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I. SUPERFLUID TURBULENCE AND HELICITYSuperuid 4He, conventionally referred to as helium II, behaves as an irrotational idealuid which can contain quantized vortices. In addition, it supports a gas of elementaryexcitations, viz. the normal uid, which exerts a frictional force on the quantized vortices.Such a hydrodynamical description of helium II, called the two-uid model, is valid downto scales comparable to the coherence length of the superuid condensate, a distance whichboth theory and experiment suggest to be of the order of a few Angstroms (see, for e.g.,Refs. [1,2]).Helium II exhibits turbulence as ordinary uids do [3]. The turbulent superuid isconsidered to consist of a random tangle of quantized vortices. However, due to the factthat circulation is quantized, unlike ordinary uids, helium II exhibits turbulence only abovea certain critical velocity. Moreover, as helium II consists of two uids, di�erent types ofturbulent states are possible depending on the relative velocity between the normal and thesuperuid components (see Ref. [3]; also see Ref. [2], Chap. 7).An important aspect of turbulence in helium II are vortex reconnections. It was recog-nized very early in literature that topology-changing vortex reconnections are an essentialmechanism that sustains the chaotic state of the vortex tangle [4]. Despite that fact, therestill does not exist an adequate picture of vortex reconnections. (This is indeed the case atleast within the two-uid model. However, it should be mentioned here that vortex recon-nections have been shown to occur when the condensate wave function is assumed to evolveaccording to the Gross-Pitaevskii equation [5].) The most successful approach that has beendeveloped to describe the homogeneous turbulence in helium II is the model due to Schwarz(see Ref. [6] and the earlier references to Schwarz therein). Using his model, Schwarz hasbeen able to numerically simulate the steady-state density of quantized vortices that occur inhomogeneous turbulent states. However, even in the Schwarz's model, vortex reconnectionwas only proposed as an Ansatz.In the case of turbulence in ordinary uids, initially Moreau [7] and, independently later,Mo�att [8,9] introduced helicity as a measure of the degree of tangledness of closed vortexknots and loops. The helicityH corresponding to a velocity �eld v of the uid is de�ned as:H = ZV d3x [v(x) � !(x)] ; (1)where ! = (r� v) is the vorticity �eld and V is the volume of the uid containing thevortex tangle. Helicity H as de�ned above is a pseudoscalar and is, in general, expected tohave a non-zero value in a turbulent ow. It has been pointed out earlier that helicity canprove to be a useful measure to describe turbulence in non-linear �elds or order parameterssuch as the condensate wave function describing superuid 4He (see Refs. [10,11]; also seeRefs. [12,13] in this context). My aim in this Letter is to examine how the concept of helicitycan possibly be utilized in an attempt to understand the mechanism of vortex reconnectionsin turbulent helium II. 2



II. SUPERFLUID HELICITY AS A LINKING NUMBERAmongst the di�erent possible turbulent states of helium II, the state I shall be interestedin is a pure turbulent superow, a state wherein the normal uid is at rest [14]. Interestinglyenough, unlike the other turbulent states of helium II, turbulence in a pure superow isindependent of the geometry of the ow tube and, in fact, a homogeneous turbulent stateoccurs in all geometries [15,16].In a pure turbulent superow, since the normal uid is at rest, helicity for a givenvolume V of helium II can be de�ned asHsf = ZV d3x [vs(x) � !s(x)] ; (2)where vs is the velocity of the superuid component and !s is the vorticity associated withthe superow. Given a vorticity �eld !s that is con�ned to a �nite volume, the correspondingsuperuid velocity �eld vs can be expressed using the Biot-Savart law as follows (see, forinstance, Refs. [17,18]): vs(x) = Z d3x0 "!s(x0)� (x� x0)jx� x0j3 # : (3)On substituting this expression for vs in the de�nition (2) for the superuid helicity, I obtainthat Hsf = ZV d3x ZV d3x0 "!s(x) �!s(x0)� (x� x0)jx� x0j3 # : (4)In helium II, the vorticity �eld !s is con�ned to the superuid vortices which are