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Lecture schedule and meeting hours

• The course will consist of about 47 lectures, including about 8–10 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

• The duration of each lecture will be 50 minutes. We will be meeting in HSB 210.

• The first and the last lectures will be on Tuesday, July 30 and Wednesday, November 13, respectively.

• We will meet three (or four) times a week. The lectures are scheduled for 11:00–11:50 AM on
Wednesdays, 9:00–9:50 AM on Thursdays, and 8:00–8:50 PM on Fridays.

• We may also meet during 4:50–5:40 PM on Tuesdays for any lecture that I may have to miss due
to, say, travel. Changes in schedule, if any, will be notified sufficiently in advance.

• If you would like to discuss with me about the course outside the lecture hours, you are welcome
to meet me at my office (in HSB 202) during 12:00 NOON–1:00 PM on Wednesdays. In case you
are unable to find me in my office, please send me an e-mail at sriram@physics.iitm.ac.in.

Information about the course

• I will be distributing hard copies containing information such as the schedule of the lectures, the
structure and the syllabus of the course, suitable textbooks and additional references, as well as
exercise sheets.

• A PDF file containing these information as well as completed quizzes will also made be available
at the link on this course at the following URL:

http://www.physics.iitm.ac.in/~sriram/professional/teaching/teaching.html

I will keep updating the file as we make progress.

Quizzes, end-of-semester exam and grading

• The grading will be based on three scheduled quizzes and an end-of-semester exam.

• I will consider the best two quizzes for grading, and the two will carry 25% weight each.

• The three quizzes will be on August 27, October 1 and October 29. All these three dates are
Tuesdays, and the quizzes will be held during 4:50–6:20 PM.

• The end-of-semester exam will be held during 1:00–4:00 PM on Friday, November 22, and the exam
will carry 50% weight.
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Syllabus and structure

Classical Field Theory

1. Special theory of relativity [∼ 6 lectures]

(a) Lorentz transformations – Length contraction and time dilation

(b) Metric tensor – The light cone

(c) Contravariant and covariant vectors – Tensors and transformations

(d) Infinitesimal generators of translations, rotations and boosts

(e) Algebra of the generators – The Lorenz and the Poincare groups

Exercise sheets 1, 2 and 3

2. Theory of a real scalar field [∼ 5 lectures]

(a) An illustrative example – Action formulation for a string

(b) Action describing a real, canonical, scalar field – The Euler-Lagrange field equation

(c) The conjugate momentum – Hamiltonian density

(d) The stress-energy tensor – Physical interpretation

(e) Non-canonical scalar fields – Relation to relativistic fluids

Exercise sheet 4

Quiz I

3. More on real scalar fields [∼ 4 lectures]

(a) The angular momentum tensor

(b) Invariance under rotations and Lorentz transformations – Conservation of angular momentum

(c) Symmetrization of the stress-energy tensor

Exercise sheet 5

4. The case of the complex scalar field [∼ 5 lectures]

(a) Action governing the complex scalar field – Equations of motion

(b) Global gauge invariance

(c) Local gauge invariance and the need for the electromagnetic field

Exercise sheet 6

Quiz II

Additional exercises I

5. Symmetries and conservation laws [∼ 7 lectures]

(a) Noether’s theorem

(b) External symmetries – Symmetry under translations, rotations and Lorentz transformations –
Conserved quantities

(c) Dilatations – The conformal stress-energy tensor

(d) Internal symmetries and gauge transformations – The Abelian case of the complex scalar field
interacting with the electromagnetic field
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(e) The iso-vector, Lorentz-scalar field and the Yang-Mills field as a non-Abelian example

Exercise sheet 7

6. The theory of the electromagnetic field [∼ 6 lectures]

(a) The electromagnetic field tensor – The first pair of Maxwell’s equations

(b) The four current vector – The continuity equation – Charge conservation

(c) Action governing the free electromagnetic field – Interaction of the electromagnetic field with
charges and currents – The second pair of Maxwell’s equations

(d) Gauge invariance of the electromagnetic field – The Lorentz and the Coulomb gauges

(e) Equations governing the free field – Electromagnetic waves – Polarization

(f) Energy density – Poynting vector – The stress-energy tensor of the electromagnetic field

(g) Lorentz transformation properties of the electric and the magnetic fields

(h) The retarded Green’s function – The Lienard-Wiechart potentials – Radiation from moving
charges

(i) The case of the massive vector field – The Proca equations

Exercise sheets 8 and 9

Quiz III

7. Spontaneous symmetry breaking and formation of topological defects [∼ 6 lectures]

(a) The concept of spontaneous symmetry breaking – Simple illustrative examples

(b) Spontaneous breaking of global symmetries – The Goldstone theorem

(c) Spontaneous breaking of local symmetries – The Higgs mechanism in Abelian and non-Abelian
models

(d) Formation of topological defects – Domain walls – Cosmic strings – The t’Hooft-Polyakov
monopole

(e) Time-dependent solutions – Solitons

Exercise sheet 10

Additional exercises II

8. Basic aspects of general relativity [∼ 8 lectures]

(a) The scope of general relativity – Geometry and physics – Principle of general covariance

(b) Manifolds and coordinates – Curves and surfaces

(c) Transformation of coordinates – Contravariant, covariant and mixed tensors – Elementary
operations with tensors

(d) The partial derivative of a tensor – Covariant differentiation and the affine connection

(e) The metric – Geodesics

(f) Isometries – The Killing equation and conserved quantities

Exercise sheets 11 and 12

End-of-semester exam

Advanced problems

Note: The topics in red could not be covered for want of time.
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Basic textbooks

1. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,
Volume 2), Fourth Revised English Edition (Pergamon Press, New York, 1975).

2. D. E. Soper, Classical Field Theory (Dover, New York, 1976).

3. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York,
1980).

4. R. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992).

5. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi,
2003).

6. F. Scheck, Classical Field Theory (Springer, Heidelberg, 2012).

Additional references

1. S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, England, 1988).

2. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1989).

3. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, New York, 1990).

4. L. H. Ryder, Quantum Field Theory, Second Edition (Cambridge University Press, Cambridge,
England, 1996).

5. B. Felsager, Geometry, Particles and Fields (Springer, Heidelberg, 1998).

6. M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, General Relativity: An Introduction for Physi-
cists (Cambridge University Press, Cambridge, 2006).

7. A. Zee, Einstein Gravity in a Nutshell (Princeton University Press, Princeton, New Jersey, 2013).
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Exercise sheet 1

Special relativity: Lorentz transformations and some consequences

1. Superluminal motion: Consider a blob of plasma that is moving at a speed v along a direction that
makes an angle θ with respect to the line of sight. Show that the apparent transverse speed of the
source, projected on the sky, will be related to the actual speed v by the relation

vapp =
v sin θ

1− (v/c) cos θ
.

From this expression conclude that the apparent speed vapp can exceed the speed of light.

2. Aberration of light: Consider two inertial frames S and S′, with the frame S′ moving along the
x-axis with a velocity v with respect to the frame S. Let the velocity of a particle in the frames S
and S′ be u and u′, and let θ and θ′ be the angles subtended by the velocity vectors with respect
to the common x-axis, respectively.

(a) Show that

tan θ =
u′ sin θ′

γ [u′ cos θ′ + v]
,

where γ =
[
1− (v/c)2

]−1/2
.

(b) For u = u′ = c, show that

cos θ =
cos θ′ + (v/c)

1 + (v/c) cos θ′

and

sin θ =
sin θ′

γ [1 + (v/c) cos θ′]
.

(c) For (v/c)� 1, show that
∆θ = (v/c) sin θ′,

where ∆θ = (θ′ − θ).

3. Decaying muons: Muons are unstable and decay according to the radioactive decay law N =
N0 exp−(0.693 t/t

1/2
), where N0 and N are the number of muons at times t = 0 and t, respectively,

while t
1/2

is the half life. The half life of the muons in their own rest frame is 1.52×10−6 s. Consider
a detector on top of a 2, 000 m mountain which counts the number of muons traveling at the speed
of v = 0.98 c. Over a given period of time, the detector counts 103 muons. When the relativistic
effects are taken into account, how many muons can be expected to reach the sea level?

4. Binding energy: As you may know, the deuteron which is the nucleus of deuterium, an isotope
of hydrogen, consists of one proton and one neutron. Given that the mass of a proton and a
neutron are mp = 1.673× 10−27 kg and mn = 1.675× 10−27 kg, while the mass of the deuteron is
m

d
= 3.344× 10−27 kg, show that the binding energy of the deuteron in about 2.225 MeV.

Note: MeV refers to Million electron Volts, and an electron Volt is 1.602× 10−19 J.

5. Form invariance of the Minkowski line element: Show that the following Minkowski line element is
invariant under the Lorentz transformations:

ds2 = c2 dt2 − dx2.
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Exercise sheet 2

Special relativity: Working in terms of four vectors

1. Compton effect using four vectors: Consider the scattering between a photon of frequency ω and a
relativistic electron with velocity v leading to a photon of frequency ω′ and electron with velocity v′.
Such a scattering is known as Compton scattering. Let α be the angle between the incident and
the scattered photon. Also, let θ and θ′ be the angles subtended by the directions of propagation of
the incident and the scattered photon with the velocity vector of the electron before the collision.

(a) Using the conservation of four momentum, show that

ω′

ω
=

1− (v/c) cos θ

1− (v/c) cos θ′ + (~ω/γ me c2) (1− cosα)
,

where γ =
[
1− (v/c)2

]−1/2
and me is the mass of the electron.

(b) When ~ω � γ me c
2, show that the frequency shift of the photon can be written as

∆ω

ω
=

(v/c) (cos θ − cos θ′)

1− (v/c) cos θ′
,

where ∆ω = (ω′ − ω).

2. Creation of electron-positron pairs: A purely relativistic process corresponds to the production of
electron-positron pairs in a collision of two high energy gamma ray photons. If the energies of the
photons are ε1 and ε2 and the relative angle between their directions of propagation is θ, then, by
using the conservation of energy and momentum, show that the process can occur only if

ε1 ε2 >
2m2

e c
4

1− cos θ
,

where me is the mass of the electron.

3. Transforming four vectors and invariance under Lorentz transformations: Consider two inertial
frames K and K ′, with K ′ moving with respect to K, say, along the common x-axis with a certain
velocity.

