)
Axrws 1 (545 G)

Table 4.4: Axp in the limit of § — oo

Vacuum n-particle Coherent
AI«FI(NO) 2 (2n2+2n+(1/2)) ((|/\|2 (2+01;+1)2)

. n24n+1 AP (8 +4c1)+2
Axranoy  (2/3) (3n2+3n+(3/2)) (|/\|4 61 4c1 +c2) + NP (12-|—6c1)-|—3)

AI&’FI(VS) 2 (2n2+2n+(1/2)) ( (|/\|2 (2+c1)+1)2)
, W24l AP (84 4c1)+2
AIsz(VS) (2/3) (3n2 —|—3n—|—(3/2)) (|/\|4 (6+4ci +c2) + A (12+6C1)+3)
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The expressions for the different Ay and Agpe in the two limits of inter-
est, viz. § — 0 and 3 — oo, are summarized in tables 4.3 and 4.4. The quantities

¢1 and ¢y in the table 4.4 are the same as those that appear in table 4.2.

It is clear from table 4.3 that for the minisuperspace model we are consid-
ering here the quantities Agpy and Agxpe do not in the adiabatic limit. In fact, as
# — 0, they are of order unity for the vacuum and n-particle states thus suggest-
ing a breakdown of the semiclassical theory. Even in the complete field theoretic
case, the same is bound to happen when the quantities Axp; and Axpy are eval-
uated with regularised expectation values. But we do know that the semiclassical
theory is perfectly valid in the adiabatic limit [144]. In field theory, the expecta-
tion values have to be regularized. So, to check the validity of the semiclassical
theory in the field theoretic case, it would be advisable to monitor the magnitude
of the fluctuations in the adiabtaic limit rather than depend on Agxp; or Agpo.
Whereas, when § — oo, we find that both Age and Agxp give identical results
for our minisuperspace model. And, in the field theoretic calculations where only
Agrr or Agpy can be evaluated, we can expect these quantities to give reliable

results to help us draw the limits on the validity of the semiclassical theory.

4.5 Implications

The results of section 4.3 quite clearly prove that the semiclassical theory we had
considered for our minisuperspace model can be relied upon, during all stages
of the evolution, only if the quantum system, wviz. the scalar field mode is in
states like coherent states. It is quite likely that these results we have obtained

for our minisuperspace model will hold good even in complete field theory. After
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all, regularization procedures in quantum field theory only attempt to subtract
the contribution due to the vacuum state for each mode of the quantum field.
Therefore, if the semiclassical theory proves to be of a limited validity for a single
mode of the quantum field (which is basically the minisuperspace model we have
considered here), it is plausible that the same would be true in the field theoretic
case too. Hence, if the backreaction problem has to be studied in those states
of the quantum field, which do not possess a ‘coherent’ nature, the semiclassical
theory based on equations (4.1) and (4.2) is bound to prove rather inadequate.
In such a situation, the fluctuations in the energy-momentum densities of the
quantum field have to be systematically taken into account. When done so, the
semiclassical Einstein’s equation (4.1) can be expected to be described by an

equation similar in form to the Langevin equation [145].
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Chapter 5

Analogues of quantum effects in
classical field theory

Earlier, in section 1.1, we had seen that the quantization of a field in Minkowski
and Rindler coordinates are not equivalent. In fact, we had found that the
Minkowski vacuum state was populated by a thermal distribution number of
Rindler particles (cf. equation (1.47)). Also, in subsection 1.3.2, we found that
the response of a uniformly accelerating Unruh-DeWitt detector in the Minkowski
vacuum turned out to be a thermal spectrum (cf. equation (1.99)). In both these
situations, one obtains the thermal spectrum in the strict sense of the word: Not
only that the mean occupation number in any mode is Planckian, but the fluctua-
tions around the mean is also characterized by the standard thermal noise. These
results suggest that the quantum fluctuations in the vacuum appear as thermal

fluctuations in the uniformly accelerated frame.

In contrast to quantum theory, classical field theory does not admit any
intrinsic fluctuations. The absence of concepts such as vacuum and fluctuations
in classical field theory may lead us to believe that non-trivial phenomena as the

one mentioned in the above paragraph will not have any classical analogue. We

169



shall show, however, that such is not the case.

In this chapter, we discuss a fairly non-trivial and interesting effect that
arises purely in the context of classical field theory, which has a formal similar-
ity with the quantum mechanical results mentioned above. We find that, when a
real, monochromatic mode of a classical scalar field is Fourier transformed with re-
spect to the proper time of a uniformly accelerating observer, the resulting power
spectrum consists of three terms none of which have a simple physical interpre-
tation in terms of classical concepts [146, 147]. However, they closely resemble
terms that have a definite quantum mechanical interpretation. More specifically,
we show that the three terms which arise are: (i) a factor (1/2) that is typical
of the ground state energy of a quantum oscillator, (ii) a Planckian distribution
N(Q) and (iii) a term proportional to 1/ N(IN 4 1), which is the root mean square
fluctuations about the Planckian distribution in a quantum mechanical context.
While one could have anticipated the second term N based on earlier results, the
first and the third terms could not have been guessed from any previously known
result. It is interesting—to say the least—that such terms arise in a situation
where there is no genuine thermal phenomena, statistical steady state, thermal or
quantum fluctuations etc. The power spectrum has only the form of a thermal
spectrum. Similar results are obtained when we consider a real, monochromatic,
plane electromagnetic wave. We also find that such a Planckian ambience also
proves to be a feature of observers stationed at a constant radius in Schwarzschild

and de-Sitter spacetimes.

This chapter is organized as follows. In section 5.1, we evaluate the power
spectrum of a real, monochromatic mode of a scalar field as well as that of a

plane electromagnetic wave in the frame of a uniformly accelerated observer. In
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section 5.2, we generalize our result to different field configurations. In section 5.3,
we outline as to how a power spectrum with a Planckian nature proves to be a
feature of observers stationed at a constant radius in Schwarzschild and de-Sitter
spacetimes. Finally, in section 5.4, we present a model of a detector which responds
to the power spectrum of the field with respect to its proper time and also discuss

the possible implications of our analysis.

5.1 Power spectrum of a real, monochromatic
wave in a uniformly accelerated frame

In the following two subsections we shall evaluate the power spectrum of a real,
monochromatic plane wave mode of scalar and electromagnetic fields in the frame

of a uniformly accelerating observer.