ex-tremely thin with a core radius typically of the order of a few Angstroms (see, for e.g.,Ref. [1], pp. 205{206; also see Ref. [19]). Even though the superuid vortices are extremelythin, the contribution to helicity due to the non-zero thickness of the vortices cannot beignored. Due to this reason, for the discussion that follows immediately, I shall considera superuid vortex with a circulation � to be composed of in�nitesimally thin vortex lineswith circulation ��. (I will do so despite the fact that the circulation of the superuid vorticesis quantized. I will revert to discussion in terms of the quantized circulation � soon after.)Then, in the expression (4) for the superuid helicity Hsf , I can writeZ d3x !s(x) = Z ds Z d2x? !s(x) �Xi ��i Z d�si; (5)where d�si and ��i denote the in�nitesimal element and the circulation associated with thevortex line i and the sum extends over all the vortex lines within a given vortex.I shall now assume that the superuid vortex tangle within the volume V contains onlyclosed vortex knots and loops. In such a case, the expression (4) for the superuid helicitycan be formally written as Hsf = (4�)Xi;j � �Lij ��i ��j� ; (6)3



where ��i is the circulation associated with a given closed vortex line `i and �Lij denotes thefollowing Gauss integral along any two closed vortex lines `i and `j [20]:�Lij = � 14�� Ìi Ìj "ds � ds0 � (x� x0)jx� x0j3 # : (7)(It should be noted here that �Lij is a topologically invariant quantity only when i 6= j andit is not when i = j. I shall comment further on this point in the next paragraph.) The sumin the expression (6) extends over all the closed vortex lines and care should be exercised inrewriting this sum as a sum over the tubular vortex knots and loops. Due to the fact thatthe superuid vortices have a non-zero thickness, in addition to the contribution to helicitywhen `i and `j are considered to be vortex lines in two di�erent vortex tubes (say, a andb), one need to take into account the contribution when `i and `j are considered to be twodi�erent lines within the same vortex tube (say, a). The former would then correspond tothe topologically invariant Gauss linking number Lab of the two di�erent vortices a and band the latter would correspond to the linking number of the two di�erent vortex lines inthe same vortex a, a quantity that I shall refer to as the self-linking number Sla of thevortex, which is topologically invariant as well (cf. Refs. [21,22]; see Ref. [23] for a recentdiscussion). Therefore, the superuid helicity Hsf can be written asHsf = (4�) a 6=bXa;b (Lab �a �b) + (4�)Xa �Sla �2a� ; (8)where the sum in the second term extends over all the vortices, whereas the sum in the �rstterm extends over all pairs of vortices con�ned to the volume V.The following comments and clari�cations are in order at this stage of the discussion. Iwould like to stress again that the self-linking number Sla of a vortex a is the Gauss linkingnumber of two di�erent vortex lines (say, `i and `j with i 6= j) within the same vortex.Now, using Calugareanu's theorem1, the self-linking number Sla of a particular vortex a canbe decomposed as follows: Sla =Wra + Twa; (9)where Wra is a quantity referred to as the writhe and Tw is called the twist of the vortex.The twist Twa reects the extent to which a given vortex line (say, `j) \twists" aroundanother line (say, `i) within the same vortex a and the quantity writhe Wra corresponds tothe case wherein i = j in �Lij (i.e. when `i = `j within the same vortex a). (For an exactde�nition of the twist, see, for instance, Ref. [23].) Had I considered the superuid vorticesto be in�nitesimally thin and had, therefore, treated the sum over the vortex lines in Eq. (6)1This theorem is usually referred to in literature as the White-Fuller relation [24,25]. However, asMo�att and Ricca point out [23], Calugareanu had, in fact, obtained this relation almost a decadebefore White and Fuller. Following Mo�att and Ricca, I shall refer to this relation as Calugareanu'stheorem. 4