(a) Given a four vector Aµ in theK frame, construct the corresponding contravariant and covariant
four vectors, say, Aµ′ and A′µ, in the K ′ frame.

(b) Explicitly illustrate that the scalar product AµA
µ is a Lorentz invariant quantity, i.e. show

that AµA
µ = A′µA

µ′.

4. Lorentz invariance of the wave equation: Show that the following wave equation:

1

c2

∂2φ

∂t2
−∇2φ = 0

satisfied by, say, light, is invariant under the Lorentz transformations.

5. Mirrors in motion: A mirror moves with the velocity v in a direction perpendicular its plane. A
ray of light of frequency ν1 is incident on the mirror at an angle of incidence θ, and is reflected at
an angle of reflection φ and frequency ν2.

(a) Show that
tan (θ/2)

tan (φ/2)
=
c+ v

c− v
and

ν2

ν1
=
c+ v cos θ

c− v cosφ
.

(b) What happens if the mirror was moving parallel to its plane?
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Exercise sheet 3

Tensors and transformations

1. Four velocity and four acceleration: The four acceleration of a relativistic particle is defined as aµ =
duµ/ds, where uµ = dxµ/ds is the four velocity of the particle.

(a) Express aµ in terms of the three velocity v and the three acceleration a = dv/dt of the particle.

(b) Evaluate aµ uµ and aµ aµ in terms of v and a.

2. The Lorentz force: The action for a relativistic particle that is interacting with the electromagnetic
field is given by

S[xµ(s)] = −mc

∫
ds− e

c

∫
dxµA

µ,

where m is the mass of the particle, while e is its electric charge. The quantity Aµ = (φ,A) is the
four vector potential that describes the electromagnetic field, with, evidently, φ and A being the
conventional scalar and three vector potentials.

(a) Vary the above action with respect to xµ to arrive at the following Lorentz force law:

mc
duµ

ds
=
e

c
Fµν uν ,

where uµ is the four velocity of the particle and the electromagnetic field tensor Fµν is defined
as

Fµν = ∂µAν − ∂ν Aµ
with ∂µ ≡ ∂/∂xµ.

(b) Show that the components of the field tensor Fµν are given by

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 ,

where (Ex, Ey, Ez) and (Bx, By, Bz) are the components of the electric and magnetic fields
E and B which are related to the components of the four vector potential by the following
standard expressions:

E = −1

c

∂A

∂t
−∇φ and B = ∇×A.

(c) Express the above equation governing the motion of the charge in the more familiar three
vector notation. What does the zeroth component of the equation describe?

3. Reducing tensors to vectors: If Xλ
µν is a mixed tensor of rank (1, 2), show that the contracted

quantity Yµ = Xν
µν is a covariant vector.

4. Transformation of electric and magnetic fields: Consider two inertial frames, say, K and K ′, with
the frame K ′ moving with a velocity v with respect to the frame K along the common x-axes.

(a) Given the components of the electric and the magnetic fields, say, E and B, in the frame K,
using the transformation properties of the electromagnetic field tensor Fµν , construct the
corresponding components in the frame K ′.

(b) Show that |E|2 − |B|2 is invariant under the Lorentz transformations.

(c) Express the quantity |E|2 − |B|2 explicitly as a scalar in terms of the field tensor Fµν .

5. The Lorentz invariant four volume: Show that the differential spacetime volume d4x = c dt d3x is
a Lorentz invariant quantity.
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Exercise sheet 4

Theories of real scalar fields

1. An unconventional scalar field: Consider a scalar field, say, φ, that is governed by the following
unconventional action:

S[φ(x̃)] =
1

c

∫
d4x̃

[(
X

α2

)n
− V (φ)

]
,

where d4x̃ = c dt d3x, the quantity X is given by

X =
1

2
∂µφ ∂

µφ,

while V (φ) denotes the potential describing the scalar field and α is a constant of suitable dimen-
sions.

(a) Determine the dimension of φ/α.

(b) What is the equation of motion governing the scalar field?

(c) What is the corresponding stress-energy tensor?

2. Tachyons: Consider a scalar field, say, T , that is described by the following action:

S[T (x̃)] = − 1

c

∫
d4x̃ V (T )

√
1− ∂µT ∂µT .

(a) What is the dimension of the scalar field T?

(b) Vary the action to arrive at the equation of motion for T .

(c) Construct the corresponding stress-energy tensor.

Note: Under conditions when the potential V (T ) contains a maxima and no minima, the field T is
referred to as the tachyon.

3. Relativistic ideal fluids: The stress-energy tensor of a relativistic, ideal fluid with energy density ε
and pressure p is given by

Tµν = (ε+ p)uµ uν − p δµν ,

where uµ is the four velocity of the fluid.

(a) Show that, in a frame that is comoving with the fluid, the stress-energy tensor has the following
simple form: Tµν = diag. (ε,−p,−p,−p).

(b) Using the conservation of the stress-energy tensor, arrive at the equations of motions governing
the dynamics of the fluid in a generic frame.

(c) Express the time and the spatial components of the equations of motion in terms of the three
vector v of the fluid.

(d) Using these equations of motion, arrive at the Euler equation that governs the fluid in the
non-relativistic limit.

Note: The energy density ε is related to the mass density ρ as follows: ε = ρ c2.

4. A generic non-canonical scalar field: The action for a generic scalar field can be written as

S[φ(x̃)] =
1

c

∫
d4x̃ L(X,φ),

where the Lagrangian density L is an arbitrary function of the kinetic term X and the field φ.
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(a) Assume that the scalar field φ is homogeneous, i.e. it is not dependent on the spatial coor-
dinates. Show that, in such a case, the stress-energy tensor associated with the scalar field
reduces to the following form: Tµν = diag. (ε,−p,−p,−p), with the energy density ε and the
pressure p being given by

ε = 2X
∂L
∂X
− L and p = L.

(b) Show that a homogeneous scalar field that is described by the above action satisfies the fol-
lowing equation of motion:(

∂L
∂X

+ 2X
∂2L
∂X2

)
∂2φ

∂x2
0

+ 2X
∂2L
∂X ∂φ

− ∂L
∂φ

= 0.

5. Barotropic scalar fields: Consider a scalar field which is described by a Lagrangian density that is
not directly dependent on the field, but is an arbitrary function of the kinetic term X.

(a) Evaluate the energy density and pressure of the field.

(b) Argue that, in such a situation, the scalar field behaves as a barotropic fluid wherein the
pressure p can be expressed as a function of the energy density ε.

(c) What is the four velocity of the fluid in such a case?
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Quiz I

Special relativity

1. Spacetime diagrams: Consider three inertial frames, say, K, K ′ and K ′′. For simplicity, let us work
in (1 + 1)-spacetime dimensions. Let K be the lab frame, whose coordinates are (c t, x). Let K ′

and K ′′ be moving with velocities v and −v with respect to K, respectively, along the common x-
axis. Let (c t′, x′) and (c t′′, x′′) denote the spacetime coordinates in the K ′ and the K ′′ frames,
respectively.

(a) Draw the axes of the coordinates of (c t′, x′) and (c t′′, x′′) in the c t-x plane. 4 marks

(b) What are the angles made by the c t′ and c t′′ axes with respect to the c t-axis? 2 marks

(c) What are the angles made by the x′ and x′′ axes with respect to the x-axis? 2 marks

(d) Given the points (c t, x) = (1, 0) and (c t, x) = (0, 1), determine the points (c t′, x′) = (1, 0),

(c t′, x′) = (0, 1), (c t′′, x′′) = (1, 0) and (c t′′, x′′) = (0, 1). 2 marks

2. Transformation of forces: Consider two inertial frames, say, K and K ′. Let K ′ be moving with
a velocity v with respect to K along the common x-axis. Let F = dp/dt = (F‖,F⊥) and F ′ =
dp′/dt′ = (F ′‖,F

′
⊥) denote the force (acting on a particle) parallel and perpendicular to the boost

in the K and K ′ frames, respectively.

Note: The quantity p denotes the relativistic three momentum of the particle.

(a) Show that, if E is the energy of the particle (in the frame K), then 3 marks

dE

dt
= F · dx

dt
.

(b) Obtain the relations between (F‖,F⊥) and (F ′‖,F
′
⊥). 7 marks

3. Electron in an electric field: An electron moving relativistically enters a region of constant electric
field that is pointed along the positive y-axis. Let the relativistic three-momentum of the electron
as it enters the region of the electric field at time, say, t = 0, be p = (p0

x, p
0
y, 0).

(a) Integrate the equation of motion describing the electron to determine px and py as function of

time. 2 marks

(b) Express the energy of the electron in terms of px(t) and py(t). 2 marks

(c) From the equation governing the conservation of energy of the electron and the above expres-

sion for energy, arrive at the expression for vy in terms of time. 2 marks

(d) Using the above results, arrive at the expression for vx in terms of time. 2 marks

(e) Determine the asymptotic (i.e. the large time) behavior of vx and vy. 2 marks

4. Relative velocity of two frames: Consider two frames moving with velocities, say, v1 and v2. Show

that the relative velocity, say, v, between the two frames can be written as 10 marks

v2 =
(v1 − v2)2 − (v1 × v2)2

[1− (v1 · v2) /c2]2
.

5. Mass associated with electrostatic potential energy: Recall that the electrostatic energy associated
with a sphere of charge Q and radius R is 3Q2/(4π ε0R).

(a) Consider a gram of electrons that are confined to a sphere of radius 0.1 m. Determine the

mass associated with the electrostatic energy of such an assembly of electrons. 7 marks

Note: The mass and charge of an electron are 9.109×10−31 kg and 1.602×10−19 C, respectively,
and (4π ε0)−1 = 9× 109 N m2/C2.
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(b) Compare the above result with the mass of all the electrons in a sphere of water of ra-

dius 0.1 m. 3 marks

Note: The density of water is 103 kg/m3 and the mass of a water molecule is 18.02 amu (i.e.
atomic mass unit), where 1 amu = 1.67× 10−27 kg. Also, there are 10 electrons in each water
molecule.
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Exercise sheet 5

More on real scalar fields

1. Solutions to the Klein-Gordon equation: Consider a scalar field φ obeying the following Klein-
Gordon equation: (

2 + σ2
)
φ = 0.

