
CLASSICAL ELECTRODYNAMICS

Lecture schedule

• The course will consist of about 30 lectures and 5 tutorial sessions. The duration of each lecture
and tutorial session will be 1.5 hours.

• We will meet thrice a week. The lectures are scheduled for 9:30–11:00 AM on Wednesdays, Thursdays
and Fridays. We will be meeting in the discussion room on the top floor of the main building.

• The first lecture will be on August 13, 2010 and the last lecture will be on December 2, 2010.

• We will not be meeting during the week of October 11–15, 2010, due to the mid-semester break.

• Changes in schedule, if any, will be notified sufficiently in advance.

Problem sheets, exams and grading

• The grading will be based on 4 problem sheets (each containing about 5-10 problems), a mid-
semester and an end-of-semester exam.

• The 4 problem sheets, in total, will carry 30% weight.

• The mid-semester exam will be on October 1, 2010. The exam will be for a duration of 1.5 hours
and will carry 30% weight.

• The end-of-semester exam will be on December 3, 2010. The exam will be of 3 hours duration and
will carry 40% weight.

• You will require a total of 50% to pass the course.



Classical electrodynamics

Syllabus and structure

1. A historical perspective [∼ 1 Lecture]

(a) Electricity, magnetism, and light

(b) Light, ether, and relativity

2. Special relativity [∼ 2 Lectures]

(a) Principles of special relativity – k-calculus – Composition law for velocities

(b) Lorentz transformations – The relativity of simultaneity – Length contraction and time dilation

(c) Transformation of velocities and acceleration – Uniform acceleration – Doppler effect

3. Four vectors, tensors, and relativity [∼ 2 Lectures]

(a) Transformation of coordinates – Four vectors

(b) Contravariant, covariant and mixed tensors – Elementary operations with tensors

(c) The Minkowski line-element – Action for the relativistic free particle

(d) Conservation of relativistic energy and momentum – Elastic collisions of particles

Problem sheet 1

4. Charges in electromagnetic fields [∼ 4 Lectures]

(a) Elementary particles in the theory of relativity

(b) Four potential – Equation of motion of a charge in an electromagnetic field

(c) Gauge invariance

(d) Motion in constant, uniform electric and magnetic fields

(e) The electromagnetic field tensor – Lorentz transformation of the field – Invariants of the field

5. The electromagnetic field equations [∼ 4 Lectures]

(a) The first pair of Maxwell’s equations

(b) The action for the electromagnetic field

(c) The four dimensional current vector and the equation of continuity

(d) The second pair of Maxwell’s equations

(e) Energy density and energy flux – The energy-momentum tensor – The energy momentum
tensor of the electromagnetic field

(f) The virial theorem

Problem sheet 2

6. Constant electromagnetic fields [∼ 4 Lectures]

(a) Coulomb’s law – Electrostatic energy of charges

(b) The field of a uniformly moving charge

(c) Motion in the Coulomb field

(d) The dipole moment – Multipole moments

(e) System of charges in an external field
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Classical electrodynamics

