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Lecture schedule and meeting hours

• The course will consist of about 41 lectures, including about 8–10 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

• The duration of each lecture will be 50 minutes. We will be meeting in HSB 210.

• The first lecture will be on Monday, July 30, and the last lecture will be on Thursday, November 15.

• We will meet thrice a week. The lectures are scheduled for 1:00–1:50 PM on Mondays, 10:00–
10:50 AM on Thursdays, and 9:00–9:50 AM on Fridays.

• We may also meet during 4:45–5:35 PM on Mondays for either the quizzes or to make up for any
lecture that I may have to miss due to, say, travel. Changes in schedule, if any, will be notified
sufficiently in advance.

• If you would like to discuss with me about the course outside the lecture hours, you are welcome to
meet me at my office (HSB 202A) during 4:00–4:45 PM on Wednesdays, and during 10:00–10:30 AM
on Fridays. In case you are unable to find me in my office on more than occasion, please send me
an e-mail at sriram@physics.iitm.ac.in.

Information about the course

• I will distributing hard copies containing information such as the schedule of the lectures, the
structure and the syllabus of the course, suitable textbooks and additional references, as well as
exercise sheets.

• A PDF file containing these information as well as completed quizzes will also be available at the
link on this course at the following URL:

http://www.physics.iitm.ac.in/~sriram/professional/teaching/teaching.html

I will keep updating the file as we make progress.

Quizzes, end-of-semester exam and grading

• The grading will be based on three scheduled quizzes and an end-of-semester exam.

• I will consider the best two quizzes for grading, and the two will carry 25% weight each.

• The three quizzes will be on August 27, September 24 and October 29. All these three dates are
Mondays, and the quizzes will be held during 4:45–5:35 PM. Note that, we will not be meeting
during 1:00–1:50 PM on these three Mondays.

• The end-of-semester exam will be held during 9:00 AM–12:00 NOON on Thursday, November 29,
and the exam will carry 50% weight.
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Syllabus and structure

Classical mechanics

1. Calculus of variations [∼ 3 lectures]

(a) The concept of variation – Euler equation for one-dependent and one-independent variable

(b) Applications of the Euler equation

(c) Generalization to several dependent and independent variables

(d) Lagrangian multipliers – Variation subject to constraints

Exercise sheet 1

2. The action principle and the Lagrangian formulation [∼ 7 lectures]

(a) Degrees of freedom – Generalized coordinates and velocities

(b) The principle of least action – The Euler-Lagrange equations of motion

(c) Inertial frames of reference – Newton’s first law – Galileo’s principle of relativity – Galilean
transformations

(d) The Lagrangian for a free particle and a system of particles – Equations of motion in an
external field – Newton’s second law

(e) Examples

Exercise sheet 2

Quiz I

Exercise sheet 3

3. Symmetries, conserved quantities, and the integration of the equations of motion

[∼ 8 lectures]

(a) Homogeneity of time – Conservation of energy – Motion in one dimension – Period as a function
of energy

(b) Homogeneity of space – Conservation of momentum – Newton’s third law – Centre of mass

(c) Isotropy of space – Conservation of angular momentum

(d) Virial theorem – Simple applications

(e) The reduced mass – Motion in a central field – Centrifugal barrier and the effective potential

(f) The Kepler problem – Kepler’s laws – The Laplace-Runge-Lenz vector

Exercise sheets 4 and 5

Quiz II

4. The Hamiltonian formulation [∼ 6 lectures]

(a) Conjugate momentum – Legendre’s transformation – Hamiltonian and Hamilton’s equations

(b) Poisson brackets – Integrals of motion

(c) Phase space – Dynamics in the phase space – Phase portraits

(d) Liouville’s theorem

Exercise sheet 6

Additional exercises
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Statistical physics

5. The need for a statistical approach [∼ 1 lecture]

6. Statistical description of systems of particles [∼ 5 Lectures]

(a) Specification of the state of a system – Microstates and macrostates

(b) Statistical ensemble – Basic postulates – Probabilistic calculations

(c) Coarse graining of phase space – Density of states for physical systems – Examples

Exercise sheet 7

7. Statistical thermodynamics [∼ 5 lectures]

(a) Systems in equilibrium – The concept of temperature – The zeroth law of thermodynamics