(a) Write the solution to the scalar field as

φ(x̃) = qk(t) exp (ik · x)

and show that qk(t) satisfies the equation of motion of a simple harmonic oscillator.

Note: For convenience in notation, here and hereafter, we shall use x̃ to denote xµ = (c t,x).

(b) Determine the relation between the frequency ω of the oscillator, the wave vector k and the
quantity σ.

(c) Since φ is a scalar, the solution has to be a Lorentz invariant quantity. Express the solution
in an explicitly Lorentz invariant form.

(d) As the Klein-Gordon equation is a linear equation, a superposition of the individual solutions
will also be a solution. Write down the most general solution possible, and express it in an
explicitly Lorentz invariant manner.

2. Normalization and completeness of the modes: Consider the set of modes

uk(x̃) =
1√

(2π)3 (2ω)
exp − (i kµ x

µ) =
1√

(2π)3 (2ω)
exp − [i (ω t− k · x)] ,

where, evidently, the four vector kµ denotes kµ = (ω/c,k). The canonical, real scalar field can be
decomposed in terms of the modes uk(x̃) as follows:

φ(x̃) =

∫
d3k [ak uk(x̃) + a∗k u

∗
k(x̃)] ,

where the ak’s are k-dependent constants. The scalar product of the modes is defined as

(uk, uk′) = −i
∫

Σ
dΣµ

(
uk
↔
∂µu

∗
k′

)
,

where
uk
↔
∂µu

∗
k′ ≡ uk ∂µu∗k′ − u∗k′∂µuk

and dΣµ = dΣ n̂µ, with n̂µ being a future-directed unit vector orthogonal to the spacelike hyper-
surface Σ and dΣ is the volume element in Σ.

(a) Choosing dΣµ to be a constant time hypersurface, show that the scalar product defined above
is independent of time.

(b) Also, show that

(uk, uk′) = δ(3)
(
k − k′

)
,

(uk, u
∗
k′) = 0,

(u∗k, u
∗
k′) = −δ(3)

(
k − k′

)
.
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(c) Further establish that, on a constant time hypersurface, i.e. when t = t′,

−i
∫

d3k
[
uk(x̃) ∂t′u

∗
k(x̃′)− u∗k(x̃′) ∂tuk(x̃)

]
t=t′

= δ(3)
(
x− x′

)
.

Note: The above two sets of conditions imply that the modes uk form an orthonormal and
complete set.

3. Green’s functions: Consider a real scalar field φ that is sourced by a charge density ρ. Such a scalar
field would be governed by the following equation of motion:(

2 + σ2
)
φ = αρ,

where α is a quantity of suitable dimensions. This inhomogeneous partial differential equation can
be solved using the method of Green’s functions as follows.

(a) Show that the inhomogeneous solution to the above equation can be expressed as

φ(x̃) = α

∫
d4x̃ G(x̃, x̃′) ρ(x̃),

where the Green’s function G(x̃, x̃′) satisfies the differential equation(
2x̃ + σ2

)
G(x̃, x̃′) = δ(4)

(
x̃− x̃′

)
.

(b) Express the Green’s function as a Fourier transform as

G(x̃, x̃′) =

∫
d4k̃

(2π)4
G(k̃) exp

[
i kµ

(
xµ − x′µ

)]
,

and substitute it into the above equation to determine the form of G(k̃).

4. The retarded Green’s function for a massless field: Using the form of G(k̃), evaluate the above in-
tegral to determine the Green’s function G(x̃, x̃′) for a field with σ = 0.

Note: As we have discussed, in units wherein c = ~ = 1, σ has dimensions of mass.

5. Conservation of the stress-energy tensor and the equation of motion: Show that demanding the
conservation of the stress-energy tensor of a scalar field leads to its equation of motion.
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Exercise sheet 6

The case of the complex scalar field

1. Two real scalar fields: Consider the following action that describes two real scalar fields, say, φ1

and φ2:

S[φ1(x̃), φ2(x̃)] =
1

c

∑
s=1,2

∫
d4x̃

(
1

2
ηµν ∂

µφs ∂
νφs −

1

2
σ2 φ2

s

)
.

(a) Vary the action with respect to φ1 and φ2 to arrive at the equations of motion.

(b) Evaluate the stress-energy tensor of the complete system.

2. Variation of the action governing a complex scalar field: As we have discussed, the above system
involving two real scalar fields can be described in terms of a single complex scalar field, say, φ,
that is defined as

φ = (φ1 + i φ2) .

(a) Express the above action for the fields φ1 and φ2 in terms of the complex field φ.

(b) Vary the action to arrive at the equations of motions describing φ and φ∗.

3. From the conservation of the stress-energy tensor to the equations of motion: Consider a complex
scalar field that is described by the canonical kinetic term, but is governed by an arbitrary potential
energy density of the following form: V (|φ|2), where |φ|2 = φφ∗.

(a) Obtain the equations of motion for the field φ and its complex conjugate in such a case.

(b) Construct the stress-energy tensor associated with the complex scalar field and show that the
conservation of the stress-energy tensor also leads to these equations of motion.

4. Non-linear Schrodinger equation, the Madelung transformation and superfluids: Consider a com-
plex wavefunction ψ(t,x) that describes a non-relativistic, quantum mechanical system that is
governed by a non-linear Schrodinger equation of the following form:

i ~
∂ψ

∂t
= −~2

2
∇2ψ +

∂V
(
|ψ|2

)
∂ψ∗

,

where the quantity V
(
|ψ|2

)
describes self-interactions whose nature can be very similar to those in

the case of the complex scalar field discussed in the previous exercise.

(a) Express the wavefunction ψ(t,x) as

ψ(t,x) =
√
ρ(t,x) exp [i χ(t,x)/~]

and show that the imaginary part of the above non-linear Schrodinger equation reduces to
the following continuity equation that describes a non-relativistic fluid with density ρ and
velocity v:

∂ρ

∂t
+∇ · (ρv) = 0,

where v = ∇χ.

Note: The functions ρ(t,x) and χ(t,x) are real quantities.

(b) From the real part of the equation, also arrive at the following Euler equation governing the
fluid:

∂v

∂t
+ (v · ∇) v +∇f(ρ) =

~2

2
∇
(
∇2√ρ
√
ρ

)
,

where f(ρ) = dV (ρ)/dρ.
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Note: The transformation above which helps in reducing the non-linear Schrodinger equation
to the hydrodynamical form is referred to as the Madelung transformation. It is essentially
due to this reason that systems such as superfluids can be described by the above non-linear
Schrodinger equation, which, for suitable forms of V

(
|ψ|2

)
, is known as the Gross-Pitaevskii

equation.

5. A complex scalar field in an external electric field: Consider a complex scalar field, say, φ, that is
propagating in a constant and uniform electric field background. Let the strength of the electric field
be E, and let it be pointed towards the positive x-direction. Such an electric field can be described
by either the vector potential Aµ1 = (−E x, 0, 0, 0) or by the potential Aµ2 = (0,−E c t, 0, 0).

(a) Obtain the equation of motion that governs the scalar field in the two gauges.

(b) Using the method of separation of variables to solve a partial differential equation, arrive at
the differential equations governing the modes along the time coordinate and the three spatial
directions.

(c) Since the gauge Aµ1 is independent of the t, y and the z coordinates, the modes along these
directions can be easily arrived at. Express these modes in terms of simple functions. Can
you identify the nature of the modes along the x-direction?

(d) Carry out the corresponding exercise in the gauge Aµ2 .
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Additional exercises I

From special relativity to the case of the complex scalar field

1. Algebra of the infinitesimal generators of the Lorentz group: Recall that the infinitesimal genera-
tors of rotation and the Lorentz transformations, viz. (Jx, Jy, Jz) and (Kx,Ky,Kz), respectively,
can be written in a matrix form as follows:

Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 ,

and

Kx =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 , Ky =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , Kz =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 .

Utilizing these representations, establish the following commutation relations:

[Ji, Jj ] = i εijk Jk, [Ki,Kj ] = −i εijk Jk and [Ji,Kj ] = i εijkKk,

where εijk represents the completely anti-symmetric tensor and, as is our convention, the Latin
indices i, j, k, take values (1, 2, 3).

2. The generators as differential operators: As we had discussed, the generators (Jx, Jy, Jz) and
(Kx,Ky,Kz) can also be represented in the differential form as follows:

Jx = −i
(
y
∂

∂z
− z ∂

∂y

)
, Jy = −i

(
z
∂

∂x
− x ∂

∂z

)
, Jz = −i

(
x
∂

∂y
− y ∂

∂x

)
,

and

Kx = i

(
c t

∂

∂x
+
x

c

∂

∂t

)
, Ky = i

(
c t

∂

∂y
+
y

c

∂

∂t

)
, Kz = i

(
c t

∂

∂z
+
z

c

∂

∂t

)
.

Use these representations to establish all the commutation relations listed in the previous exercise.

3. The Lorentz group in terms of Pauli matrices: Construct a representation of the Lorentz group,
consisting of the six infinitesimal generators (Jx, Jy, Jz) and (Kx,Ky,Kz), in terms of the following
Pauli matrices and the unit matrix:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
and I =

(
1 0
0 1

)
.

Note: This is known as the complex uni-modular matrix representation of the Lorentz group.

4. Thomas rotation: Show that two successive, arbitrary, Lorentz boosts, say, v1 and v2, is equivalent
to a pure boost, say, v3, followed by a pure rotation, say, θ n̂, where n̂ is the unit vector along the
axis of rotation. Determine the angle θ in terms of v1 and v2, and also establish that n̂ · v3 = 0.

Hint: The easiest way to solve this problem would be to make use of the uni-modular representation
of the Lorentz group discussed in the previous exercise.

Note: The rotation involved is known as Thomas (or, occasionally, Wigner) rotation.
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5. The Poincare group: As we have discussed, the Poincare group consists of the operators (Jx, Jy, Jz)
and (Kx,Ky,Kz), which generate rotations and Lorentz transformations, as well as the generators
of translations, which can be represented as Pµ ≡ i ∂µ. Let us represent the six elements of the
Lorentz group as the components of an anti-symmetric tensor Jµν as follows:

Jµν =

{
J0i = −Ji0 = Ki,
Jij = −Jji = i εijk Jk.