(f) Constant magnetic field – Magnetic moments

(g) Larmor’s theorem

Mid-semester exam

7. Electrostatic of conductors and dielectrics [∼ 2 Lectures]

(a) The electrostatic field of conductors – The energy associated with the field

(b) Methods of solving problems in electrostatics

(c) The electric field in dielectrics

8. Steady currents and static magnetic fields [∼ 1 Lecture]

(a) The current density and conductivity

(b) The magnetic field of a steady current

(c) Forces in a magnetic field

Problem sheet 3

9. Electromagnetic waves and the propagation of light [∼ 2 Lectures]

(a) The wave equation – Plane waves – Monochromatic plane waves

(b) Spectral resolution – Partially polarized light

(c) The Fourier resolution of the electrostatic field

10. Propagation of light [∼ 3 Lectures]

(a) Geometrical optics – Intensity

(b) The angular eikonal – Narrow bundles of rays

(c) Image formation with broad bundles of rays

(d) The limits of geometrical optics

(e) Diffraction – Fresnel and Fraunhofer diffraction

Problem sheet 4

11. The field of moving charges [∼ 3 Lectures]

(a) The retarded potentials – The Lienard-Wiechart potentials

(b) Spectral resolution of the retarded potentials

12. Radiation of electromagnetic waves [∼ 4 Lectures]

(a) The field of a system of charges at large distances

(b) Dipole radiation – Dipole radiation during collisions

(c) Radiation in the case of Coulomb interaction

(d) Quadrapole and magnetic dipole radiation

(e) Radiation from a rapidly moving charge

(f) Synchrotron radiation

(g) Radiation damping – Radiation damping in the relativistic case

End-of-semester exam
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Essential texts

1. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,
Volume 2), Fourth Edition (Pergamon Press, New York, 1975).

2. L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media (Course
of Theoretical Physics, Volume 8), Second Edition (Pergamon Press, New York, 1984).

3. D. J. Griffiths, Introduction to Electrodynamics, Third Edition (Prentice Hall of India, New Delhi,
1999).

4. J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley and Sons, Singapore, 1999).

Additional references

1. R. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992).

2. W. Greiner, Classical Electrodynamics (Springer-Verlag, New York, 1998).

3. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi,
2003).

4. M. Longair, Theoretical Concepts in Physics, Second Edition (Cambridge University Press, Cam-
bridge, England, 2003).
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Problem sheet 1

Special relativity and tensors

1. Consider two inertial frames that move with the velocities v1 and v2 with respect to, say, the
laboratory frame. Show that the relative velocity v between the two frames can be expressed as

v2 =

[

(v1 − v2)
2 − (v1 × v2)

2

(1 − v1 · v2)
2

]

.

2. Consider a blob of plasma that is moving at a speed v along a direction that makes an angle θ with
respect to the line of sight. Show that the apparent transverse speed of the source, projected on the
sky, will be related to the actual speed v by the relation

vapp =

(

v sin θ

1 − (v/c) cos θ

)

.

From this expression conclude that the apparent speed vapp can exceed the speed of light.

3. Let Λ(v) denote the matrix corresponding to a Lorentz boost along the direction v̂ with the speed v.
Show that

Λ(v1 ĵ) Λ(v1 î) = R(θ k̂) Λ(v2 n̂),

where î, ĵ and k̂ are the unit vectors along the x, y, and z axes, respectively, and R(θ k̂) is a matrix
that describes spatial rotation by the angle θ about the z-axis. What is n̂? Also, determine v2 and
θ in terms of v1.

4. Consider two inertial frames S and S′, with the frame S′ moving along the positive x direction
with a velocity v with respect to the frame S. Let the velocity of a particle in the frames S and S′

be u and u′, and let θ and θ′ be the angles subtended by the velocity vectors with respect to the
common x-axis, respectively.

(a) Show that

tan θ =

(

u′ sin θ′

γ [u′ cos θ′ + v]

)

,

where γ =
[

1 − (v/c)2
]

−1/2
.

(b) For u = u′ = c, show that

cos θ =

(

cos θ′ + (v/c)

1 + (v/c) cos θ′

)

and

sin θ =

(

sin θ′

γ [1 + (v/c) cos θ′]

)

.

(c) For (v/c) ≪ 1, show that
∆θ = (v/c) sin θ′,

where ∆θ = (θ′ − θ).

Note: This phenomenon is known as aberration of light.

5. Consider the scattering between a photon of frequency ω and a relativistic electron with velocity v

leading to a photon of frequency ω′ and electron with velocity v′. Let α be the angle between the
incident and the scattered photon and θ and θ′ be the angles between the direction of propagation
of photon and the velocity vector of the electron before and after the collision.
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(a) Using the conservation of energy and momentum in the scattering, show that

(

ω′

ω

)

=

(

1 − (v/c) cos θ

1 − (v/c) cos θ′ + (~ ω/γ me c2) (1 − cos α)

)

,

where γ =
[

1 − (v/c)2
]

−1/2
and me is the mass of the electron.