(b) Interaction between macroscopic systems – Thermal and mechanical interactions – Dependence
of the density of states on the external parameters – The zeroth law of thermodynamics

(c) The approach to thermal equilibrium – Reversibility – The second law of thermodynamics

Quiz III

Exercise sheet 8

8. The canonical ensemble [∼ 5 lectures]

(a) The microcanonical ensemble

(b) Heat reservoirs – System in contact with a heat bath

(c) Calculations of mean values and the dispersion in the canonical ensemble – Partition functions
and their properties

(d) Applications – Paramagnetism – Equipartition theorem – Quantum oscillator in a thermal
bath – Specific heats of solids

Exercise sheet 9

Special relativity

9. Spacetime and relativity [∼ 5 lectures]

(a) The Michelson-Morley interferometric experiment – Postulates of special relativity

(b) Lorentz transformations – The relativity of simultaneity – Length contraction and time dilation

(c) Composition law for velocities – Doppler effect

(d) Four vectors

Exercise sheet 10

End-of-semester exam

Note: The topics in red could not be covered for want of time.

Page 2



PH3500, Classical physics, July–November 2012

Basic textbooks

Classical mechanics

1. H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Third Edition (Pearson Education, Sin-
gapore, 2002).

2. W. Greiner, Classical Mechanics: Systems of Particles and Hamiltonian Dynamics (Springer-Verlag,
New York, 2003).

3. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems (Cengage Learning,
Singapore, 2004).

4. T. W. B. Kibble, Classical Mechanics, Fifth Edition (Imperial College Press, London, 2004).

Statistical physics

1. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

2. W. Greiner, L. Neise and H. Stocker, Thermodynamics and Statistical Mechanics (Springer-Verlag,
New York, 1995).

3. F. Reif, Statistical Physics, Berkeley Physics Course, Volume V (Tata McGraw-Hill, New Delhi,
2008).

Special relativity

1. R. Resnick, Introduction to Special Relativity (Wiley Eastern, New Delhi, 1985).

Additional references

Mathematical methods

1. G. Arfken, Mathematical Methods for Physicists, Third Edition (Academic Press, New York, 1985).

2. J. Mathews and R. L. Walker, Mathematical Methods of Physics, Second Edition (Addison Wesley,
New York, 1970).

Classical mechanics

1. L. D. Landau and E. M. Lifshitz,Mechanics, Course of Theoretical Physics, Volume 1, Third Edition
(Pergamon Press, New York, 1976).

2. D. T. Greenwood, Principles of Dynamics, Second Edition (Prentice-Hall of India, New Delhi, 1988).

3. D. Kleppner and R. J. Kolenkow, An Introduction to Mechanics (Tata McGraw-Hill, New Delhi,
1999).

4. L. N. Hand and J. D. Finch, Analytical Mechanics (Cambridge University Press, Cambridge, 1998).

Statistical physics

1. C. Kittel, Elementary Statistical Physics (Wiley, New York, 1966).

2. F. Mandl, Statistical Physics, Second Edition (Wiley, New York, 1988).

3. A. J. Walton, Three Phases of Matter, Second Edition (Oxford University Press, Oxford, 1992).

4. J. M. Yeomans, Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford, 1992).
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Special relativity

1. A. P. French, Special Relativity (W. W. Norton, New York, 1968).

2. E. F. Taylor and J. A. Wheeler, Spacetime Physics (W. H. Freeman, San Francisco, 1992).

3. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Sin-
gapore, 2003).

4. W. Rindler, Introduction to Special Relativity (Oxford University Press, Oxford, 2004).
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Exercise sheet 1

Calculus of variations

1. Geodesics on a sphere: A geodesic is a curve that represents the shortest path between two points
in any space. Find the geodesics on the surface of a sphere.

2. The brachistochrone problem: Consider a particle that is moving in a constant force field starting
at rest from some point to a lower point. Determine the path that allows the particle to accomplish
the transit in the least possible time.

Note: The resulting curve is referred to as the brachistochrone, i.e. the curve of the fastest descent.

3. Shortest path in Euclidean space of arbitrary dimension: Prove that the shortest distance between
two points in Euclidean space is a straight line in any dimension.