5.1.1 Power spectrum of a scalar field mode

Consider a massless, minimally coupled, scalar field which satisfies the Klein-

Gordon equation

1
ob=——0 —gg"’0,) ® = 0. 5.1
=0, (V=99"0,) (5.1)
In flat spacetime, the basis solutions to the above Klein-Gordon equation in the

Minkowski coordinates (¢,x) can be taken to be plane waves labeled by the wave

vector k:

O(t,x) = cos (wt — k.x), (5.2)

where w = |k|. We now ask: Consider an observer who is moving on an arbitrary
trajectory (¢(7),x(7)), parametrized by the proper time 7. How will this observer

view the above Minkowski plane wave mode?
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The moving observer will see the scalar field varying with respect to her
proper time in a manner determined by the function @ [¢(7),x(7)]. If the observer
is in inertial motion then the monochromatic wave will appear to be another
monochromatic wave with a Doppler shifted frequency. But, in general, for non-
inertial trajectories, the wave will not appear to be monochromatic for the moving
observer but will prove to be a superposition of waves with different frequencies.
To determine the exact decomposition of the wave, we should Fourier analyze
the Minkowski mode in the frame of the observer. The Fourier transform of the
Minkowski plane wave with respect to the proper time 7 of the observer in motion

is described by the integral
() = / T dr e O [1(r), x(7)]. (5.3)

This expression gives the amplitude of a component with frequency € (as defined
by the moving observer) present in the original monochromatic wave. Given a
particular plane wave, we can always align the coordinates such that the wave is
traveling along the x-axis, i.e. the wave vector is given by k = (k,0,0). Then the

plane wave mode (5.2) reduces to
O(t,x) = cos(wt — k) (5.4)
and its Fourier transform is given by the integral

$(0) = /_ 0; dr e cos [wi(r) — ka(7)]. (5.5)

We shall now specialize to the case of an observer who is accelerating uni-
formly with respect to the Minkowski coordinates. We shall assume that the
observer is accelerating along the z-axis. Let us also assume that the observer is

moving with a proper acceleration g. The world line of such an observer in the
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Minkowski coordinates (¢, x,y, z) is given by the relations (cf. equation (1.92))
t=to+g 'sinh(gr) ; x==wx0+g 'cosh(gr) ; y=y and z=2z (5.6)

where tg and xg are constants and 7 is the proper time as measured by a clock
in the accelerated frame. (Note that the transformations (1.92) corresponds to
the case when tg = 29 = 0.) As we have noted earlier in subsection 1.3.2, the
world line of such a uniformly accelerating observer is a hyperbola in the (¢, x)
plane. The asymptotes of this hyperbola are the past and the future light cones
that intersect at the point (Zg, zg). To see how the plane wave (5.4) will be viewed
by such an observer, we substitute the coordinate transformations (5.6) in the

Fourier integral (5.5), and obtain that [77]

&)(Q) = /OO dr e ™ cos (w[to —xo + g sinh(gr) — g7 Cosh(gr)])
= /OO dr e ™ cos (wg_le_gT — [3)

where I'(z) is the gamma function,
¢ =097 In(wg™) : Qg =g/2m and B =w(ty — x0). (5.8)

In the above integral we have assumed that the plane wave is traveling to the
right so that & = w. The resulting power spectrum per logarithmic interval in
frequency is given by P(2) = (Q |&)(Q)|2) and can be written in a remarkable

form:
IS

(
_ (5) AN N D sz}, (59
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where

N(Q) = (exp (Q/lﬂo) - 1) . (5.10)

We shall now consider various features of this result.

To begin with we note that this result is a purely classical one and hence
h does not appear anywhere. In ordinary units, Q9 = (g/27¢) has the correct
dimensions (viz. per second) for a frequency. The quantity N(€) is a Planckian
in terms of frequencies and is again independent of i. Usually, one tries to express
the Planckian distribution in terms of energies of the ‘quanta’ labeled by frequency
) and in such a case we need to write frequencies as, say 0 = (F/h), thereby
artificially introducing h; but the result, stated as a power spectrum in frequency
space, makes perfect conceptual sense as it stands. For example, radio astronomers
measure the power spectrum in frequency space and may not think in terms of
photons. Of course, to obtain a quantity with the dimension of temperature we
again need to introduce a h into the quantity ). Since there is no real concept of

a temperature in the situation we are considering here, we will not introduce #.

The analysis done above could have been carried out even in the days before
quantum theory—it uses only classical relativity. Had it been done, there would
have been no simple way of understanding the terms which arise in (5.9). But,
it is our knowledge of quantum theory that allows a suggestive interpretation of
the three terms in the power spectrum: The first term—uviz. the factor (1/2)—is
typical of the ground state energy of a quantum oscillator. The second term N is
a Planckian distribution in €1, as already mentioned. Note that these two terms

are totally independent of the original frequency w of the plane wave!

The third term is still more remarkable. When we vary the constants ¢,
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and ¢ this term varies between —/N(N + 1) and +1/N(N + 1). The magnitude
of this variation (which is the root mean square deviation about the mean value)
is exactly what one would have obtained for a strictly thermal distribution of
massless bosonic quanta in quantum field theory. Thus, a classical plane wave,
viewed in the accelerated frame, has a power spectrum reminiscent of Planck

spectrum with associated thermal fluctuations.

To avoid possible misunderstanding, we stress here the following fact: The
system we are considering has no fluctuations or temperature in the sense of
statistical physics. Being a purely classical system, it does not have any quantum
fluctuations either. But the terms which we get in the accelerated frame have
the most natural interpretation in terms of notions like thermal spectrum and its

fluctuations.

The quantity 3 is related to to and g by equation (5.8). If the original plane
wave had an extra phase 4, then the argument of the cosine term will pick up 26
additionally. For a specific choice of the constants d,¢g and x, it possible to kill
the fluctuations in the power spectrum. It is also easy to verify that one cannot
choose the constants to cancel the first two terms as well. But—in general—all
the three terms are present in the power spectrum. We shall now comment on the

related aspects of this result.

It may be noted that the existence of the three terms is a direct consequence
of our choosing a real plane wave which—in classical field theory—is mandatory. If
the same analysis is repeated for a complex mode for the scalar field, say ®(t,z) =

exp —i(wt — kx), then the resultant power spectrum per logarithmic frequency
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interval is
27
g

P(Q):( ) N(Q), (5.11)

where N is given by (5.10). We do not get the zero-point term or the fluctuations.

Of course, in classical field theory, one must use real modes and that is exactly

what we have done here.

Finally, let us consider the limit of w — 0. In this limit, the field in the
inertial frame reduces to an unimportant constant—which could be thought of as
closest to the concept of a ‘vacuum’ in the classical theory. The Fourier integral
as well as the phase ¢ in equation (5.8) diverges when w — 0; but the power

spectrum-—which is the squared modulus of the amplitude—is well defined:

w0 (g) {%HVJFW}- (5.12)

However, as long as w is treated as a ‘regulator’ one can say that the accelerated

observer will see these terms even in the limit of w — 0. This is very remi-
niscent of the Minkowski vacuum state appearing as a Planckian spectrum to a
uniformly accelerated observer in a manner which is completely independent of
the original wave mode. Mathematically, this result arises because our limiting
procedure does not commute with that of Fourier transforming the mode. If we
consider the w — 0 limit first and then evaluate the Fourier transform, we will—of
course—get the square of the Dirac delta function as the power spectrum. But,
when we compute the power spectrum first and then take the limit of w — 0
we get a different—and finite—result. Once again, the situation is reminiscent of
regularization procedures (like the ‘ie prescription’) in quantum theory in which
the order of operations matter. In a way, this limiting value turns out to be a

more generic feature. (In the above discussion we have assumed that the wave
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and the observer are moving along same direction, viz. the z-axis. But the result
for w — 0 should hold irrespective of this condition. Later, in section 5.2, we shall

show that this is indeed the case.)