(b) When (~ ω) ≪
(

γ me c2
)

, show that the frequency shift of the photon can be written as

(

∆ω

ω

)

=

[

(v/c) (cos θ − cos θ′)

1 − (v/c) cos θ′

]

,

where ∆ω = (ω′ − ω).

(c) The above expression implies that, if θ and θ′ are randomly distributed, then there is no
net increase in the photon energy to the first order in (v/c). Use the exact expression and
compute the net energy change of the photon to the order (v/c)2 when θ and θ′ are randomly
distributed.

6. A purely relativistic process corresponds to the production of electron-positron pairs in a collision
of two high energy gamma ray photons. If the energies of the photons are ǫ1 and ǫ2 and the relative
angle between them is θ, then, by using the conservation of energy and momentum, show that the
process can occur only if

(ǫ1 ǫ2) >

(

2m2
e c4

1 − cos θ

)

,

where me is the mass of the electron.

7. A mirror moves with the velocity v in a direction perpendicular its plane. A ray of light of frequen-
cy ω1 is incident on the mirror at an angle of incidence θ, and is reflected at an angle of reflection φ
and frequency ω2.

(a) Show that
(

tan (θ/2)

tan (φ/2)

)

=

(

c + v

c − v

)

and

(

ω2

ω1

)

=

(

c + v cos θ

c − v cos φ

)

.

(b) What happens if the mirror was moving parallel to its plane?

8. (a) Show that the following Minkowski line-element

ds2 = c2 dt2 − dx2

is invariant under the Lorentz transformations.

(b) Show that the four volume d4x ≡ (cdt d3x) is invariant under the Lorentz transformations.

Note: Recall that the coordinates, say, (c t′, x′, y′, z′), of an inertial system that is moving along the
positive x direction at a velocity v with respect to, say, the coordinates (c t, x, y, z) of the laboratory
are given by

c t′ = γ [c t − (v x/c)] , x′ = γ (x − v t) , y′ = y, z = z′,

where γ =
[

1 − (v/c)2
]

−1/2
.

9. (a) Consider a scalar quantity φ. Show that, while the quantity (∂φ/∂xµ) is a vector under ar-
bitrary coordinate transformations, the quantity

(

∂2φ/∂xµ ∂xν
)

is a tensor only under linear
coordinate transformation such as the Lorentz transformations.

(b) If Xµ
νλ is a mixed tensor of rank (1, 2), show that the contracted quantity Yµ = Xλ

µλ is a
covariant vector.
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10. (a) Given that Fµν is an anti-symmetric tensor in the laboratory frame, evaluate the components
of the tensor in a frame that is moving along the positive x direction with a velocity v with
respect to the laboratory.

(b) Evaluate the quantities δµ
µ and

(

δµ
ν δν

µ

)

.

This sheet has to be returned to Dhiraj Hazra by 4:00 PM on September 8, 2010.
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Problem sheet 2

Charges in electromagnetic fields and the electromagnetic field equations

1. Determine the frequency of a charged, three-dimensional oscillator that is in a uniform magnetic
field oriented along, say, the positive z-axis.

2. (a) Express the three acceleration (i.e. v̇) of a charged particle in terms of the electric and the
magnetic fields E and H.

Note: The overdot denotes differentiation with respect to the coordinate time t.

(b) Determine the motion of a charge that is moving relativistically in parallel, uniform, electric
and magnetic fields.

(c) Determine the motion of a charge that is moving relativistically in uniform electric and mag-
netic fields that are perpendicular to each other.