4. Snell’s law of refraction: Two homogeneous media of refractive indices n1 and n2 are placed adjacent
to each other. A ray of light propagates from a point in the first medium to a point in the second
medium. According to the Fermat’s principle, the light ray will follow a path that minimizes the
transit time between the two points. Use Fermat’s principle to derive the Snell’s law of refraction,
viz. that

n1 sin θ1 = n2 sin θ2,

where θ1 and θ2 are the angles of incidence and refraction at the interface.

Note: As the complete path is not differentiable at the interface, actually, the problem is not an
Euler equation problem.

5. Variation involving higher derivatives: Show that the Euler equation corresponding to the integral

J [y(x)] =

x2
∫

x1

dx f(y, yx, yxx, , x),

where yxx ≡
(

d2y/dx2
)

, is given by

d2

dx2

(

∂f

∂yxx

)

− d

dx

(

∂f

∂yx

)

+

(

∂f

∂y

)

= 0.

Note: In order to obtain this equation, the variation as well its first derivative need to be set to
zero at the end points.
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Exercise sheet 2

The Lagrangian formulation of mechanics

1. A bead on a wire: A bead slides without friction down a wire that has the shape y = f(x) in a
uniform gravitational field (corresponding to an acceleration g). Write down the Lagrangian for the
system and obtain the equation of motion. In particular, consider the case wherein the shape of the
wire is a cycloid, i.e. when the shape y = f(x) can be parametrically written as

x = a (θ − sin θ) , y = a (1 + cos θ) .

What is the equation of motion for u = cos (θ/2)?

2. Coupled oscillators: A Lagrangian for a particular system can be written as

L =
m

2

(

a ẋ2 + 2 b ẋ ẏ + c ẏ2
)

− k

2

(

a x2 + 2 b x y + c y2
)

,

where a, b and c are arbitrary constants, but subject to the condition that (b2−ac) 6= 0. Obtain the
equations of motion corresponding to the above Lagrangian and examine the two cases a = c = 0
and b = 0, c = −a. Can you identify the physical system described by the Lagrangian? What is
the significance of the condition on the value of (b2 − a c)?

3. A variety of systems: Construct the Lagrangian and obtain the equations of motion for the following
systems when they are placed in a uniform gravitational field (corresponding to an acceleration g):

(a) a coplanar double pendulum as shown on the left in the figure below,
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(b) a simple pendulum of mass m2, with a mass m1 at the point of support which can move on a
horizontal line lying in the plane in which m2 moves as shown on the right in the figure above,

(c) a simple pendulum of mass m whose point of support

i. moves uniformly on a vertical circle with constant frequency γ as shown on the left in the
figure below,

ii. oscillates horizontally in the plane of motion of the pendulum according to the law x =
a cos (γt),

iii. oscillates vertically according to the law y = a cos(γt),

(d) In the system shown on the right in the figure above, the mass m2 moves on a vertical axis
and the whole system rotates about this axis with a constant angular velocity Ω.

4. Non-relativistic particle in an electromagnetic field: A non-relativistic particle that is moving in an
electromagnetic field described by the scalar potential φ and the vector potential A is governed by
the Lagrangian

L =
mv2

2
+ q (v ·A)− q φ,
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φ

a
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a a

a a
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m1m1

where m and q are the mass and the charge of the particle. Show that the equation of motion of
the particle is given by

m
dv

dt
= q (E+ v×B) ,

where E and the B are the electric and the magnetic fields given by

E = −∇φ− ∂A

∂t
and B = ∇×A.

Note: The scalar and the vector potentials, viz. φ and A, are dependent on time as well as space.
Further, given two vectors, say, C and D, one can write,

∇ (C ·D) = (D · ∇) C+ (C · ∇) D+D× (∇×C) +C× (∇×D) .

Also, since A depends on time as well as space, we have,

dA

dt
=

∂A

∂t
+ (v · ∇) A.