5.1.2 Power spectrum of a plane electromagnetic wave

The analysis we have carried out for a real, monochromatic scalar field mode
can analogously be carried out for a plane electromagnetic wave. Given a vector

potential A* the electromagnetic field tensor is defined as [42]
F. =(0,A, —0,A,). (5.13)

The components of the field tensor are then given by

0 E, E, E.
~E, 0 -B. B,
~E, B. 0 -B, |’
~E, -B, B, 0

(5.14)

where E = (E,, Fy, E.) and B = (B,, By, B.) are the electric and magnetic field

vectors respectively.

A real and monochromatic, plane electromagnetic wave traveling along the

x-axis can be described by the following vector potential:
A* = (0,0,1,1) cos(wt — k), (5.15)

where w = |k|. The electromagnetic field tensor corresponding to such a vector

potential is then given by

0 0 w w
Fu. = _Ow 2 _Ok _Ok x cos(wt — k). (5.16)
—w k 0 0



In the frame of a uniformly accelerating observer whose world line is given by the

transformations (5.6), the electromagnetic field tensor transforms to

0 0 we T we I
= 0 0 kem97  —ke 97
F, = e —ke—8T 0 0 x cos(wt(T) — ka(r)). (5.17)
—we 97 ke 97 0 0

Notice that the acceleration of the observer is along the same axis as that of the
direction of propagation of the wave. Let us now assume that the electromagnetic
wave is traveling to the right, i.e. k& = w. Then, from the above equation it can
be easily seen that the all the transformed components of the field tensor are of

the following form:
F(7) = twe™ cos(wt(1) — ka(T)). (5.18)

Fourier transforming F'(7) with respect to the proper time of the uniformly accel-

erating observer, we obtain

F(Q) ==+ (%) e (e_(Q/mO) ¢TI — ((§/48k) ew) I (iﬂg_l) , (5.19)
where ¢, 0y and (3 are given by equation (5.8). The resulting power spectrum per
unit logarithmic interval in frequency P(Q) = (Q |F(Q)|2) is then given by

T

g) 02 {%—H\f— NN +1) cos(zg)}, (5.20)

Pl - (

where N is given by equation (5.10). In the limit of w — 0 this power spectrum

reduces to

P(Q) = (g) 0 {%—I—N— N(N+1)} (5.21)

Thus, even in the case of the electromagnetic field, the power spectrum is well

defined in the limit of w — 0.
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The power spectrum per unit logarithmic frequency interval obtained above
has an extra factor Q% multiplying the expression in the braces which was absent
in the power spectrum (5.9) for the scalar field. This extra factor has a simple
explanation. Consider the power spectrum of the scalar field mode (5.2) in the
Minkowski coordinates. The resultant power spectrum would be proportional to
the square of a delta function and the proportionality constant would be indepen-
dent of w. In the Rindler frame too, the power spectrum of the scalar field mode
as given by equation (5.9) has no term dependent on € multiplying the expression
in the braces. In contrast, consider the power spectrum of the electromagnetic
wave (5.18) in the Minkowski frame. It would again be proportional to the square
of a delta function, but, in this case, the proportionality factor would be of the
form w?. Extrapolating the result for the scalar field, one would expect that the
power spectrum (per unit logarithmic frequency interval) of the electromagnetic
wave would have a Q? factor in the uniformly accelerated frame. This is exactly

the result we have obtained in equation (5.20).

5.2 Generalization to other field configurations

In the last section, we have carried out our analysis for real Minkowski modes that
were traveling to the right. It is straight forward to verify that the same power

spectrum can be obtained for left moving waves, i.e when k = —w.

A more general case is as follows. Consider a function of ®(¢f — x) that
satisfies the Klein-Gordon equation and is either odd or even in (¢ — ). Such a

function ®(¢ — «), which will represent a wave packet that is traveling along the
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x-axis, can be Fourier decomposed into the following form

Ot —x) = /_O:o da f(a) expia(t — x). (5.22)

The function f(«) will prove to be odd or even depending on whether ®(¢ — ) is
odd or even. Substituting the transformation equations (5.6) in (5.22) and Fourier
transforming, as before, with respect to the proper time of the Rindler observer,

we obtain that
B(Q) = g7 T(iQg™") (/1) 1y (Q) £ ™ @/1%) Q) (5.23)

where the plus sign is to be chosen if ®(¢ — ) is an even function and the minus
sign if (¢t — ) is an odd function and Qg is given by (5.8). The distributions

F1(9) and F»(12) are described by the integrals

Fi(Q) = /OOO da f(a) ei(to=20) exp — (iﬂg_l ln(g_loz)) (5.24)
and
() = /OOO da f(a) emioltom20) ey — (iﬂg_l ln(g_loz)) : (5.25)

We then obtain that

PE) = Q[e(Q)

(©/22) | ()2 4 o= (@/2%) | ()2
() < @R + 70 )

+ (Ff(Q)FQ(Q) + Fl(Q)F;(Q)) } (5.26)

This spectrum, of course, does not have a thermal nature since it depends explic-

itly on the form of f(«).

But a simplification occurs if we treat f(«) as a stochastic variable so that

when averaged over an ensemble of realizations, it satisfies the relation

(f(@) f7(a")) = Pa) §(a = o), (5.27)



with some power spectrum P(«), such that [ do P(a) = 2C. In such a case,
when |Fy(Q)]* and |F3(2)|* are averaged over the stochastic variable f(«), both

reduce to a constant independent of €2, i.e.
(IREO)P) = () = [ da Pla) = . (5.2)

The power spectrum (5.26) when it is averaged over the stochastic variable f(«)

is given by

(P(Q) = (@) {% +N 4NN+ 1) Cos(2ﬁ’)} , (5.29)

g

where 3" is a function of (ty — x¢) and is defined by the relation

cos(29) = (5) (FrO@R®) + R@)F5(9)

= (%) /OOO da P(a) cos[2a(ty — x9)]- (5.30)

So a stochastic wave field in the Minkowski frame will also reproduce all the three

terms in the power spectrum obtained earlier.