3. (a) Evaluate how the electromagnetic field tensor Fµν transforms under a Lorentz boost. From
the result, arrive at how the electric and magnetic fields transform under the Lorentz trans-
formation.

(b) Given that the uniform electric and magnetic fields are constant and uniform, determine the
velocity of the reference frame in which the two fields are parallel.

4. Show that:

(a) (Fµν Fµν) = −2
(

E2 − H2
)

.

(b)
(

eαβγδ Fαβ Fγδ

)

= −8 (E ·H).

Note: The quantity eαβγδ is a tensor that is anti-symmetric in all its indices, and has a mag-
nitude of unity. We work with the convention wherein e0123 = 1.

(c)
(

eαβγδ Fαβ Fγδ

)

is a total four-divergence.

(d) The source-free Maxwell’s equations can be written as
[

eαβγδ (∂β Fγδ)
]

= 0.

Note: The source-free Maxwell’s equations were originally obtained to be:

(∂λ Fµν + ∂ν Fλµ + ∂µ Fνλ) = 0.

5. Consider the following action that describes a scalar field, say, φ:

S[φ] =

∫

c dt d3x

(

1

2

)

(

∂µφ∂µφ − m2 φ2
)

,

where m is referred to as the mass of the scalar field.

(a) Vary the action to arrive at the equation of motion of the scalar field.

(b) Evaluate the energy-momentum tensor Tµν associated with the field.

6. Given the energy-momentum tensor Tµν associated with the electromagnetic field,

(a) Show that energy-momentum tensor possesses no trace.

(b) Show that the energy-momentum tensor is divergence-free in the absence of sources.

(c) Evaluate
(

T µλ Tλν

)

.

This sheet has to be returned to Dhiraj Hazra by 4:00 PM on September 23, 2009.
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Mid-semester exam

From special relativity to constant electromagnetic fields

1. (a) Show that the phase space volume
(

d3x d3p
)

is a Lorentz invariant quantity.

(b) The specific intensity of radiation Iν measures the intensity of the radiation at a particular
frequency ν in a particular direction. It is defined as the flux per unit frequency interval, per
unit solid angle. Show that

(

Iν/ν
3
)

is Lorentz invariant.

2. Consider a frame S′ that is moving with a velocity v with respect to the frame S. A rod in the
frame S′ makes an angle θ′ with respect to the forward direction of motion. What is the angle θ as
measured in S?

3. Determine the magnetic field H due to a current I being carried in an infinitely long straight wire,
by an appropriate Lorentz transformation of the electric field of an infinitely long and straight
charge distribution.

4. A particular electromagnetic field has its electric field E at an angle θ to the magnetic field H. All
inertial frames find the value of the angle θ to be the same. What is the value of θ? Are you aware
of an example of such a field configuration?

5. Consider a conducting element with conductivity σ that is carrying a current due to an imposed
electric field. Let the current and electric field in the frame of the conductor be given by the three
dimensional vectors j and E, respectively. Then, according to the Ohm’s law, the current and the
imposed electric field are related through the conductivity of the medium as follows: j = (σ E).
Express the Ohm’s law in a covariant form in terms of the four current jµ, the field tensor Fµν ,
and the four velocity uµ of the conducting element.

Hint: The Ohm’s law in the form expressed above is valid in the frame of the conductor wherein
uµ = (1, 0, 0, 0). Attempt to write the Ohm’s law in terms of the four velocity uµ. Once expressed
in a covariant form, if it is valid in one frame, it will be valid in all frames.

6. A small test particle of positive charge q and mass m makes circular orbits around a fixed, very
massive body of positive charge Q. A uniform magnetic field H perpendicular to the orbital plane
helps to keep the particle in orbit at a radius, say, R. In the inertial frame in which the central,
massive body is at rest, the test charge is seen to circle in the plane perpendicular to the magnetic
field H with an angular frequency ω. Show that the charge to mass ratio (q/m) of the test particle
can be expressed in terms of ω, Q and R as follows:

( q

m

)

=







ω2

[

1 − (ω R/c)2
]1/2

[(ω H/c) − (Q/R3)]






.
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Mid-semester exam II

From special relativity to constant electromagnetic fields

1. (a) Show that the phase space volume
(

d3x d3p
)

is a Lorentz invariant quantity.