Using the representations of Jµν and Pµ in terms of differential operators, establish the following
commutation relations:

[Jµν , Jρσ] = i (ηνρ Jµσ − ηµρ Jνσ + ηµσ Jνρ − ηνσ Jµρ) ,
[Pµ, Jρσ] = i (ηµρ Pσ − ηµσ Pρ) .

6. The retarded and the advanced Green’s functions: Recall that, the Green’s function associated with
a massless field can be expressed as

G(x̃, x̃′) =

∫
d4k̃

(2π)4
G(k̃) exp −

[
i kµ

(
xµ − x′µ

)]
,

with G(k̃) being given by

G(k̃) = − 1

kµ kµ
.

It is important to notice that the phase factor in the exponential now contains an overall minus sign
in contrast to the expression which we had worked with before [see Exercise sheet 5, Exercise 3 (b)].
Both the representations are indeed correct, and they are simply a matter of convention.

(a) Show that, in such a case, when t > t′, the poles on the real k0 axis (at k = ±|k|) now need
to be provided a small and negative imaginary part (i.e. they have to be pushed downwards
instead of upwards as we had done earlier) and the contour has to be closed in the lower half
of the the complex k0-plane to arrive at the retarded Green’s function, say, Dret(x̃, x̃

′).

Note: As we had discussed, the spacetime coordinates x̃ denote the point of observation, while
the x̃′ represent the position of the source. Hence, the condition t > t′ essentially implies
causality. Also, it should pointed out that the Green’s functions associated with massless
fields are often denoted as D(x̃, x̃′).

(b) Assuming t < t′ and pushing the poles upward by providing them with a small and positive
imaginary part, arrive at the so-called advanced Green’s function Dadv(x̃, x̃′) by closing the
contour in the upper half of the complex k0-plane.

Note: You will find that the Green’s function Dadv(x̃, x̃′) is non-zero only along the past light
cone.

(c) Establish that the difference between the retarded and the advanced Green’s functions satisfies
the homogeneous wave equation.

7. Retarded Green’s function in the presence of a boundary: Consider a free, real and massless scalar
field, say, φ. Let the field vanish on a boundary that is located on the x = 0 plane. i.e. φ(c t, x =
0, y, z) = 0 for all t, y and z. Determine the retarded Green’s function associated with the field in
such a case.

8. The retarded Green’s function in terms of spherical polar coordinates: Consider a situation wherein
you are required to work in terms of the spherical polar coordinates instead of the more conven-
tional and, not to mention, convenient, Cartesian coordinates. Express the Green’s function as a
suitable integral and sum over the modes associated with the d’Alembertian in the spherical polar
coordinates, and carry out the sums and integrals involved to arrive at the standard result for the
retarded Green’s function of a massless field.
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9. Complex scalar fields and gauge transformations: We had earlier considered a complex scalar field
propagating in a constant and uniform electric field background described by either the vector
potential Aµ1 = (−E x, 0, 0, 0) or by the potential Aµ2 = (0,−E c t, 0, 0).

(a) Construct the gauge transformation that takes one from the gauge Aµ1 to the gauge Aµ2 .

(b) Determine how the scalar field transforms as one moves from one gauge to the other.

(c) Explicitly check that the transformed solution indeed satisfies the equation of motion in the
new gauge.

10. Multiple scalar fields: Consider a system involving N scalar fields that is described by the canonical
kinetic term and a potential. Write down the action of such a system assuming it is invariant under
the global transformations of the SO(N) group.
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Exercise sheet 7

Symmetries and conservation laws

1. Conserved current in the presence of the electromagnetic field: We had earlier derived the con-
served current associated with the symmetry of a complex scalar field, say, φ, under global gauge
transformations. Recall that, the action governing a massive, complex scalar field that is interacting
with the electromagnetic field described by the vector potential Aµ can be written as

S[φ(x̃), Aµ(x̃)] =
1

c

∫
d4x̃

[
(Dµφ) (Dµφ)∗ − σ2 φφ∗

]
,

where the quantity Dµφ is given by

Dµφ = ∂µφ+ i eAµ φ,

with e denoting the coupling constant.

(a) Show that the above action is invariant under local gauge transformations of the form

φ(x̃)→ exp− [i eΛ(x̃)] φ(x̃) and Aµ(x̃)→ Aµ(x̃) + ∂µΛ(x̃).

(b) Determine the conserved current associated with this local symmetry.

2. Scale invariance: Consider a real scalar field φ that is governed by the action

S[φ(x̃)] =
1

c

∫
d4x̃

(
1

2
∂µφ∂µφ− λφ4

)
.

(a) Show that this action is invariant under the following scale transformations:

xµ → b xµ and φ→ φ/b,

where b is a constant.

(b) What is the conserved current associated with this symmetry?

(c) Explicitly show that the four divergence of the conserved current vanishes.

(d) Can you identify the reason for the existence of such a symmetry?

3. The conserved charges associated with scalar fields interacting with the Yang-Mills field: Consider
a three component scalar field, say, φ ≡ (φ1, φ2, φ3), that is interacting with the Yang-Mills field
described by the gauge potential Wµ, and is governed by the action

S[φ(x̃),Wµ(x̃)] =
1

c

∫
d4x̃

(
1

2
Dµφ ·Dµφ− σ2

2
φ · φ

)
,

where Dµφ is given by
Dµφ = ∂µφ+ gWµ × φ,

with g being the coupling constant. As we have discussed, the above action is invariant under local
rotations (i.e. when the extent of rotation, say, Λ, is dependent on the spacetime coordinates) in
the internal field space and the following transformations of the gauge potential Wµ:

Wµ →Wµ −Λ×Wµ +
1

g
∂µΛ.

(a) Construct the conserved current associated with the symmetry.

(b) How many conserved charges are associated with the symmetry?
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Note: Actually, Λ = Λ n̂, where Λ denotes the angle of rotation, while n̂ is the unit vector along
the axis of rotation.

4. Gauge invariance and electromagnetism: As you may know, the action describing a free electro-
magnetic field (which we would also formally discuss in due course) is given by

S[Aµ(x̃)] = − 1

16π c

∫
d4x̃ Fµν F

µν ,

where Fµν is the field tensor defined as

Fµν = ∂µAν − ∂νAµ.

As should be evident, the electromagnetic field tensor Fµν is invariant under gauge transformations
of the form

Aµ → Aµ + ∂µΛ.

(a) Determine the conserved current associated with this gauge symmetry.

(b) What are the corresponding conserved charges?

5. Traceless stress-energy tensors: Suppose that the action describing a field φ is found to be invariant
under spacetime translations as well as the following dilatations:

xµ → b xµ and φ→ φ,

where b is a constant. Show that, in such a case, the trace of the corresponding stress-energy tensor
vanishes.
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Quiz II

Real and complex scalar fields

1. Fields as a collection of oscillators: Consider a real scalar field φ described by the action

S[φ(x̃)] =
1

c

∫
d4x̃

[
1

2
∂µφ∂

µφ− 1

2
σ2 φ2

]
.

Let us write

φ(x̃) =

∫
d3k

(2π)3/2
qk(t) eik·x =

∫
d3k

(2π)3/2

[
qRk (t) + i qIk(t)

]
eik·x,

where, evidently, we have set qk(t) = qRk (t) + i qIk(t), with qRk (t) and qIk(t) being real quantities.

(a) Substitute such a Fourier decomposition of the scalar field in the above action and express the

action in terms of qk and its time derivative. 5 marks

(b) Using the fact that the scalar field is a real quantity, determine the relation between the

quantities qk and q−k. 3 marks

(c) Vary the action to obtain the equations of motion satisfied by qRk and qIk. 2 marks

2. Green’s functions: Determine the Green’s function for the following two cases:

(a) A forced one-dimensional simple harmonic oscillator satisfying the equation 3 marks

ẍ+ ω2 x = f(t),

where ω is the frequency of the oscillator and f(t) is the forcing term.

(b) The Poisson equation in three spatial dimensions, viz. 7 marks

∇2φ =
ρ

ε0
,

where ρ denotes the charge density.

3. The Dirac-Born-Infeld scalar field: Consider a scalar field, say, φ, that is governed by the following
so-called Dirac-Born-Infeld (DBI) action:

S[φ(x̃)] = −1

c

∫
d4x̃

[
1

T (φ)

√
1− T (φ) ∂µφ∂µφ+

1

T (φ)
+ V (φ)

]
,

which is encountered in certain ‘brane world’ scenarios. The quantity T (φ) is known as the brane
tension and the function V (φ) is the potential that describes the scalar field.

(a) Explicitly vary the action to arrive at the equation of motion for the scalar field. 3 marks

(b) Obtain the corresponding stress-energy tensor. 4 marks

(c) Arrive at the equation of motion satisfied by a homogeneous field φ in Minkowski space-

time. 3 marks

4. Mutually interacting scalar fields: Two real scalar fields, say, φ and χ, are governed by the following
action:

S[φ(x̃), χ(x̃)] =
1

c

∫
d4x̃

[
1

2
∂µφ∂µφ+

1

2
e2 b(φ) ∂µχ∂µχ− V (φ, χ)

]
,

where b(φ) is a given function of the field φ and V (φ, χ) is the potential describing the fields and
possible interactions between them.

Page 1



PH5460, Classical Field Theory, July–November 2019

(a) Obtain the equations of motion for the fields φ and χ. 3 marks

(b) Construct the stress-energy tensor of the system. 3 marks

(c) From the equation governing the conservation of the stress-energy tensor, arrive at the equa-

tions of motion describing the two fields. 4 marks

5. A complex scalar field in an external magnetic field: Consider a complex scalar field, say, φ, that is
propagating in a given constant and uniform magnetic field. Let the magnetic field be of strength B
that is pointed towards the positive z-direction. Such a magnetic field can be described by the vector
potential Aµ = (0, 0, B x, 0).