The wave field described above did not have explicit random phases. It is
possible to define a different random field in the following way. Consider a random

superposition of real modes for the scalar field:
O(l,z) = /_Z dw A(w) cos [w(t — 2) + 0(w)], (5.31)

where A(w) is a stochastic variable satisfying the relation
(A(w) A(W)) = P(w) §(w — ') (5.32)

and P(w) is an arbitrary function of w such that ' = [*_dw P(w) is a finite
constant. Further, we shall assume that 6(w) is a random phase factor distributed

uniformly in the range (0,27). We can now set tg = zo = 0 in (5.6) without any
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loss of generality. Substituting the coordinate transformations (5.6) in the scalar
field configuration given by (5.31) and Fourier transforming the same with respect

to the proper time of the uniformly accelerated observer, we obtain

&)(Q) = /_O; dr /_O; dw A(w) cos (w [t(r) —2(7)] + G(w)) 10T
= /_Z dw A(w) /:: dT cos (wg_le—gT _ Q(w)) i
= (Qi) NG /:: dw A(w) e

)
% (e—(Q/4ﬂo) e—w(W) + 6(9/490) ei@(w)) , (533)

where ¢ and g are given by (5.8). The power spectrum per logarithmic frequency
interval, viz. the quantity (Q |&)(Q) |2) when averaged over the stochastic variables

A(w) and #(w) then reduces to

(P(Q) = (ﬂ) {% LN } (5.34)

g

In this case, the random phases have averaged out the fluctuation term,
viz. the factor /N(N + 1) that had appeared in the power spectrum (5.9). A
somewhat similar result was obtained earlier by Boyer [148]. He had modeled
the zero-point fluctuations as due to random superposition of Minkowski plane
wave modes, and used it as a basis for investigating the ‘spectrum’ observed by
a uniformly accelerating observer. He showed that the correlation function of an
accelerating observer ‘in a random classical scalar zero-point radiation’ exactly
matches the correlation function of an inertial observer in a thermal background.
Our analysis here shows that the effect reported by Boyer arises when a random
superposition of Minkowski real modes are simply Fourier analyzed in the frame
of a uniformly accelerating observer (cf. equation (5.34)). But notice that, such
an approach has killed a very interesting \/ N(N + 1) term which was originally

present.
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Finally, we shall discuss a case in which the wave and the observer are
not moving along the same direction. Let us now assume that the plane wave
mode (5.2) is traveling in an arbitrary direction described by the wave vector k =
(kz,k1). Substituting the mode (5.2) and the coordinate transformations (5.6) in

the Fourier transform (5.3), we obtain that

&)(Q) = /Oo dr cos [(wtg — kyxo — kX, ) + g~ (wsinh(g7) — k, cosh(g7))]
X exp —i(§27)

= ¢! o~ (iQag™) Kigy- (|kL|g_1) (6(9/490) eiﬁ_l_e—(ﬂ/490) €—¢6)7 (5.35)

where § = (wto — kywo — ki.x1), @ = arctanh(k,/w), Kiq,-1(lki]g™") is the
Macdonald function (a Bessel function of imaginary order and argument) and €
is given by (5.8). The resultant power spectrum per logarithmic frequency interval
is then given by

2

P = 4Qg¢7% sinh(Q/29Q)

Kiog- (fkplg™)

X {%+N(Q)—|— NN +1) cos(zg)}. (5.36)

This power spectrum does not have a Planckian nature because of the terms that
multiply the expression in the curly brackets. We can therefore conclude that a
Planckian ambience arises only for observers whose acceleration is along the same

axis as the direction of propagation.

It is however interesting to ask: What happens to the power spectrum (5.36)
in the limit of w — 07 In the limit of w — 0 the wave field (5.2) is a constant
and therefore any relative direction of motion between the wave and the observer
should be equivalent. Hence we expect a Planckian spectrum in this limit even

for the mode (5.2) and this indeed happens to be the case. In the limit of k; — 0,
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we have

[(Z'Qg—l (|kJ_|g_1) i

- il (5.37)
kL—>0_ 4Qg~tsinh(7Qg1) ) '

Setting k, = 0 and substituting the above approximation for |K.q,-1]% in (5.36
g Ky g pp g )

we recover the result we had obtained earlier in (5.12).

5.3 Planckian ambience in Schwarzschild and
de-Sitter spacetimes

In this section, we shall briefly outline as to how the results we have obtained
above can be extended to Schwarzschild and de-Sitter spacetimes. The solution
to the Klein-Gordon equation in these spacetimes cannot be expressed in terms
of simple functions in (3 + 1) dimensions and hence we shall work in (1 + 1)

dimensions.

In (141) dimensions, the Schwarzschild spacetime is described by the line-

element (see subsection 1.3.3)

2M 2MN\ !
ds? = (1 - —) di* — (1 _ —) 0, (5.38)

r r

In terms of the Regge-Wheeler coordinates (¢,r*), where

r
* = 2M In | — —1 5.39
rooraEi (2]\/[ ) ’ (5:39)
the Schwarzschild line element turns out to be conformal to the flat space metric,
i.€.
2M
ds* = (1 — —) (di* — dr™?). (5.40)
r

And, in terms of the Kruskal-Szekeres coordinates (v, u), which are related to the

Regge-Wheeler coordinates (¢, 7*) by the transformations
v =1y + e M sinh(¢/4M) and u = ug + e /M cosh(t/4M), (5.41)
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(where ug and vy are arbitrary constants) the Schwarzschild line-element reduces

to

32M°

ds* = ( ) e~ 2M) (dv? — du?). (5.42)

r

(Note that the transformations (1.103) correspond to the special case when wvg

and ug have been set to zero.) The proper time 7 of an observer stationed at a

constant r is then related to the Schwarzschild time coordinate ¢ by the equation
2M ) 12

7

T=Ar)t where Alr) = (1 (5.43)

Just as the trajectory of a uniformly accelerating observer is a hyperbola in the
plane of the Minkowski coordinates, the world line of an observer stationed at
a constant r is a hyperbola in the (v,u) plane. And, the asymptotes of this
hyperbola are the past and the future horizons of the Schwarzschild spacetime

that intersect at the point (v, ug).

As we have noted in subsection 1.1.2, the action for a massless, minimally
coupled scalar field is invariant under conformal transformations in (14 1) dimen-
sions. Hence the normal modes of such a scalar field in conformally flat metrics
are just plane waves. So, the normal mode solutions of the Schwarzschild space-
time in the Kruskal-Szekeres coordinates (v, u) are just plane waves. Consider a

single real mode described by the equation
O(v,u) = cos (wv — ku). (5.44)

We would like to know how an observer located at constant Schwarzschild radial
coordinate r will describe this mode. Assuming that the plane wave is traveling
to the right (i.e. k& = w) and Fourier tranforming the monochromatic wave given

in equation (5.44) with respect to the proper time 7 of an observer stationed at a
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constant r, we obtain that

dQ) = [ drofo(r)u(r)) ™
= A /_O:o dt cos (we(r*_t)MM — [3) eI
= QM) e (eI TN T 4OMN), (5.45)
where
uw=4QMMX In (wer*/‘lM) (5.46)
and (3 i1s now defined as
B = w(vo — uo). (5.47)
The resulting power spectrum per logarithmic frequency interval is then given by

P(Q) = Q [&(Q))° = (47 M) {% +N 4NN cos(zg)} (5.48)

where

1
N = (exp (8T MQN) — 1) ' (5:49)

We once again obtain the three terms discussed before.