(b) The specific intensity of radiation Iν measures the intensity of the radiation at a particular
frequency ν in a particular direction. It is defined as the flux per unit frequency interval, per
unit solid angle. Show that

(

Iν/ν
3
)

is Lorentz invariant.

2. Consider a frame S′ that is moving with a velocity v with respect to the frame S. A particle in the
frame S′ is moving with a velocity v′ at an angle θ′ with respect to the forward direction of motion.
What is the angle θ as measured in S?

3. Determine the magnetic field H due to a current I being carried in an infinitely long straight wire,
by an appropriate Lorentz transformation of the electric field of an infinitely long and straight
charge distribution.

4. Consider the following alternative action to describe the electromagnetic field:

S[Aµ] =

∫

c dt d3x

[

−

(

1

8π

)

(∂µAν) (∂µAν) −

(

1

c

)

jµ Aµ

]

,

where Aµ and jµ are the usual four potential and current. Derive the corresponding equations of
motion. Are they the Maxwell’s equations? If they are, under what assumptions are they so?

5. If Bµν is an anti-symmetric tensor in one inertial frame, establish that it is so in all other frames.
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Problem sheet 3

Constant electromagnetic fields and electrostatics of conductors and dielectrics

1. Working in the cartesian coordinates, solve the following Poisson’s equation using the method of
the Green’s function:

∇2φ = − (4π) ρ.

Note: The solution to the above Poisson’s equation can be written as

ρ (x) =

∫

d3x′ G
(

x,x′
)

ρ
(

x′
)

,

where the Green’s function G (x,x′) satisfies the differential equation

∇2G
(

x,x′
)

= δ(3)
(

x− x′
)

.

2. In cases which possess cylindrical symmetry, it may be easier to work in the cylindrical polar
coordinates. Evaluate the Green’s function G (x,x′) in the cylindrical polar coordinates.

Note: Since the Green’s function G (x,x′) can be expressed in terms of the (spatial) coordinate
invariant distance |x − x′|, the Green’s function in the cylindrical polar coordinates can be easily
obtained by simply transforming this distance from the cartesian coordinates to the cylindrical polar
coordinates. But, I would like you to obtain the Fourier modes in the cylindrical polar coordinates,
and sum over them, to arrive at the Green’s function.

3. What is the Green’s function G (x,x′) to the Poisson’s equation in one lower dimension, i.e. in two
spatial dimensions?

4. We had worked out the potential that arises due to a point charge in the presence of a charged
conducting sphere. Draw the lines of force of the resulting electric field.

5. Two charges are moving with the same velocity, say, v, with respect to the laboratory frame. What
is the force between them?

Hint: Determine the electric and magnetic fields produced by one of the charges, and use the Lorentz
force law to determine the force on the other charge.

6. Consider a relativistic test charge is moving in the centrally symmetric field of another charge e
which generates the electrostatic potential φ = (e/r). Let the mass of the central charge be so large
that it can be considered to be fixed.

(a) Determine the trajectory of the test charge.

(b) What are the conditions under which the motion of the particle will be unbounded?

(c) What are conditions under which the test charge will exhibit bounded motion?

(d) When the charge is exhibiting bounded motion, is the trajectory of the charge an ellipse as in
the non-relativistic case?

(e) Draw the trajectory of the charge in both the bounded and unbounded cases.

7. Recall that, in the multipole expansion, the potential due to a distribution of charges can be
expressed as

φ =
∞
∑

l=0

φ(l).