(a) Write down the equation of motion governing the scalar field in the given magnetic

field. 3 marks

(b) Using the method of separation of variables to solve a partial differential equation, arrive at
the differential equations governing the modes along the time coordinate and the three spatial
directions. 3 marks

(c) Since the system exhibits translational invariance along the t, y and the z directions, you can
easily identify the normal modes of the field along these directions. Express them in terms of
simple functions. 2 marks

(d) Can you identify the nature of the modes along the x-direction? 2 marks
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Exercise sheet 8

The theory of the electromagnetic field I

1. Equivalence of actions under gauge transformations: Recall that the action governing the electro-
magnetic field described by the vector potential Aµ that is interacting with the four current jµ is
given by

S[Aµ(x̃)] = − 1

c2

∫
d4x̃ jµAµ −

1

16π c

∫
d4x̃ Fµν F

µν ,

where Fµν is the field tensor defined as

Fµν = ∂µAν − ∂νAµ.

Since Fµν is explicitly invariant under the gauge transformation

Aµ → Aµ + ∂µΛ,

evidently, the second term in the above action is invariant as well. Determine if the first term
transforms to an equivalent action under the gauge transformation.

2. The spatial components of the stress-energy tensor of the free electromagnetic field: We had ar-
rived at the forms of the time-time and the time-space components of the stress-energy tensor
of the free electromagnetic field in terms of the components of the electric and magnetic fields E
and B. Arrive at the corresponding expressions for the purely spatial components of the stress-
energy tensor.

Note: These components are usually referred to as the Maxwell stress tensor.

3. From source free Maxwell’s equations to the conservation of the stress-energy tensor: Establish that
the source free Maxwell’s equations imply that the stress-energy tensor of the free electromagnetic
field is conserved.

4. Conservation of the stress-energy tensor in the presence of sources: The above exercise had in-
volved the electromagnetic field in the absence of charges. If the charges are also present, then
it is the sum of the stress-energy tensors of the charges as well as the field that will be conserved.
The stress-energy tensor of a collection of mutually non-interacting particles can be written as

Tµν
P

= µ c uµ uν
ds

dt
,

where µ is the mass density associated with the particles, while uµ denotes the four velocity of the
particles.

Note: The above expression for the stress-energy tensor for a collection of mutually non-interacting
particles is equivalent to a pressureless relativistic fluid. Often, such a system is referred to as
‘dust’.

(a) Show that, upon using the second pair Maxwell’s equations, in the presence of sources, the
stress-energy of the electromagnetic field, say, Tµν

F
, satisfies the equation

∂µT
µν
F

= −1

c
F νλ jλ.

(b) As in the case of charges, the continuity equation corresponding to the mass flow can be
expressed as follows:

∂µ

(
µ

dxµ

dt

)
= 0.
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Using this equation and the following Lorentz force law:

µ c
duµ

ds
=
ρ

c
Fµν uν ,

where ρ denotes the charge density of the particles, show that

∂µT
µν
P

=
1

c
Fµλ jλ

so that the total stress-energy tensor of the system, viz. Tµν = Tµν
P

+ Tµν
F

, is conserved, as
required.

5. Traceless nature of the stress-energy tensor of the electromagnetic field: Show that the trace of the
stress-energy tensor of the electromagnetic field vanishes. Can you identify the reason behind the
vanishing trace?
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Exercise sheet 9

The theory of the electromagnetic field II

1. The Coulomb gauge and the degrees of freedom of the electromagnetic field: Recall that the Lorenz
gauge was determined by the covariant condition ∂µA

µ = 0. However, even the Lorenz condition
does not uniquely fix the gauge. Further gauge transformations of the form Aµ → Aµ + ∂µΛ are
possible, provided Λ satisfies the condition 2Λ = 0. In such a situation, often, one breaks Lorentz
covariance and works in the so-called Coulomb gauge wherein At is set to zero, so that the Lorenz
condition reduces to ∇ ·A = 0.

(a) Show that this implies that the free electromagnetic field possesses two independent degrees
of freedom.

(b) What do these two degrees of freedom correspond to?

2. The massive vector field: Consider the following action that governs a massive vector field Aµ:

S[Aµ(x̃)] =
1

16π c

∫
d4x̃

(
−Fµν Fµν + 2σ2AµAµ

)
,

where Fµν represents the field tensor defined in the usual form, viz.

Fµν = ∂µAν − ∂νAµ,

and σ has dimensions of mass in suitable units.

(a) Obtain the equation of motion governing the field Aµ.

(b) Show that the Lorentz condition, viz. ∂µAµ = 0, has to be satisfied by the field apart from
satisfying the equation of motion.

(c) Is the action invariant under gauge transformations of the form Aµ → Aµ + ∂µΛ?

(d) How many independent degrees of freedom does the massive field Aµ possess?

Note: The massive vector field Aµ is known as the Proca field.

3. The Lienard-Wiechart potentials: Consider a point particle with charge e that is moving along the
trajectory rµ(τ), where τ is the proper time in the frame of the charge. The four current associated
with the charge is given by

jµ(x̃) = e c2

∫
dτ uµ δ(4) [x̃− r̃(τ)] ,

where r̃(τ) ≡ rµ(τ) is the trajectory of the charge and uµ = drµ/ds is its four velocity, so that the
corresponding charge and current densities are given by

ρ(x̃) = e c δ(3)[x− r(t)] and j(x̃) = e v(t) δ(3)[x− r(t)]

with v(t) = dr/dt, as required. In the Lorenz gauge, the electromagnetic vector potential Aµ

satisfies the equation

2Aµ =
4π

c
jµ.

(a) Using the retarded Green’s function for a massless field that we had obtained earlier, solve the
above equation to arrive at the following expression for the vector potential Aµ:

Aµ(x̃) =
e uµ

Rµ uµ
,

where Rµ = xµ − rµ and RµR
µ = 0.
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(b) Show that the above vector potential Aµ can be written in the three dimensional form as

φ(x̃) =
e

R− (v ·R) /c
and A(x̃) =

e v/c

R− (v ·R) /c
,

where R = x− r and R = |R|, with the right hand sides evaluated at the so-called retarded
time determined by the condition RµRµ = 0.

Note: These are known as the Lienard-Wiechart potentials.

4. The radiation field: Using the above Lienard-Wiechart potentials, obtain the following expressions
for the electric and magnetic fields E and B generated by a point charge that is moving along an
arbitrary trajectory:

E =
e

γ2 µ3R2
[n̂− (v/c)] +

e

c2 µ3R
[n̂× ([n̂− (v/c)]× a)] ,

B = n̂×E,

where γ is the standard Lorentz factor, a = dv/dt is the acceleration of the charge, while the
quantity µ is given by

µ =

(
1− v · n̂

c

)−1

,

with n̂ = R/R.

Note: The contribution to the electric and the magnetic fields above which depends on the acceler-
ation of the charge and behaves as 1/R with distance is known as the radiation field.

5. Relativistic beaming: Recall that the flux of energy being carried by electromagnetic radiation is
described by the Poynting vector, viz.

S =
c

4π
(E ×B) .

When B = n̂×E, the amount of energy, say, dE , that is propagating into a solid angle dΩ in unit
time is then given by

dE
dΩ dt

= |S|R2 =
c |E|2R2

4π
.

(a) Upon using the above expressions for the radiative component of the electric field, show that
the energy emitted by a point charge per unit time within a unit solid angle can be written as

dE
dtdΩ

=
e2

4π c3

[
2µ5 (n̂ · a) (v · a/c) + µ4 a2 − µ6 γ−2 (n̂ · a)2

]
.

(b) Clearly, the intensity of the radiation is the largest along directions wherein µ � 1. Show
that, if θ is the angle between v and n̂, then, for θ � 1 and |v| ' c, we can write

µ =
2 γ2

1 + γ2 θ2
.

(c) Argue that, for γ � 1, this expression is sharply peaked around θ = 0, with a width ∆θ ' γ−1.

Note: This effect, where most of the intensity is pointed along the direction of velocity of the
charge, is known as relativistic beaming.
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Exercise sheet 10

Spontaneous symmetry breaking and formation of topological defects

1. Spontaneous symmetry breaking in non-relativistic systems: Consider the case of the electron in the
Hydrogen atom. The system is placed in an external magnetic field that is pointed in a given
direction.

(a) What is the original symmetry group of the Hydrogen atom?

(b) Identify the symmetry that the system possesses when the magnetic field has been turned on.

(c) What is the consequence of the broken symmetry in quantum mechanics?

2. Surface energy density of a domain wall: Recall that, a domain wall arises as a result of the spon-
taneously broken reflection symmetry of a real scalar field, say, φ, that is governed by the action

S[φ(x̃)] =
1

c

∫
d4x̃

[
1

2
∂µφ∂µφ−

λ

4

(
φ2 − α2

)2]
,

where α is a real constant. The broken symmetry can lead to a non-trivial and time-independent
solution of the following form:

φ(z) = α tanh (z/∆) ,

where ∆ =
√

2/ (λα2), which corresponds to a domain wall in the x-y plane.

(a) Show that the stress-energy tensor associated with such a field configuration is given by

Tµν =
λα4

2
sech4(z/∆) diag. (1, 1, 1, 0) .

(b) Further show that the surface energy density associated with the wall can be obtained to be

η =

∫
dz T tt =

2
√

2λα3

3
.

3. Superconductivity and the Meissner effect: As is well-known, superconductivity is a phenomenon
wherein metals exhibit no resistance at very low temperatures. The phenomenon is a very good
example of the Abelian Higgs model. In metals, under certain conditions, there arises an attractive
force between the electrons, which leads to the formation of the so-called Cooper pairs. These
Cooper pairs can be described by a complex wave function ψ that is described by the following
Lagrangian density in static situations:

−L =
1

2
(∇×A)2 + | (∇− i eA) ψ|2 +m2 |ψ|2 + λ |ψ|4,

where m2 = α (T − TC), with TC denoting the critical temperature below which the transition to
superconductivity occurs.

(a) Assuming that the wavefunction ψ does not vary over the sample, show that the conserved
current within the material is given by

j =
em2

λ
A = −k2A,

where k2 > 0.

Note: This relation that is known as the London equation.

(b) Argue that, since E = − (∂A/∂t) = 0, according to Ohm’s law, the resistance vanishes,
thereby leading to superconductivity.
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(c) Since ∇×B = j and ∇ ·B = 0, show that the above expression for the current leads to the
equation

∇2B = k2B.

(d) Establish that, this equation, in turn, implies that the magnetic field does not penetrate the
superconductor beyond a characteristic depth of k−1.

Note: This effect wherein the superconductor ‘repels’ the magnetic field is referred to as the
Meissner effect.