as the sum over the superuid vortices themselves, I would have taken into account thecontribution to superuid helicity due to the writhe Wra, but would have missed out thecontribution due to the twist Twa. (A twisted vortex, for instance, will have a higher energythan one that is not and, hence, it should be, in principle, possible to distinguish betweenthese two vortices; see, for e.g., Ref. [26] in this context.) Moreover, as I have pointed outabove, the writhe Wra, when it stands alone, is not a topologically invariant quantity. Itis only its sum with the twist Twa, viz. the self-linking number Sla, that is topologicallyinvariant (cf. Ref. [23]). Therefore, had I ignored the non-zero thickness of the superuidvortices, I would have obtained an expression for the superuid helicity that would not betopologically invariant.The circulation � is related to the winding number n of the superuid vortex by therelation (cf. Ref. [1], p. 182): � = (2�n�h=m), wherem is the mass of the 4He atom. Superuidvortices with winding number n > 1 are known to be unstable (see, for instance, Ref. [17])and, hence, one can expect that the turbulent superuid predominantly contains vorticeswith unit winding number. Then, the helicity of the superuid vortex tangle as given byEq. (8) reduces to Hsf = (4�) (2��h=m)2 0@a 6=bXa;b Lab +Xa Sla1A : (10)Evidently, in a pure turbulent superow of helium II, superuid helicityHsf is a topologicallyinvariant quantity that counts the extent of linkage of closed superuid vortex knots andloops. III. CONSERVATION OF SUPERFLUID HELICITYIn the two-uid model, when the vorticity associated with the superow is non-zero,the superuid velocity vs satis�es the following equation of motion (cf. Ref. [27]; also seeRefs. [28,29]): �DsvsDt � = (�r�+ Fr + Fns) ; (11)where � is a scalar function that denotes the chemical potential, Fr is a restoring force thattends to straighten curved vortices and Fns is the mutual frictional force that arises due tothe interaction of the normal uid with the superuid vortices. The di�erential operator(Ds=Dt) appearing in the above equation of motion is de�ned asDsDt � @@t + (vs �r): (12)In the case of turbulence in a pure superow, since the normal uid is at rest, the gradientof the chemical potential � is given byr� =  1�!rp� SrT �  �n2�!r �jvsj2�+  ��!r (j!sj) ; (13)5



where � = (�s + �n), �n and �s are the normal and the superuid densities, p denotesthe pressure, S the entropy per unit mass, T the temperature and the quantity � is aphenomenological function which relates the increase in the energy density that results froman increase in the number of superuid vortices. Also, it has been assumed that, as in thecase of ordinary uids, the superuid vorticity !s is de�ned as!s = (r� vs) : (14)The restoring force Fr is given by the expressionFr = ��!s � F�; (15)where F =  1�s!�r� (� !̂s)� and !̂s = (!s=j!sj) : (16)The mutual frictional force Fns is given by the expressionFns=  B0�n2� ! �!s � (vs + F) �+ B�n2� ! �!̂s � �!s � (vs + F) ��� (�s)�!̂s �!s � (vs + F) �� ; (17)where B and B0 are the Hall and Vinen co�ecients. The last term involving the coe�cient represents a longitudinal mutual frictional force which is very small compared to B and B 0and hence can be neglected.I had pointed out in the last section that the superuid vortices are extremely thinand, hence, the vorticity �eld !s is con�ned to these thin vortices. By assuming that thesuperuid vorticity is given by the expression (14), the vorticity associated with these thinvortices has in e�ect been smoothed over a �nite extent. The equation of motion for thevorticity �eld !s can now be obtained from the equation of motion (11) for the superuidvelocity �eld. It is given by�Ds!sDt � = [(!s �r)vs � (r � vs)!s] +r� (Fr + Fns) : (18)Since the normal uid is at rest in a pure turbulent superow, I can (to a good approxima-tion) assume that its density is a constant. Then, the equation of continuity of mass reducesto  @�s@t !+r � (�svs) = 0: (19)If I now assume that the volume V containing the superuid vortex tangle is moving withthe superow, then DsDt ��s d3x� = 0: (20)6