The term φ(l) is given by

φ(l) =

(

1

r
(l+1)
0

)

l
∑

m=−l

(

4π

2 l + 1

)1/2

Q(l)
m Y ∗

lm(ϑ,ϕ),
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where

Q(l)
m =

(

4π

2 l + 1

)1/2
∑

a

ea rl
a Ylm(θa, φa)

with the sum being over all the charges in the system. The vectors r0 and r denote the point
of observation and the location of the charges, while (ϑ,ϕ) and (θa, φa) are the spherical angles

corresponding to these two vectors, respectively. The set of (2 l + 1) quantities Q
(l)
m describe the

2l-pole moment of the system of charges. Relate the components of the dipole and the quadrapole

moments of the distribution to the quantities Q
(l)
m .

8. Determine the dipole and quadrapole moments of a uniformly charged ellipsoid with respect to its
centre.

9. What is the Green’s function (in three spatial dimensions) when an infinite planar conductor is
located at x = 0?

10. Determine the capacitance of a ring of thin conducting wire of radius b and circular cross-section a
such that a ≪ b.

This sheet has to be returned to Dhiraj Hazra by 4:00 PM on November 4, 2010.
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Miscellaneous problems

Tensors in space and spacetime

Tensors in Euclidean space – Working in the cartesian coordinates

1. (a) What are the components of the metric tensor that describes the three dimensional Euclidean
space in the cartesian coordinates? Is there any difference between the covariant and the
contravariant three dimensional vectors in such a coordinate system?

(b) Is the magnitude of a vector always positive definite in three dimensional Euclidean space?
Why is that so?

2. (a) Show that the vector product of two three-dimensional, spatial vectors, say, A and B, can be
written as

(A× B)i = (eijk Aj Bk) ,

where eijk is the three dimensional, completely anti-symmetric tensor with the indices (i, j, k)
going from 1 to 3.

(b) Use the anti-symmetric property of eijk to show that [A · (A× B)] = 0.

3. Show that, in three-dimensional Euclidean space,

(a) δii = 3,

(b) (δij eijk) = 0,

(c) (eikl ejkl) = (2 δij),

(d) (eijk eijk) = 6,

(e) (eijk emnk) = (δim δjn − δin δjm).

4. Write [∇ · (∇× A)] and [∇× (∇φ)] in terms of the anti-symmetric tensor eijk, and show that they
vanish.

5. Using the anti-symmetric tensor eijk, establish the following relation:

A × (B ×C) = B (A ·C) − C (A ·B) .

Tensors in Euclidean space – Working in the cylindrical and the spherical polar coordinates

6. What are the components of the metric tensor that describes the three dimensional Euclidean space
in the cylindrical polar and the spherical polar coordinates? Is there any difference between the
covariant and the contravariant vectors in these coordinate systems?

7. Express the three-dimensional Laplacian in the cylindrical polar and the spherical polar coordinates
in terms of the metric tensor in these coordinate systems.

Tensors in Minkowski spacetime

8. Performing the Lorentz transformations explicitly, show that the metric tensor in Minkowski space-
time, viz. ηµν = diag. (1,−1,−1,−1), is form invariant in any inertial coordinate system.

9. Using the standard spatial transformations that relate the cartesian coordinates to the cylindri-
cal and the spherical polar coordinates, obtain the Minkowski covariant metric tensor in these
coordinates. What are the corresponding contravariant metric tensors?

10. Consider two four vectors Aµ and Bµ given by

Aµ = (2, 0, 0,−1) and Bµ = (−5, 0,−3,−4) .
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(a) Is Aµ timelike, spacelike or null? What about Bµ?

(b) Compute (Aµ − 5Bµ).

(c) What is (Aµ Bµ)?

(d) Evaluate the components of the tensors Aµ and Bµ in an inertial frame, say, S, that is moving
with a speed v = (0.2 c) along the positive x-axis.

(e) What are the components of the second rank tensor (Aµ Bν) in the frame S? What are the
components of (AµBν) and (Aµ Bν)?