4. A theorem on static solutions: Consider a set of N real scalar fields, say, φA, where A =
(1, 2, 3, . . . , N), that are described by the following action in (D + 1)-spacetime dimensions:

S[φA(x̃)] =
1

c

∫
d(D+1)x̃

[
1

2
∂µφA ∂µφA − V (φA)

]
,

where the potential V (φA) is a positive definite function involving the fields and the summation
over the repeated index A has been assumed. A static solution, say, φA(x), obeys the equations of
motion

∇2φA =
∂V

∂φA

.

These equations are the extrema of the static energy functional, viz.

E(φA) =

∫
dDx

[
1

2
∇φA ·∇φA + V (φA)

]
= E1(φA) + E2(φA).

(a) Establish that, for the one-parameter family of solutions

φλ
A

(x) = φA(λx),

the energy E of the system scales as

E(φλ
A

) = λ2−D E1(φA) + λ−D E2(φA).

(b) Since φA(x) is an extremum of E(φA), it must make E(φλ
A

) stationary with respect to variations
in λ, i.e.

dE(φλ
A

)

dλ
= 0

at λ = 1. Show that this condition leads to

(2−D)E1(φA) = DE2(φA).

(c) Argue that this, in turn, implies that, since E1(φA) and E1(φA) are positive definite quantities,
φA(x) has to be a trivial, space-independent, solution corresponding to one of the ground states
of the potential.

Note: This theorem, which precludes non-trivial space-dependent solutions for D ≥ 3, is known
as Derrick’s theorem. However, it should be stressed that the theorem holds only for static
solutions and time-dependent solutions are indeed possible.

5. Cosmic strings and Derrick’s theorem: We had seen that vortices with finite energy density can
arise in the case of the Abelian Higgs model. Explain as to why such solutions do not violate
Derrick’s theorem.
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Quiz III

From symmetries and conservation laws to spontaneous symmetry breaking

1. O(N) symmetry and conserved currents: Consider N real scalar fields, say, φA , where A =
(1, 2, 3, . . . , N), that are described by the following action:

S[φA(x̃)] =
1

c

∫
d4x̃

[
1

2
∂µφA ∂µφA − V (φA φA)

]
,

where, as per the standard convention, the repeated indices (external as well as the internal ones)
are to be summed over. The above action, evidently, possesses O(N) symmetry.

(a) Argue that infinitesimal, global, SO(N) transformations can be expressed as δφA = θAB φB ,

where θAB is a constant and anti-symmetric tensor. 2 marks

(b) How many independent conserved currents are associated with the internal symme-

try? 3 marks

(c) Arrive at the expressions for these currents and explicitly show that they are con-

served. 5 marks

2. Transforming the electric and magnetic fields: Consider a Lorentz frame S′ which is moving with a
velocity v with respect to another Lorentz frame S, along the common x-axis. Let E = (E‖,E⊥)
and B = (B‖,B⊥) be the electric and magnetic fields in the frame S. The components (E‖,B‖)
and (E⊥,B⊥) denote the components of the electric and magnetic fields that are parallel and
perpendicular to the direction of the Lorentz boost. Let E′ and B′ be the electric and magnetic
fields in the frame S′.

(a) Express the components (E′‖,B
′
‖) in terms of (E,B). 3 marks

(b) Express the components (E′⊥,B
′
⊥) in terms of (E,B). 3 marks

(c) Express E′2 −B′2 in terms of E2 −B2. 2 marks

(d) Express E′ ·B′ in terms of E ·B. 2 marks

3. The dual field tensor in electromagnetism: Consider the so-called dual field tensor F̃µν which is
defined in terms of the standard electromagnetic field tensor Fµν as follows:

F̃µν =
1

2
εµναβ Fαβ,

with εµναβ denoting the completely anti-symmetric Levi-Civita tensor.

(a) Express the components of the quantity F̃µν in terms of the components of the electric and

the magnetic fields. 3 marks

(b) Evaluate the quantity F̃µν Fµν in terms of the components of the electric and the magnetic

fields. 3 marks

(c) Recall that the first pair of Maxwell’s equations, viz. the source free equations, are given by

∂λFµν + ∂νFλµ + ∂µFνλ = 0.

Show that these equations can be written as 4 marks

∂µF̃
µν = 0.
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4. Dipole radiation and the Larmor formula: Recall that the energy radiated by a point charge per
unit time within a unit solid angle can be written as

dE
dtdΩ

=
e2

4π c3

[
2µ5 (n̂ · a) (v · a) /c+ µ4 a2 − µ6 γ−2 (n̂ · a)2

]
,

where e is the electric charge of the particle, v and a denote its velocity and acceleration, while
µ = [1 − (v · n̂)/c]−1, with n̂ denoting the unit vector directed from the retarded location of the
charge towards the point of observation.

(a) Show that, for non-relativistic motion wherein the acceleration is proportional to the velocity

(i.e. a ∝ v), the above expression simplifies to 5 marks

dE
dtdΩ

=
e2 a2

4π c3
sin2θ,

where a is the magnitude of acceleration and θ is the angle subtended by the vectors v and n̂.

(b) Working in the spherical polar coordinates, illustrate the dependence of the amplitude of the

radiation emitted as a function of the angular coordinates. 2 marks

(c) Upon integrating over all angular directions, arrive at the result that the total energy radiated

by the charge per unit time is given by 3 marks

dE
dt

=
2 e2 a2

3 c3
,

a result that is known as the Larmor formula.

5. The Higgs mechanism in an Abelian model: Recall that the Abelian Higgs model involving the com-
plex scalar field φ and the electromagnetic vector potential Aµ is governed by the action

S[φ(x̃), Aµ(x̃)] =
1

c

∫
d4x̃

[
Dµφ (Dµφ)∗ −m2 φφ∗ − λ (φφ∗)2 − 1

16π
Fµν F

µν

]
,

where the covariant derivative Dµφ is defined as

Dµφ = ∂µφ+ i eAµ φ,

while the field tensor Fµν is given by

Fµν = ∂µAν − ∂νAµ.

(a) Obtain the form of the above action in terms of the fields φ1 and φ2, which are related to the

original field φ as follows: 4 marks

φ = a+
1√
2

(φ1 + i φ2) ,

where a =
[
−m2/(2λ)

]1/2
, with m2 < 0.

(b) Let us introduce two new fields, say, φ̄1 and φ̄2, that are related to φ1 and φ2 through the

infinitesimal gauge transformation 4 marks

φ̄1 = φ1 − Λφ2 and φ̄2 = φ2 + Λφ1 +
√

2 Λ a.

Obtain the final form of the action by choosing the quantity Λ such that the field φ̄2 vanishes.

(c) Evidently, the final action will not contain the the field φ̄2. What are the masses of the fields

φ̄1 and Aµ? 2 marks
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Additional exercises II

From symmetries and conservation laws
to spontaneous symmetry breaking and formation of topological defects

1. Scale invariance and the conformal stress-energy tensor: Consider a canonical real scalar field in
(D + 1) spacetime dimensions described by the potential, say, V (φ).

(a) Assuming that the action describing the scalar field is invariant under spacetime translations
as well as the following scale transformations:

xµ → b xµ and φ→ bd φ,

with b, as before, being a constant, determine the form of the potential V (φ) and the value of
the constant d (in terms of D).

Note: The number d is known as the scaling dimension of the scalar field.

(b) Expressing the conserved current associated with the symmetry as

jµ = xν T̃µν ,

obtain the form of the new, conserved and traceless, so-called conformal stress-energy ten-
sor T̃µν .

2. Angular-momentum tensor of scalar and electromagnetic fields: Recall that, the angular momen-
tum tensor, say, Jµνλ, is the conserved current associated with the symmetry under rotations and
Lorentz transformations. The actions describing, say, a real and massive, canonical scalar field and
the free electromagnetic field do indeed possess these symmetries.

(a) Construct the conserved angular momentum tensor associated with these two fields.

(b) You will find that both contain a term involving the corresponding stress-energy tensors.
But, you will find that the electromagnetic case contains an additional term as well. Can you
identify the reason for the appearance of the additional term in the case of the electromagnetic
field?

3. Action for the free electromagnetic field: Motivated by the fact that we require a Lorentz invariant
action that contains no more than the first derivative of the vector potential Aµ and is quadratic
in the potential, we had considered an action of the electromagnetic field involving the quantity
Fµν F

µν . Another quantity that satisfies the conditions demanded above would be F̃µν F
µν , where

F̃µν is the dual field tensor defined as F̃µν = (1/2) εµναβ F
αβ. Identify the reason as to why the

latter is not a suitable quantity to be considered in an action.

4. Lienard-Wiechert potentials for a charge in circular motion: Consider a particle with charge q that
is moving on a circle of radius R at a constant angular velocity ω. Assume that the circle lies in the
x-y plane, centered at the origin. Also, let the charge be located at (x, y) = (R, 0) at time t = 0.
Find the resulting Lienard-Wiechert potentials at points on the z axis.

5. Radiation reaction in the non-relativistic limit: A radiating charge loses energy and, as a result,
there ought to be a corresponding effect on the motion of the particle, an effect which is known as
radiation reaction.

(a) Assuming that the charge is moving non-relativistically and using the result of the previous
exercise, show that the radiation reaction force, say, f , on the particle is given by

f =
2 e2

3 c3
ȧ.
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(b) If the only force acting on the particle is the above radiation reaction force, establish
that the particle can exhibit ‘self-acceleration’, i.e. its acceleration grows indefinitely as
exp

(
3mc3 t/2 e2

)
, where m is the mass of the charge.

6. The Higgs mechanism in a non-Abelian case: As you know, the non-Abelian Higgs model involving
the iso-vector, but Lorentz, scalar field φ that is interacting with the Yang-Mills field governed by
the vector potential Wµ is described by the action

S[φ(x̃),W µ(x̃)] =
1

c

∫
d4x̃

(
1

2
Dµφ ·Dµφ−

m2

2
φ · φ− λ (φ · φ)2 − 1

4
Wµν ·Wµν

)
,

where the covariant derivative Dµφ is defined as

Dµφ = ∂µφ+ gWµ × φ,

with g denoting the coupling constant, while the field tensor Wµν is given by

Wµν = ∂µWν − ∂νWµ + gWµ ×Wν .