The analysis for the de-Sitter spacetime is similar. The line element that

describes the de-Sitter spacetime is given by (see subsection 1.3.3)
ds? = (1 — H*>*)dt* — (1 — H**) " dr? (5.50)

In terms of the ‘Regge-Wheeler’ coordinates (t,7*) corresponding to the de-Sitter
spacetime, where

r* = H! arctanh(Hr). (5.51)
the de-Sitter line-element turns out to be
ds* = (1 — H*r?) (dt* — dr™?). (5.52)
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The ‘Kruskal-Szekeres’ coordinates (v, u) corresponding to the de-Sitter spacetime

are related to the coordinates ‘Regge-Wheeler’ coordinates (¢, r*) by the equations
v =1vg+ e sinh(Ht) and u = ug+ e’ cosh(Ht). (5.53)

(Again, note that the transformations (1.114) correspond to the particular case:
vg = up = 0.) The de-Sitter line-element in terms of the coordinates (v,u) then

reduces to

ds?> = H™? (1- Hr)2 (dv2 — duz). (5.54)

Consider an observer who is stationed at a constant r in de-Sitter spacetime. The
world line of such an observer, just as in the Schwarzschild case, is a hyperbola
in the (v,u) plane whose asymptotes are the past and the future horizons of the
de-Sitter spacetime that intersect at the point (vg, ug). The proper time 7 of this

observer is related to the de-Sitter time coordinate ¢ as follows

1/2

T=At where now A=(1- H2r2) (5.55)

Y

For the case of a real wave as given in (5.44), where the coordinates v and u are
now related to de-Sitter coordinates ¢ and r by the equations (5.53) and (5.51),
the power spectrum per logarithmic frequency interval as seen by the observer

stationed at a constant r is given by

PO) = QSO = (rHN) {% FN NN cos(28)} (556)

where

1
N(©) = (exp (2rQH-X) — 1) ' (5:57)

In evaluating the power spectrum above, it has been assumed that k = w, so that

[ = w(vg — ug). The similarity to the previous results are obvious.
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5.4 Discussion

It will be interesting to investigate whether the power spectrum we have evaluated
in the last three sections can, in principle, be measured. We shall present here
a model of a detector that is capable of measuring the Fourier spectrum of the

classical field with respect to its proper time.

By a detector we have in mind a pointlike object which nevertheless has
internal degrees of freedom. We shall also assume that the world line of the
detector is given to us a priori and does not form a part of the dynamics. One
such detector would be a simple harmonic oscillator that is coupled directly to the
components of the classical field through a linear coupling. If the internal degree
of freedom of the oscillator is ¢, then the interaction Lagrangian between the field
and the detector would be of the form ¢F', where I is one of the components of
the classical field. (Notice the similarity of this classical detector with the Unruh-
DeWitt detector we had discussed in subsection 1.3.1.) Varying the total action
of the detector and the field with respect to the degree of freedom ¢, we find that

the equation of motion satisfied by the harmonic oscillator ¢ is given by
— +a*q= F(7), (5.58)

where a is the frequency of the oscillator and F'(7) is the component of the classical
field in the frame of the oscillator. The total energy gained by any forced harmonic
oscillator is proportional to the modulus square of the Fourier transform of the
driving force. Therefore, the total energy ¢ absorbed by the harmonic oscillator

that is coupled to the field F' is then given by
o B ) 2
ela) = ‘/ drF(r)e "7 (5.59)
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Consider, for instance, a simple harmonic oscillator, say, a bound electric
charge, that is coupled to the y-component of the electric field. Let us assume
that the electric field is the plane electromagnetic wave we have considered in
subsection 5.1.2. Let us also assume that the harmonic oscillator is accelerating
uniformly described by worldline (5.6). We saw in subsection 5.1.2 that in the
frame of the uniformly accelerating observer the y-component of the electromag-

netic wave is given by
Ey(r) =we T B, (1) =we ™7 cosw(t(r)— x(7))]. (5.60)

(We have assumed here that the plane electromagnetic wave is moving to the right.
Hence, k = w.) The energy gained by such an oscillator due to its interaction with

the plane electromagnetic wave is then given by

2

c(a) = ‘ / °:O dr B, (7)e "

_ (E) {%+N+ JNN 1) cos(m)}, (5.61)

g

where N is given by the equation

M) = (exp T 1) 262

and Qp and (3 are as in equation (5.8). Therefore, the power spectra we have

evaluated in this chapter can, in principle, be measured physically.

In conclusion, we would like to stress those aspects of our results which are
unexpected and contrast them with those which could have been anticipated with

some hindsight.

To begin with, the following fact is well-known: In quantum field theory,
the amplitude for transition of an Unruh-DeWitt detector, up to the first or-

der in perturbation theory, is described by an integral that is similar in form
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to (5.3) (cf. equation (1.88). When the scalar field is decomposed in terms of
the Minkowski modes, the transition probability, per unit proper time, of a uni-
formly accelerating Unruh-DeWitt detector turns out to be a thermal spectrum
(cf. equation 1.99). It might, therefore, seem that when a traveling wave is Fourier
transformed with respect to the proper time of a uniformly accelerated observer,

the resulting power spectrum will have a thermal nature.

However, there are some subtlities involved. To begin with, the modes of
the quantum field are complex while here we are dealing with real plane wave
modes. This makes the vital difference. As we have mentioned before, while a
complex mode like exp —i(wt — kx) will give a Planckian distribution it will not
yield the two other terms we have obtained in our analysis. In this sense, the real
wave is quite different from the complex one. We stress the fact that, when a
real Minkowski mode is Fourier transformed with respect to the proper time of a
uniformly accelerating observer, the resulting power spectrum not only contains a
Planckian distribution but also contains the root mean square fluctuations about
the Planckian. As mentioned earlier, it is the appearance of these fluctuations
that motivates us to attribute a ‘thermal’” nature to the power spectrum. We

know of no simple way to guess at this answer.

Secondly, note that the effect survives in the power spectrum even in the
limit of w — 0. This is the closest to what one can call a ‘classical vacuum’—and
our result shows that such a mode, with infinitesimal frequency, leads to a thermal
ambience in the accelerated frame which is totally independent of the properties

of the original wave.

A somewhat similar analysis, viz. Fourier analyzing the Minkowski modes
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in the frame of an uniformly accelerated observer was carried out earlier by Ger-
lach [149]. He had constructed a linear superposition of Minkowski modes in
(3+ 1) dimensions such that the modulus square of the amplitude of these modes
(which represents the total classical energy of these modes) to be equivalent to
that of the ground state energy of a quantum oscillator. Fourier analyzing such
a field configuration with respect to the proper time of a uniformly accelerating
observer, Gerlach had obtained a power spectrum (in a particular limit) similar
in form to equation (5.9). He had presented his result as a ‘heuristic derivation of
the thermal spectrum’ that arises in quantum field theory due to the inequivalent

quantization in Minkowski and Rindler coordinates.