11. A particle of rest mass m and four momentum pµ is examined by an observer with a four velocity uµ.
Show that:

(a) The energy of the particle as measured by the observer is E = (pµ uµ) c.

(b) The rest mass that the observer attributes to the particle is m2 =
[

(pµ pµ) /c2
]

.

(c) The magnitude of the three momentum of the particle as measured by the observer is

p =
[

(pµ uµ)2 − (pµ pµ)
]1/2

.

(d) The magnitude of the three velocity of the particle as measured by the observer is

v =

[

1 −

(

pµ pµ

(pµ uµ)2

)]1/2

c.

12. Show that, if a tensor, say, Tαβ... is of rank n, then

(a)
(

∂Tαβ.../∂xγ
)

is a tensor of rank (n + 1),

(b) whereas
(

∂Tαβ.../∂xα
)

is a tensor of rank (n − 1).
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Problem sheet 4

From electromagnetic waves to radiation from moving charges

1. Determine the trajectory of a charge that is in motion in the fields of:

(a) a plane electromagnetic wave described by the vector potential A[t − (x/c)],

(b) a plane and monochromatic, linearly polarized, electromagnetic wave,

(c) a plane and monochromatic, circularly polarized, electromagnetic wave.

2. Recall that, we had shown that the electromagnetic field tensor Fµν associated with the field of a
particle with charge e that is in motion along the trajectory rµ(τ) can be written as

Fµν =

(

e

ūλ [xλ − rλ(τ)]

)

d

dτ

[

[xµ − rµ(τ)] ūν − [xν − rν(τ)] ūµ

ūλ [xλ − rλ(τ)]

]

,

where uλ = (drλ/dτ), and all the quantities are to be evaluated at the retarded time. Show that
the resulting electric and magnetic fields are given by

E = e

(

n̂− (v/c)

γ2 [1 − (v · n̂/c)]3 R2

)

+
(e

c

)

(

n̂× ([n̂ − (v/c)] × (v̇/c))

[1 − (v · n̂/c)]3 R

)

,

H = (n̂× E) ,

where R is the spatial distance from the position of the particle at the retarded time to the point
of observation, n̂ is unit vector pointing from the former to the latter, v is the three-velocity of the

particle at the retarded time and, as usual, γ =
[

1 − (v/c)2
]

−1/2
.

3. Find the radiation from a dipole d that is rotating in a plane with a constant angular velocity,
say, Ω.

4. Consider two particles with charges (e1, e2) and masses (m1,m2) that are moving in the mutual
Coulomb field. Let E be the total energy of the system (omitting the rest mass energies), µ be its
reduced mass, and ε be the eccentricity of the trajectory.

(a) Recall that, for the case wherein the motion is along an elliptical trajectory (when the particles
carry opposite charges), the intensity In of the radiation emitted by the system at the frequency
(n ω0) can be obtained to be

In =

(

64n2 E4

3 c3 α2

) (

e1

m1
−

e2

m2

)2 [

J ′

n
2
(n ε) +

(

1 − ε2

ε2

)

J2
n(n ε)

]

,

where Jn(x) is the Bessel function, while an overprime denotes differentiation with respect to
the argument. Note that, in the above expression, α = |e1 e2|, while the fundamental frequency
ω0 is given by ω0 = [8 |E|3/(α2 µ)]1/2.

i. Plot the above In as a function of (n ω0).

ii. Calculate the average total intensity (i.e. per period) of the radiation emitted by the
charge.