(a) Upon choosing the ground state of the theory to be φ = (0, 0, a), where a =
[
−m2/(4λ)

]1/2
with m2 < 0, and setting

Dµφ1 = g (a+ χ) W 2
µ ,

Dµφ2 = −g (a+ χ) W 1
µ ,

Dµφ3 = ∂µχ,

show that one arrives at an action involving a massless scalar field, and two massive and one
massless vector fields.

Note: The above conditions correspond to working in a specific gauge, known as the unitary
gauge.

(b) Identify the masses of the fields.

7. Vortices in a non-Abelian Higgs model: We had discussed the formation of vortices when the sym-
metry of the Abelian Higgs model is spontaneously broken. Can string-like objects also form when
the symmetry of a non-Abelian Higgs model, say, involving the group SO(3), is broken sponta-
neously? If they can, try to understand the structure of such objects.

8. The Dirac monopole and the quantization condition: Consider a magnetic monopole of strength g
at the origin so that the magnetic field is radial and is given by

B =
g

r
r = −g ∇

(
1

r

)
,

in the so-called Gaussian units. Since

∇2

(
1

r

)
= 4π g δ(3)(r),

we have
∇ ·B = 4π g δ(3)(r),

so that the total flux, say, Φ, through a sphere surrounding the origin is given by

Φ = 4π r2B = 4π g.

Let us now obtain an expression for the vector potential Aµ that leads to the above magnetic field.
Since B = ∇×A, if B is regular, then ∇ ·B = 0 and no magnetic charges will exist.
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(a) Establish that the following vector potentials give rise to the above magnetic field:

A1
r = A1

θ = 0, A1
φ =

g

r

1− cos θ

sin θ

and

A2
r = A2

θ = 0, A2
φ = −g

r

1 + cos θ

sin θ
.

(b) Note that while the first vector potential is singular along the line r = −z, the second is singular
along r = z. These infinite lines of singularity are often referred to as the Dirac string. The
alternative forms of the vector potentials and the different locations of the Dirac string imply
that the singularity on the string is unphysical, and the physical singularity is located only
at the origin. To avoid the singularities, let us divide the space around the monopole into
two overlapping regions, one which excludes the North pole and the other the South. In these
two regions, the vector potential A is defined differently and is given by, say, the above two
expressions. It is then clear that the vector potentials are both finite in their own domains.
Also, in the region of overlap, we expect them to be related by a gauge transformation. Show
that

A2
φ = A1

φ −
2 g

sin θ
= A1

φ −
i

e
S∇φ S

−1,

where
S = exp (2 i e g φ) .

(c) Finally, argue that, demanding that the gauge transformation function S be single valued as
φ→ φ+ 2π leads to the following Dirac quantization condition:

e g =
n

2
,

where n is an integer.

9. Energy of a solitary wave: Recall that, in (1 + 1)-spacetime dimensions, the potential V (φ) =

(λ/4)
(
φ2 − α2

)2
that describes a real and canonical scalar field had admitted a time-independent

solution of the form
φ(x) = ±α tanh [(x− x0)/∆],

where ∆ =
√

2/(λα2). We had also shown that the total energy, say, E, of the static solution was
given by

E =

∫ ∞
−∞

dx T tt =
2
√

2λ α3

3
.

(a) Show that the following time-dependent function:

φ(t, x) = ±α tanh

(
x− x0 − u t

∆
√

1− (u2/c2)

)
,

where u < c is a constant, also satisfies the field equation.

(b) Evaluate the energy corresponding to this time-dependent solution and express it in terms of
the energy E associated with the earlier static solution.

10. Scattering solitons: Recall that the sine-Gordon model is described by the potential

V (φ) =
m4

λ

[
1− cos

(√
λφ/m

)]
.
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(a) Show that, in (1 + 1)-spacetime dimensions, the solution

φ(t, x) = 4 tan−1

[
sinh (γ mu t)

(u/c) cosh (γ mux/c)

]
,

where γ−1 =
√

1− (u2/c2) and u is a constant, satisfies the sine-Gordon equation.

(b) Establish that, in the infinite past, the solution corresponds to a soliton and an anti-soliton
approaching each other with relative velocity 2u.

(c) Also, show that, in the infinite future, the solution corresponds to a soliton-anti-soliton pair
that are moving away from one another with relative velocity 2u.
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Exercise sheet 11

Non-trivial metrics, Christoffel symbols and geodesics

1. Is a cylinder truly curved? Consider an ant on the outer surface of a cylindrical glass at a depth d
from the rim. The ant is trying to reach a drop of honey located at a diametrically opposite point
on the glass, but on the inner surface. The drop of honey is at the same depth as the ant from the
rim. If the radius of the cylinder is, say, R, determine the shortest distance that the ant can take
to reach the drop of honey.

Note: The solution illustrates the fact that the cylinder has no intrinsic curvature.

2. Important identities involving the metric tensor: Establish the following identities that involve the
metric tensor:

(a) g,c = g gab gab,c,

(b) gab gbc,d = −gab,d gbc,

where the commas denote partial derivatives, while g is the determinant of the covariant metric
tensor gab.

3. Useful identities involving the Christoffel symbols: Establish the following identities involving the
Christoffel symbols:

(a) Γaab = 1
2 ∂b ln |g|,

(b) gab Γcab = − 1√
|g|
∂d

(√
|g| gcd

)
,

(c) gab,c = −
(
Γacd g

bd + Γbcd g
ad
)
,

where the Christoffel symbol Γabc is given by

Γabc =
1

2
gad (gdb,c + gdc,b − gbc,d) .

4. Geodesics on a two sphere: Evaluate the Christoffel symbols on S2, and solve the geodesic equation
to show that the geodesics are the great circles.

5. Geodesics on a cone: Consider a cone with a semi-vertical angle α.

(a) Determine the line element on the cone.

(b) Obtain the equations governing the geodesics on the cone.

(c) Solve the equations to arrive at the geodesics.
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Exercise sheet 12

Killing vectors and conserved quantities

1. Killing vectors of a plane in polar coordinates: Consider the two dimensional Euclidean plane de-
scribed in terms of the polar coordinates.

(a) What is the line element of the Euclidean plane in terms of the polar coordinates?

(b) Evaluate all the Christoffel symbols associated with the line element.

(c) Write down the equations describing the Killing vectors in the polar coordinates.

(d) Obtain all the Killing vectors by solving the equations and interpret the solutions.

2. Killing vectors on S2: Construct the most generic Killing vectors on a two sphere.

3. Killing vectors in Minkowski spacetime: Solve the Killing’s equation in flat spacetime, and construct
all the independent Killing vectors. What do these different Killing vectors correspond to?

4. The line element and the conserved quantities around a cosmic string: The spacetime around a
cosmic string is described by the line-element

ds2 = c2 dt2 − dρ2 − α2 ρ2 dφ2 − dz2,

where α is a constant that is called the deficit angle.

(a) List the components of the momentum of a relativistic particle on geodesic motion in this
spacetime that are conserved.

(b) Consider a particle of mass m that is moving along a time-like geodesic in the spacetime of a
cosmic string. Using the relation pµ pµ = m2 c2 and the conserved momenta, obtain the (first
order) differential equation for dρ/dt of the particle in terms of all the conserved components
of its momenta.

5. Conserved quantities in the Schwarzschild spacetime: The spacetime around a central mass M is
described by the following Schwarzschild line element:

ds2 = c2

(
1− 2GM

c2 r

)
dt2 −

(
1− 2GM

c2 r

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
,

where G is the Newton’s gravitational constant. Identify the Killing vectors and the corresponding
conserved quantities in such a static and spherically symmetric spacetime.
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End-of-semester exam

From special relativity to basic aspects of general relativity

1. Tensors and properties: Recall that εαβγδ represents the completely anti-symmetric tensor.

(a) Given that εαβγδ = 1, determine εαβγδ. 2 marks

(b) What is the value of εαβγδ εαβγδ? 3 marks

(c) Show that, if a tensor, say, Aµν , is anti-symmetric in its indices in one frame of reference, it is

anti-symmetric in any other frame. 2 marks

(d) If Aαβγ is a mixed tensor, show that the contracted quantity Bγ = Aααγ transforms as a covariant

vector. 3 marks

2. Trajectory of an accelerated particle: Consider a particle that is accelerating along the x-axis. It is
moving relativistically and one finds that the proper time τ in the accelerated frame is related to
the coordinate time t through the following relation:

τ(t) = α sinh−1(t/α),

where α is a constant with dimensions of time.

(a) Determine the trajectory of the particle in terms of its proper time, i.e. obtain x(τ), given

that the particle is located at x = x0 at τ = 0. 4 marks

(b) What is x(t)? 3 marks

(c) Plot the trajectory the c t-x plane. 3 marks

3. Green’s functions for a damped oscillator: Consider a damped, forced, one-dimensional simple har-
monic oscillator satisfying the equation

ẍ+ 2 γ ẋ+ ω2
0 x = f(t),

where ω0 is the frequency of the oscillator, γ is the damping constant, and f(t) is the forcing term.

(a) Determine the Green’s function for the following situations: (i) under-damped case wherein
γ < ω0, (ii) over-damped case wherein γ > ω0 and (iii) the critically damped case wherein

γ = ω0. 2+2+3 marks

(b) Plot these Green’s functions. 1+1+1 marks

4. Green’s function for the Helmholtz equation: Determine the Green’s function for the following
Helmholtz equation in three spatial dimensions:(

∇2 + µ2
)
G(x,x′) = δ(3)(x− x′),

where µ is a constant. What is the form of the Green’s function in the limit µ→ 0? 8+2 marks

5. Potential flow and the Bernoulli’s principle: Recall that the motion of non-relativistic fluids are
governed by the following continuity and Euler equations:

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂v

∂t
+ (v ·∇)v = F − ∇p

ρ
,

where ρ, p and v denote the density, pressure and velocity of the fluid, respectively. The quantity F
denotes the external force on the fluid and, in the case of conservative forces, it can be expressed
as F = −∇φ, where φ denotes the potential per unit mass.
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(a) In the case of incompressible flow wherein the density within a moving volume of the fluid

remains constant, show that ∇ · v = 0. 2 marks

(b) Show that, in such a case, the equation governing the velocity of the fluid can be expressed as

∂v

∂t
+ ∇

(
v2

2

)
− v ×Ω = −∇

(
φ+

p

ρ

)
,

where Ω = ∇× v denotes the vorticity in the fluid. 4 marks

Hint: Use the identity

∇(A ·B) = (A ·∇)B + (B ·∇)A+A× (∇×B) +B × (∇×A).