Our results and emphasis are different in several ways. To begin with, the
effect we are reporting here is a feature of classical field theory and no quantum
processes are involved. It is physically motivated in a clear and simple manner
and we do not have to resort to any superposition of modes. Secondly, our results
are exact for a real, monochromatic plane wave while Gerlach needed to resort
to some approximation because of the particular superposition of modes he had
chosen. Thirdly, we would like to draw attention to the zero-frequency limit of
the wave, when it takes a life of its own in the accelerated frame. This result, as
far as we know, has not been noted in the literature before. Finally, Gerlach had
offered no explanation for the appearance of the factor cos(23) as the coefficient
of the fluctuation term. Our analysis clearly shows that it arises due to the shift

in the origin of the Minkowski coordinates.

These results we have presented in this chapter suggest that there is a deep
connection between plane waves, accelerated frames and thermal fluctuations even

at the classical level. This connection could be worth exploring.
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Chapter 6

Conclusions and outlook

In this final chapter of the thesis, we shall summarize the conclusions that can be
drawn from the results we have obtained in the last four chapters and also present

an outlook on possible future research.

Consider a particular classical electromagnetic background, say, an electro-
magnetic field configuration produced by certain distribution of capacitors and
solenoids in the laboratory. Given such a background we would like to have an
answer for the following two questions: (i) Under what conditions can particle
production take place in such a background? and (ii) How many particles will
this background produce? In a laboratory, it is not possible to implement a gauge
with the help of capacitor plates and solenoids. Hence gauge dependent concepts
have no meaning. Therefore, the concept of a particle as well as the criterion for

an electromagnetic background to produce particles better be gauge invariant.

These arguments apply equally well for gravitational backgrounds too. Con-
sider a certain distribution of matter fields. The presence of these matter fields

can give rise to a non-trivial gravitational background. Only a covariant crite-
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rion can help us unambiguously conclude whether the spacetime induced by these
matter fields can produce particles or not. It makes no sense physically to talk of
coordinate dependent concepts. No coordinate system is more natural than any
other coordinate system. Hence, a covariant formulation is mandatory to describe

the concept of a particle as well as the phenomenon of particle production.

Apart from the dynamics, the initial conditions also play a role in deciding
as to how many particles will a given background produce. A typical example
would be that of a Friedmann universe. Given that particle production will take
place in a particular Friedmann universe, more particles will be produced in an
n-particle state of the quantum field than in the vacuum state. This is fairly
obvious. In a vacuum state, there will only be spontaneous creation of pairs,
whereas an n-particle state would lead to spontaneous as well as induced creation

of pairs.

The fact that the number of particles produced by a given background will
be dependent on the initial state of the quantum field can also be illustrated
with the example of Schwarzschild spacetime. In a Schwarzschild spacetime, if
we choose the initial state of the quantum field to be the Boulware vacuum the
background does not produce particles. On the other hand, if the initial state of
the quantum field is considered to be the Unruh vacuum state the Schwarzschild

spacetime would give rise to Hawking radiation.

Though the number of particles produced by a given background can be
dependent on the initial conditions, the invariant criterion, that decides whether
a background is capable of producing particles, can not be dependent on the

initial conditions. A typical example to illustrate this feature would be that of
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a time independent, but otherwise, arbitrary magnetic field background. A time
independent magnetic field does not give rise to an electric field (in a particular
Lorentz frame) and a pure magnetic field cannot do any work. Due to this reason,
one does not expect such a background to produce particles irrespective of the
initial conditions that have been chosen. The gauge invariant criterion for particle

production should reflect this feature.

In a curved spacetime, it is the tidal forces of the gravitational field that is
responsible for the particle production. Particle production can be said to take
place when the geodesics of a particle, anti-particle pair in a virtual quantum
loop diverge due to the tidal action of the Riemann curvature tensor. Such a
heuristic picture then suggests that if the tidal forces are strong enough then the
virtual pairs will be converted into real pairs of particles. There exists a general
belief in literature that only a time dependent backgrounds can produce particles,
whereas time independent backgrounds cannot (see, for instance, ref. [150]). But,
one would expect that even a time independent gravitational background will pro-
duce particles if the gravitational field is strong enough to deviate the geodesics
of the virtual pairs adequately so that they are converted into real particles. Also,
the time coordinate is not a covariant concept and hence a metric that is time
dependent in a particular coordinate system may well prove to be independent of
the time coordinate in a different coordinate system. These features suggest that
just as we define positive frequency components with respect to a time coordinate,
we can also define positive ‘frequency’ components with respect to space coordi-
nates and thus discuss particle production in terms of mixing of space dependent
positive and negative ‘frequency’ components in time independent backgrounds.

In effect, this is exactly what has been attempted when a tunneling interpretation
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was invoked to explain particle production in time independent electromagnetic
backgrounds. There is no reason as to why such an attempt cannot be made for

the gravitational case.

Earlier, in chapter 1, we had mentioned that in the absence of a timelike
killing vector field particles cannot be defined at all. Only if there exist domains
wherein the gravitational field is constant can the energy eigenstates of the quan-
tum field be classified as particle numbers. Essentially, in a time dependent situ-
ation it 1s impossible to set up a state with a definite energy and particle number
at a given time. In fact, this is precisely the reason why particle creation takes
place at all. We have seen from our discussion in chapter 3 that the effective La-
grangian approach proves to be the most reliable approach available at present to
study phenomena such as vacuum polarization and particle production in classical
backgrounds. In the most general case, the effective Lagrangian will be dependent
on space and time coordinates through invariant (gauge or coordinate invariant)
quantities. Let us say that the imaginary part of the effective Lagrangian for a
certain classical background is nonzero. Let us also assume that the imaginary of
the effective Lagrangian is nonzero in certain regions of spacetimes and vanishes
in certain other regions of spacetime. This clearly suggests that particle produc-
tion takes place in certain regions of spacetime and does not take place in other
regions. If this result from the effective Lagrangian approach has to be reproduced
from a canonical quantization of the quantum field, a localized definition of the
particle in space as well as time is clearly required. Therefore, the very fact that
is considered to be a problem in literature can be turned around to provide a
localized definition of the particle concept. Also, in section 3.3, we saw that the

Klein approach turns out to be inadequate to describe the phenomenon of particle
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production in a generic situation because of the very fact that we defined particles
only in the asymptotic domains. Whereas, if we define a localized positive ‘fre-
quency’ modes with respect to space (as we would, to diagonalize the Hamiltonian
of a quantum field at any instant of time in a Friedmann universe) we will be able
to circumvent this limitation of the Klein approach. These discussions clearly

point towards the requirement of a localized definition of the particle concept.