(b) For the case wherein the system is undergoing hyperbolic motion, the energy emitted by the
system per unit frequency was found to be

(

dEω

dω

)

=

(

π µ2 α2 ω2

6 c3 E2

) (

e1

m1
−

e2

m2

)2 (
[

H
(1)
i ν

′

(i ν ε)
]2

+

(

ε2 − 1

ε2

)

[

H
(1)
i ν (i ν ε)

]2
)

,

where ν = [ω α/(µ v3
0)], and E = (µ v2

0/2), with v0 being the relative velocity of the particles
at infinity. Plot the above quantity (dEω/dω) as a function of ω.
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5. Recall that, for a relativistic particle, the intensity of radiation emitted by the particle into a solid
angle dΩ can be expressed as

(

dI

dΩ

)

=

(

e2

4π c3

) [(

2 (n ·w) (v · w)

c [1 − (v · n̂/c)]5

)

+

(

w2

[1 − (v · n̂/c)]4

)

−

(

(n ·w)2

γ2 [1 − (v · n̂/c)]6

)]

,

where w = v̇ is the three-acceleration of the charge. Assuming that v and w are in general directions,
plot the above quantity as a function of the two spherical angles θ and φ.

6. Find the rate of change of energy with time of a particle that is moving in a circular orbit in a
constant magnetic field, and is losing energy due to synchrotron radiation.

This sheet has to be returned to Dhiraj Hazra by 4:00 PM on November 25, 2010.
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End-of-semester exam

From special relativity to radiation from moving charges

1. At each event in spacetime, the Cosmic Microwave Background (CMB) has a mean rest frame and,
as seen in the mean rest frame, the CMB is isotropic and thermal at the temperature T0 = 2.73 K.
Actually, the Earth moves relative to the mean rest frame of the CMB with a speed of about
600 km s−1 towards the Hydra-Centaurus region of the sky. Consider an observer on Earth who
points his microwave receiver in a direction that makes an angle θ with the direction of that motion,
as measured in the Earth’s frame.

(a) Show that the intensity of the radiation received is precisely Planckian in form, but with the
Doppler shifted temperature

T = T0

(

[

1 − (v/c)2
]1/2

1 + (v/c) cos θ

)

.

Note: Recall that, we had shown that
(

Iν/ν
3
)

is a Lorentz invariant quantity, where Iν is the
intensity of radiation at the frequency ν.

(b) Note that the θ dependence of the temperature corresponds to an anisotropy of the CMB as
seen from earth. Show that, because the earth’s velocity is small compared to the velocity of
light, the anisotropy is dipolar in form.

(c) What is the magnitude of (∆T/T ) of the variations between the maximum and minimum
CMB temperature on the sky?

2. The time-averaged electrostatic potential of a neutral hydrogen atom is given by

φ =
(e

r

) [

1 +
(α r

2

)]

e−α r,

where e is the magnitude of the electronic charge and α = (a0/2), with a0 being the Bohr radius.
Find the charge distribution (both continuous and discrete) that will give rise to such a potential.

3. Evaluate the electrostatic potential of a uniformly charged and finite rod of a given length. What
are the equipotential surfaces?

4. Compute the quadrapole moment (say, Q
(l)∗
m ) of a uniform charge distribution whose surface is a

slightly deformed sphere with a radius given by

R = R0

[

1 +

2
∑

m=−2

α∗

2m Y2m(θ, φ)

]

,

where R0 is a constant, while |α2m| ≪ 1.

5. An infinitely long wire, that is bent in the shape of a hair pin, carries a steady current. Determine
the magnetic field at the centre of the semi-circle that constitutes the hair pin bend.

6. Obtain an integral expression for the retarded Green’s function associated with a massive field that
satisfies the Klein-Gordon equation. Can you comment if the Green’s function is non-zero beyond
the light cone?

7. The Rutherford’s model of the atom assumes that electrons move around the nucleus in circular
orbits at non-relativistic velocities. Classically, estimate the time within which the electron in the
hydrogen atom will fall onto the nucleus.

8. A charged particle exhibiting simple harmonic motion emits radiation. Assuming that the energy
lost by the charge due to the emitted radiation is small when compared to the energy of the charge,
determine the profile of the emitted spectrum.
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