From the equation of motion (18) for the vorticity �eld !s and the continuity equation (19),I obtain that DsDt  !s�s ! =  1�s!�(!s �r)vs +r� (Fr + Fns) �: (21)Using this equation and Eqs. (11) and (20), it is then easy to show that�DsHsfDt � = ZV d3x �r � h�jvsj2=2�� �i!s�� ZV d3x�r � [vs � (Fr + Fns)]�+2 ZV d3x �!s � (Fr + Fns) �: (22)Since the restoring force Fr and the mutual frictional force Fns are perpendicular to thevorticity �eld !s (see Eqs. (15) and (17) above), the last term in the above expressionvanishes. The remaining two terms can be rewritten using Gauss' divergence theorem asfollows �DsHsfDt �= ZS d2x (n̂ �Hsf) ; (23)where S is the surface enclosing the volume V and n̂ is the unit-vector normal to thesurface S. The quantity Hsf is the current associated with the superuid helicity and isgiven by the expressionHsf = �h�jvsj2=2� � �i !s � [vs � (Fr + Fns)]�: (24)Evidently, the superuid helicity Hsf is a conserved quantity [10].In the last section, I had shown that the superuid helicity Hsf measures the extentof linkage of closed vortex knots and loops in a vortex tangle. The fact that superuidhelicity is conserved clearly implies that vortex reconnections are precluded within the two-uid model even when the restoring and drag forces are taken into account. It should bementioned here that, in turbulent states wherein the normal uid is in motion, the totalhelicity of helium II will contain a cross term involving the normal uid velocity vn and thesuperuid vorticity !s. Hence, when the normal uid is in motion, the helicity for a givenvolume of helium II will not reect the extent of linkage of closed vortex knots and loopswithin that volume. It is for this reason that I had con�ned my discussion to turbulence ina pure superow. IV. DISCUSSIONIn a classical ideal uid, Helmholtz's theorem ensures that the vortex lines move withthe uid and hence no vortex reconnections occur. But, in turbulent helium II, due to thepresence of the restoring and drag forces Fr and Fns, the superuid vortices, in general,do not move with the superow (see Ref. [28], Eq. (16-45) in this context). However, as Ihave shown, helicity is conserved even when these forces are taken into account. Clearly,7



the fact that the vortices cease to move with the ow does not necessarily imply that vortexreconnections will take place|the forces Fr and Fns stretch and drag and the superuidvortex knots and loops in such a fashion that vortex reconnections do not occur.However, it is important to realize that the fact that helicity is conserved within the two-uid model does not imply vortex reconnections will not take place in reality. (As I havementioned before, vortex reconnections are considered to be essential to sustain the chaoticstate of the vortex tangle Ref.schwarz88.) In fact, the equations of the two-uid model, atleast as they presently stand, can be expected to breakdown when the vortices approacheach other. In classical uids, it is known that when viscous forces are present, vortices canmove towards each other and eventually reconnect [30,31]. This suggests that additionalforces, possibly viscous in nature, may need to be introduced, if vortex reconnections are tobe accounted for within the two-uid model [10].In spite of such \improvements" that can possibly be made to the two-uid model, thequantum nature of the vortices cannot be ignored when the vortices approach within a fewcore lengths of each other [32]. When considering the fact that the superuid helicity of avortex tangle containing closed vortex knots and loops is proportional to an integer, it istempting to propose the following quantum picture of vortex reconnections. The superuidhelicity (or, equivalently, the total linking number) of a vortex tangle can be consideredas a quantum number describing the stationary and turbulent states of the condensatewave function of 4He. In such a picture, vortex reconnections can be interpreted as aquantum transition between the stationary states of the condensate wave function describedby di�erent helicity quantum numbers.ACKNOWLEDGMENTSI would like to thank Prof. Jacob Bekenstein for suggesting the problem and for discus-sions during the course of this work. I would also wish to thank Tsippora Mendelson andProfs. William Glaberson, Yu. G. Mamaladze, Don Page and Terry Gannon for discussions,Prof. Brandon Carter for pointing out an error in the previous version of this manuscriptand the anonymous referee for bringing Ref. [10] to my attention. This work was supportedby the Israel Science Foundation established by the Israel Academy of Sciences and by theNational Science and Engineering Research Council, Canada.
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