We had seen in chapter 1 that it is the coefficient of the positive frequency
component of the normal modes of a quantum field that is identified to be the
annihilation operator (see our comment following equation (1.15)). And, the
state annihilated by this operator is defined to be the vacuum state. In a curved
spacetime, the normal modes of a quantum field in different coordinate systems
are not coordinate transforms of each other. (This can be easily illustrated for
the flat spacetime example we had discussed in section 1.1. It is easy to check
that when the coordinate transformations (1.20) are substituted in the Minkowski
mode (1.10) it does not lead to the Rindler mode (1.31).) Basically, it is this
very feature that leads to the coordinate dependence of the particle concept.
Similar features can arise when fields are quantized in classical electromagnetic
backgrounds. It can be easily shown that the normal modes of a quantum field
in different gauges, in general, are not gauge transforms of each other. (This can
be shown for the case of a constant electric field background we had discussed in
section 1.4. One can convince oneself that this is indeed the case by comparing
the normal modes (1.123) and (1.137). It is easy to see that they are not related
by the gauge factor exp +i(qExt). We had, in fact, pointed out this feature,
earlier, in section 3.5.) Just as in the gravitational case, this feature can lead

to a gauge dependence of the particle concept in electromagnetic backgrounds
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(see ref. [38], section 4.6). It has been conjectured in literature that coordinate
or gauge dependence of the particle concept can arise due to the fact that only
a sub-class of classically allowed (coordinate or gauge) transformations can be
implemented unitarily [37]. It is possible that the particle concept would prove to
be invariant only under transformations that leaves the asymptotic domains of the
background unchanged. This conjecture has been proved to be true at least in one
example. The Rindler transformation destroys the nice asymptotic properties of
the Minkowski metric and Gerlach has explicitly shown that there exists no unitary
transformation relating the Hilbert space of quantum states constructed from the
Rindler vacuum and the Hilbert space determined by the Minkowski vacuum [151].
It would be a worthwhile effort to extend Gerlach’s analysis to the case of the
constant electric field background. That is, it will be interesting to examine
whether the Hilbert spaces of, say, a complex scalar field when it quantized in a
constant electric field background, in the time dependent and the space dependent
gauges A} and Aj (given by equations (1.120) and (1.121), respectively), are

related by a unitary transformation.

The idea of detectors were developed with the hope of improving our un-
derstanding of the concept of a particle in curved spacetimes. But, as we have
discussed in section 2.4, the connection between the response of detectors and the
canonical formulation of quantum field theory still remains obscure. Objects such
as field intensity, energy, etc. that we deal with in the conventional formulation
of quantum field theory are not directly measurable quantities. These quantities
are reflected through some physical measurements made by a detector. And, any
detector that is used measure these quantities can couple to such variables only

via the exchange of field quanta. But, we find that the field quanta are not gener-
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ally covariant objects. They are defined through the choice of positive frequency
components of the mode functions. Granted these facts there seems to be no es-
cape from the conclusion that the operational and formal covariance have different
meaning. This gap in our understanding of the relationship between the response

of detectors and the canonical formulation of quantum field theory needs to be

bridged.

We shall close this thesis with a few remarks on possible quantum gravita-

tional effects in the domain of semiclassical gravity.

We had mentioned in the abstract of this thesis that quantum gravitational
effects will become important only at energy scales of the order of Planck energy
(~ 10" GeV) and in the domain between 10* and 10'? GeV we can study the
evolution of quantum fields in classical gravitational backgrounds. But such ar-
guments are, to say the least, naive. It is not entirely correct to say that, in field
theory, quantum mechanical effects are important in a particular range of scales.
The divergences that arise in field theory are closely related to the small distance
behavior of the Green’s functions. If gravitational effects alter this small distance
behavior, then the formalism of field theory will become very different from what
we are used to. Since quantum field theory ‘sums over’ virtual states of arbitrary
high energies , it is not entirely clear whether any definite energy or length scale

can be associated with field theory phenomena.

Added to this consideration is the fact that gravity couples to matter and
itself with equal strength. Thus a photon and a graviton (of the same energy)
couple to an external gravitational field with equal strength. Creation of photons

by a changing gravitational field will have a counterpart of creation of gravitons.
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Clearly, the classical background gravitational field itself is experiencing first order
perturbations. This is an additional complication that is not present in a linear

field theory, say that of the electromagnetic field.

As we have seen in chapter 4, the semiclassical theory has a very limited
validity unless the fluctuations in the backreaction term are systematically taken
into account. One can possibly look for an Einstein-Langevin equation to describe
the backreaction problem more completely. But it is likely that when we take
into account these fluctuations the semiclassical approximation breaks down and
quantum gravitational effects will become important. One needs to be very careful
when one is pushing the domain of semiclassical gravity close to the quantum

gravitational regime.

There has been a wide spectrum of opinion on the actual relationship be-
tween quantum field theory in curved spacetime and quantum gravity proper.
Quantum gravity certainly has nothing to lose from critical investigations of semi-

classical gravity.

One of the main problems of quantum field theory are the divergences.
In a curved spacetime there exists no covariant formulation of handling these
divergences. It may be, as many have speculated, that quantum gravity has its
own cut-off—that is it is actually finite. In fact, a recent work by Padmanabhan
points exactly in this direction. In his work, Padmanabhan shows that fluctuations
in the gravitational background leads to a zero-point length of spacetime and
thereby to a high energy cut-off [152]. This work clearly suggests that quantum
gravity after all may sweep away the nagging problems of divergences in field

theory. Though the result sounds quite plausible, the work by Padmanabhan is
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at best a prescription to successfully handle the divergences and can possibly be
a first step towards the ultimate theory. There is a very strong chance that the
ultimate unification of gravity with the rest of modern physics will look very little
like either contemporary general relativity or contemporary quantum field theory.
There exist fundamental structural and conceptual mismatches between general
relativity and quantum theory. It is possible that the quantum field theory we
know of today with its apparatus of Fock spaces, Lagrangians, field equations,
commutation relations and S-matrices, will just turn out to be a misguided and
naive attempt at a forced marriage of classical field theory with quantum particle
mechanics [153]. Radical new ideas may be needed to construct a quantum theory
of gravity. The analysis of the semiclassical gravity during the last couple of
decades have provided a glimpse of certain features that a quantum theory of
gravity is likely to possess; the summit has been glimpsed, but it is yet to be

reached. One fondly hopes that the summit will be reached soon.
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Appendix A

Contour integrals

In this appendix, we shall evaluate the response of inertial and uniformly accel-
erated Unruh-DeWitt detectors (in the Minkowski vacuum state) when they are
switched on for a finite time interval with a rectangular window function. The re-
sponse of a Unruh-DeWitt detector that is switched on and off with a rectangular

window function is described by the following integral (cf. equation (2.97)):

F(Q,T) = N dr 7 GF(z) (21 — |z)). (A.1)