(c) In the case of potential flow, one can express the velocity of the fluid as v = ∇f , where f is
a scalar quantity. Show that, in such a case, for a fluid flowing along a tube at height h from
the ground (i.e. the surface of the Earth)

∂f

∂t
+
v2

2
+
p

ρ
+ g h = ψ(t),

where g denotes the acceleration due to gravity and ψ(t) denotes some function of

time. 2 marks

(d) In the case of steady flow wherein the fluid properties do not change with time, show that

v2

2
+
p

ρ
+ g h = constant,

which is the famous Bernoulli principle. 2 marks

6. Equation of motion for a Galileon field: Consider a scalar field φ described by the action

S[φ(x̃)] =
1

c

∫
d4x̃L(φ, ∂µφ, ∂µ∂νφ).

Note that, apart from the usual dependence on the scalar field φ and its first derivative ∂µφ, the
Lagrangian density L depends on the second derivatives ∂µ∂νφ.

(a) Derive the Euler-Lagrange equation for the system. 6 marks

Note: In order to obtain the Euler-Lagrange equation, the variation of the field as well as its
first derivative need to be set to zero at the initial and final hypersurfaces.

(b) Obtain the equation of motion for a system described by the following Lagrangian den-

sity: 4 marks

L = ∂µφ∂
µφ∂ν∂

νφ.

Note: You will find that the equation of motion does not contain derivatives of the field higher
than the second, despite the fact that the Lagrangian density itself involves second derivatives
of the field. Such scalar fields are referred to as Galileons.

7. Electromagnetic scalar and vector potentials of a uniformly moving charge: Consider a charge q
that is moving with a constant velocity, say, v, along the positive x-direction. Assuming that the
charge was at x = 0 at the time t = 0, determine the electromagnetic scalar and vector potentials
φ and A at the spacetime points (t,x). 10 marks

8. The Kalb-Ramond field: The Kalb-Ramond field Hαβγ is defined in terms of the anti-symmetric
tensor Bαβ through the relation

Hαβγ = ∂αBβγ + ∂γBαβ + ∂βBγα.
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(a) Show that the Kalb-Ramond field is invariant under the gauge transformation

Bαβ → Bαβ + ∂αεβ − ∂βεα,

where εα is an arbitrary four vector. 2 marks

(b) The Kalb-Ramond field is described by the action

S[Bαβ(x̃)] =
1

c

∫
d4x̃

(
− 1

6κ2
Hαβγ H

αβγ − jαβ Bαβ
)
.

Vary the action with respect to Bαβ to arrive at the equation of motion governing the Kalb-

Ramond field Hαβγ . 4 marks

(c) Is the current jαβ symmetric or anti-symmetric in its indices? 2 marks

(d) Show that the current jαβ is conserved. 2 marks

9. The Bogomol’nyi equation and conserved topological charges: Consider a system described by the
following action in (1 + 1)-spacetime dimensions:

S[φ(x̃)] =
1

c

∫
d2x̃

[
1

2
∂µφ∂

µφ− V (φ)

]
,

where V (φ) is a non-negative potential. In order for soliton solutions of finite energy to exist, we
require the field to satisfy the following boundary conditions as |x| → ∞:

∂φ

∂t
→ 0,

∂φ

∂x
→ 0, V (φ)→ 0.

(a) Obtain the equation of motion governing a static soliton. 1 mark

(b) Show that the equation of motion implies that 2+1 marks

1

2

(
∂φ

∂x

)2

− V (φ) = constant.

Determine the value of the constant using the boundary conditions mentioned above.

Note: The above equation is often referred to as the Bogomol’nyi equation.

(c) Using the value of the above-mentioned constant, obtain the static kink and anti-kink solutions

for the model described by the potential 3 marks

V (φ) =
λ

4

(
φ2 − α2

)2
.

(d) Show that the current

jµ =
1

2α
εµν ∂νφ,

where εµν denotes the anti-symmetric tensor, is conserved for the system. Calculate the total
charge, viz.

Q =

∫ ∞
−∞

dx jt(x)

associated with the kink and the anti-kink. 1+2 marks

Note: These charges are referred to as the topological charges associated with the solitons. It
should be highlighted that these conserved charges arise not because of Noether’s theorem,
but because of topology.
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10. Geodesics on a cylinder: Consider a cylinder of fixed radius R. Let z and θ denote the coordinates
along the vertical and angular directions on the cylinder.

(a) Obtain the geodesics on the cylinder by extremizing the length 3 marks

L =

∫
dl =

∫ √
R2 dθ2 + dz2.

(b) Obtain the covariant and the contravariant metric tensors, viz. gab and gab, on the cylinder,

and calculate all the Christoffel symbols Γabc. 2 marks

(c) Using the Christoffel symbols Γabc, arrive at the equations describing the geodesics on the

cylinder. 2 marks

(d) Solve the geodesic equations to arrive at the solution you have obtained by extremizing the

length L. 3 marks
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Advanced problems

From special relativity to basic aspects of general relativity

1. Decaying particles: Consider a particle A which decays into particles B and C. Let the masses of
the three particles be mA , mB and mC , respectively.

(a) If the particle A is at rest in the lab frame, show that, in the lab frame, the particle B has the
energy

EB =

(
m2

A
+m2

B
−m2

C

)
c2

2mA

.

(b) If the particle A decays while in motion in the lab frame, find the relation between the angle
at which the particle B comes off, and the energies of the particles A and B.

2. Trajectories of charged particles in uniform electric and magnetic fields: Determine the trajectory
of a charged particle that is moving relativistically in uniform and parallel electric and magnetic
fields. Also, obtain the trajectory when the electric and magnetic fields are equal in strength, but
perpendicular to each other. How would you solve the problem had the fields been perpendicular
to each other, but with different strengths?

3. Vorticity in fluids and Kelvin’s circulation theorem: If v is the velocity of the fluid, the circulation Γ
associated with the fluid over a contour C is defined as

Γ =

∮
C
v · dl,

where dl denotes a line element along the contour. Since, according to Stokes’ theorem

Γ =

∮
S

(∇× v) · ds =

∮
S

Ω · ds,

where Ω = (∇× v) is the vorticity of the fluid and S denotes the surface enclosed by the curve C,
Γ represents the amount of vorticity associated with the fluid element. Using the continuity and
Euler equations, show that, for a barotropic, ideal fluid subject to conservative forces, the circulation
around a closed curve which is moving with the fluid remains constant with time.

Note: This result is known as Kelvin’s circulation theorem.

4. Stress-energy tensor for the Galileon field: Earlier, we had considered a Galileon field φ described
by the action

S[φ(x̃)] =
1

c

∫
d4x̃ ∂µφ∂

µφ∂ν∂
νφ.

(a) Construct the stress-energy tensor of the system.

(b) Show that the conservation of the stress-energy tensor leads to the equation of motion describ-
ing the Galileon.

5. Fields of a charge in uniform motion: Earlier, we had calculated the Lienard-Wiechart potentials
for a charge that is moving with a uniform velocity.

(a) Utilizing the potentials, calculate the resulting electric and magnetic fields.

(b) Evidently, the strength of the fields will be axially symmetric about the direction of motion of
the charge. Plot the strength of the electric and magnetic fields as a function of the angle with
respect to the direction of the charge’s motion. What are the angles at which the strengths
are the maximum?

(c) Determine the forms of the electric and magnetic fields in the limit wherein v2 � c2. Can you
recognize these expressions?
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6. The case of a uniformly accelerating charge: Consider a charge that is moving relativistically and
accelerating uniformly along the following trajectory:

r(t) =
√
x2

0 + c2 t2 î,

where x0 is a constant and −∞ < t <∞. Determine the electric and the magnetic fields associated
with the charge.

7. Stress-energy tensor of the Kalb-Ramond field: Recall that the Kalb-Ramond field Hαβγ is defined
in terms of the anti-symmetric tensor Bαβ through the relation

Hαβγ = ∂αBβγ + ∂γBαβ + ∂βBγα.

Also, recall that the free Kalb-Ramond field is governed by the action

S[Bαβ(x̃)] = − 1

6 c κ2

∫
d4x̃Hαβγ H

αβγ .

(a) Construct the stress-energy tensor of the Kalb-Ramond field.

(b) Show that the conservation of the stress-energy tensor leads to the equation of motion describ-
ing the free Kalb-Ramond field.

8. Solitons and the Bogomol’nyi bound: Earlier, working in (1 + 1)-spacetime dimensions, we had ob-
tained static solitonic solutions for the potential V (φ) = (λ/4) (φ2 − α2)2. We had also evaluated
the total energy E as well as the topological charge Q associated with the solitons. Show that, in
suitable units, E ≥ |Q|.
Note: This inequality is known as the Bogomol’nyi bound.

9. Reducing to the Minkowski line-element: Show that the following spacetime line-element:

ds2 =
(
c2 − a2 τ2

)
dτ2 − 2 a τ dτ dξ − dξ2 − dy2 − dz2,

where a is a constant, can be reduced to the Minkowski line-element by a suitable coordinate
transformation.

10. Geodesics in a FLRW universe: The Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe is
described by the line-element

ds2 = c2 dt2 − a2(t)

[
dr2

1− κ r2
+ r2

(
dθ2 + sin2θ dφ2

)]
,

where the function a(t) is referred to as the scale factor and κ = 0,±1.

(a) Determine all the Christoffel symbols associated with the above metric.

(b) Explicitly write down the geodesic equations governing massive particles in the FLRW universe.

(c) Solve the geodesic equations suitably to show that the magnitude of the three momentum of
the particle decreases (as inversely proportional to the scale factor) with the expansion of the
universe.

(d) In a similar fashion, show that the energy of massless particles (say, photons) decreases (as
inversely proportional to the scale factor) with the expansion of the universe.

Note: It is due to this dilution of the energy of photons with the expansion of the universe
that the spectra of distant galaxies are observed to shift towards the red end of the spectrum.
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