2T

A.1 Response of the inertial detector

For the case of a detector on an inertial trajectory the integrals to be evaluated

are (see subsection 2.2.3)

Fod (T Lo e A
ine 5 - T 5 5 ; 2
1 ) 22 /—2T ‘ (x — ze)2 (A4.2)
and
1 per e~ | g
Fine Qv T)=-— d ’ A3
2( ) 472 J_or ‘ (x — i6)2 (4.3)
so that
Ene(Qa T) = Enel(Qa T) + Ene?(Qv T) (A4)
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Figure A.1: Contour for Fi,. (2,7

The integral for Fj,.1 can be evaluated on a rectangular contour (see figure A.1)
in the lower-half of the complex z-plane with the vertices given by A;;(—2T,0),
Bi(2T,0), C (2T, —ico) and Dy (—2T, —i00). Since this contour does not enclose
the pole, by Cauchy’s theorem the integral around this closed contour is zero. The
value of the integral over the edge A;; B;; can then be expressed in terms of the
integrals over the other edges B;;C;; and D;; A;;. Since the integrand vanishes on

the edge (1 D;; the contribution to the integral from this edge is zero. Thus

QLT T 2T—ioo e~ —iflw A
ine 3 = \3 5 D
i ) (2%2) {/QT (@ — i€) +/2T i00 :1;—@6)2} (8.5)

and after some simple manipulations these integrals can be expressed as follows

—Qu

T : 0 e
Ene Q, T — <—) ) _QZQT/ d
1 ) 272 {@e 0 ’ (v+e+ 2iT)2

—Qu

_je¥iar /Oo do—S 2}. (A.6)
0 (v+e—2iT)
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Figure A.2: Contour for Fiye2a(Q2,T)

The integral F;,.o in the response function of the inertial detector has a |z|

term in the integrand and hence it has to expressed as a sum of the integrals over
limits (—27,0) and (0, 27"). Therefore, the intergals that have to be evaluated are
1 2T pRieT 2T o= o,

Finea(Q,T) = m{ ; dxm—l- : dx m} (A7)
The first of these integrals can be evaluated on a rectangular contour (see fig-
ure A.2) in the upper-half of the complex a-plane with the vertices at A;5(0,0),
Bi2(2T,0), Cio(2T,i00) and D;2(0,i00). Similarly, the second integral can be eval-
uated on another rectangular contour (see figure A.3), this time in the lower-half
of the complex z-plane with the vertices at A;2.(0,0), Bi2.(27,0), Ci. (2T, —ic0)
and D;2.(0, —ico). Since neither of these contours enclose any poles, the integral

over the edge A;3Bis (Ai2«Bi2«) can be expressed in terms of integrals over the

edges Bi2Ciy (Biz*ciz*) and D Ajp (Di2*Ai2*)- The edge Cia Dz (Ci2*Di2*) does
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Figure A.3: Contour for Fi,eop(2,T)

not contribute to the integral since the integrand vanishes on this edge. After

some simple algebra we obtain that

e—Qv

(v+e— 2iT)2
—Qu

1 ar [
Fina(,T) = m{QiTeQZQT/O dv

=27 e_zmT/ dv ‘ —
0 (U —|— e+ 2T)

— 2T /OO dv / dv ———
0 (U—I—e—QzT U—|-6

—MT/ @ < } (A.8)
(v+e+ ZZT)

The finite time inertial detector response is then given by

fme(Q,T - 4%2{/ dv

2T /OO dv < U. 2
0 (v+e—2iT)

—Qu

—MT/ do—" } (A.9)
U—I—c—I—ZZT)

This is the result quoted in the text.
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Figure A.4: Contour for Fyec1,(2,7T)

A.2 Response of the accelerated detector

The response of the accelerated detector when it is turned on and off with a

rectangular window function is described by the integrals (see subsection 2.2.3)

Ful 0T = 3 Fatnl 0 T) + Frocan( 0, T), (A.10)
where |
Fuan ) =~ () [ do ﬁ (A11)
and |
Foon(Q,T) = 41? /_2; da (Z__Qilb'“’)t (A.12)

Fucern can be evaluated on a rectangular contour (see figure A.4) with the vertices
at A (—27,0), B, (27,0), Cor1 (2T, —ico) and Dyi(—2T, —ioco). This contour en-

closes the poles corresponding to the values of n between one and infinity and
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the integral for F,..1, can be expressed in terms of the integrals over the edges
B,1Cy and Dy A,y and the residues corresponding to the enclosed poles. After
some manipulations we obtain that

e—Qv

T , 00
accln QT = R 270) Qby, : —QZQT/ d
Frean 1) <27T2) { T 8(n) e +se o (b, +uT)

—Qu

2T /OO do— S 2}, (A.13)
0 (v+b, —2iT)

where O(n) =1 for n > 0 and zero otherwise.

Fucean after it has been split into two integrals with the limits (—27',0) and

(0,27), is given by
1 2T pRieT 2T o= o,

Faeern(@,T) = 15 {/0 dx 1) + dxm}. (A.14)
The first of these integrals can be evaluated on a rectangular contour (see fig-
ure A.5) on upper-half of the complex z-plane with the vertices at A,2(0,0),
Ba2(2T,0), Cya(2T,i00) and D,2(0,700). Since the pole in the integrand sits right
on the edge D,y A,; when n > 0, to avoid it, we indent the contour in such a way
so that the pole is left outside the contour. Similarly, for evaluating the second in-
tegral in (A.14) a contour (see figure A.6) with vertices at A42.(0,0), Ba2.(27,0),
Co2x(2T, —io0) and Dy,2.(0, —ico) can be chosen and the poles that lie on the edge
D,2.A42. for the values of n between one and infinity can be avoided with an
indentation of the contour so that they are left outside. The indentation on the
contours contribute a residue corresponding to the infinitesimal semicircle around
the pole with the result

e—Qv

v+ b, — 27T
—Qu

Facen(Q,T) = L{ZiT 2T /OO dv (
0

42

— T 2T /Oo dv ‘ —
0 (v+b,+2:T)
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Figure A.5: Contour for F,cona(,T)

U ——

Figure A.6: Contour for Fyec0np(Q,T)
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—Qu —Qu

_ezmT/oodU € v 2_|_2/Oodveiv2
0 (v + b, — 2iT) 0 (v+b,)
—Qu

—emnuT /OO dv € v , 2}. (A.15)
0 (v+b, —2iT)

When the pole happens to settle right on the axis of integration in any of the

integrals in the above expression the result of the integral over that axis is assumed

to be given by the principal value of the integral. The complete accelerated

detector response is then given by

1 i 0
w0, T) = — 47 QT $2bn 2/ dy——
Face(2,T) = {7‘[‘ O(n) e + ; U(U—I—bn)2

n=—0oo

e~y

_ ot /°° do e M
o (v4b, —2T)

0 —Qu
_e—ZiQT/ do G 2} (A.16)
0 (v+b,+2:T)

which is the result quoted in the text.
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