5. Equation of motion for a relativistic particle: The Lagrangian for a relativistic particle moving in
a potential U(r) is given by

L = −mc2
√

1− v2

c2
− U(r),

where m is the mass of the particle and c is a constant that denotes the speed of light. Obtain
the equation of motion of the relativistic particle. What happens to the equation of motion when
|v| ≪ c?
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Quiz I

Calculus of variations and the Lagrangian formulation of mechanics

1. Straight line in polar coordinates: Recall that, working in the Cartesian coordinates, we had shown
that the shortest distance between two points on an Euclidean plane is a straight line. Establish
the result in the polar coordinates. 10 marks

2. Geodesic on a cylinder: Determine the geodesic on a right circular cylinder of a fixed radius,

say, R. 10 marks

3. Action for a free particle: Given that a free particle that is moving in three dimensions was located
at the position r1 at time t1 and at the position r2 at time t2, determine the action for the free
particle in terms of r1, r2, t1 and t2. 5 marks

Note: Make use of the solution known in the case of the free particle in the integral describing the
action.

4. Spherical pendulum: Recall that the ordinary pendulum consists of a mass m, attached to a rod of
fixed length, say, l, which is free to move along the polar angle in a uniform gravitational field. In
contrast, the spherical pendulum is free to move along the polar as well as the azimuthal angles.

(a) Write down the Lagrangian for the spherical pendulum. 6 marks

(b) Obtain the corresponding equations of motion. 4 marks

5. The damped oscillator: Consider a system that is described by the following Lagrangian:

L = eγ t

(

mẋ2

2
− mω2 x2

2

)

.

(a) What is the corresponding equation of motion? 6 marks

(b) Suppose we make a transformation of the form

q = x eγ t/2.

What are the Lagrangian and the equation of motion in terms of q? 6 marks

(c) How would you describe the system? 3 marks
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Exercise sheet 3

Constraints and Lagrangian multipliers

1. Particle sliding off a surface: A particle slides off a cylindrical surface. Using the method of La-
grange multipliers, obtain the critical angle at which the particle flies off from the surface.

2. Curve circumscribing the largest area: Consider a curve y(x) of a given length, say, l, that runs
from (−a, 0) to (a, 0) in the x-y plane. Determine the function y(x) that encloses the largest area,
when bounded by x-axis.

3. Suspended cable: A flexible cable of a given length is suspended from two fixed points. Using the
method of Lagrange multipliers, find the curve that will minimize the total gravitational potential
energy of the cable.

4. A rotating bucket of water: A fixed volume of water is rotating in a cylindrical bucket with a con-
stant angular velocity ω. Find the curve of the water surface that will minimize the potential energy
of the water in the combined gravitational-centrifugal force field.

5. Particle moving on a paraboloid: A particle of mass m moves under the influence of gravity on the
inner surface of the paraboloid of revolution (x2 + y2) = (a z) which is assumed to be frictionless.
Obtain the equations of motion using the method of Lagrange multipliers. Prove that the particle
will describe a horizontal circle in the plane z = h provided that it is given an angular velocity
whose magnitude is ω =

√

2 g/a.
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Exercise sheet 4

Conserved quantities and the integration of the equations of motion

1. Period associated with bounded, one-dimensional motion: Determine the period of oscillation as a
function of the energy, say, E, when a particle of mass m moves in fields for which the potential
energy is given by (a) U = −U0/cosh

2(αx), for E such that−U0 < E < 0, and (b) U = U0 tan
2(αx).

2. Motion in one dimension: Obtain the solutions describing the time evolution of a particle moving
in the one-dimensional potential

U(x) = α
(

e−2 β x − 2 e−β x
)

, where α, β > 0,

for the cases E < 0, E = 0 and E > 0, where E is the energy of the particle. Also, evaluate the
period of oscillation of the particle when E < 0.

3. Energy integral for a Lagrangian involving a higher time derivative: Consider a system with one
degree of freedom that is represented by the generalized coordinate q. Construct the energy in-
tegral of the system if its Lagrangian depends on q̈, in addition to q and q̇.

4. An application of the conservation of linear momentum: Consider a region of space divided by a
plane. The potential energy of a particle on one half of the plane is U1 and, on the other half, it is
U2, where U1 and U1 are constants. A particle of mass m which has a speed v1 moves from the first
half to the second. If θ1 and θ2 are the angles subtended by the trajectory of particle with respect
to the normal on either side of the plane, show that

sin θ1
sin θ2

=

(

1 +
U1 − U2

mv21/2

)1/2

.

What is the optical analog of the problem?

5. Application of the virial theorem: Using virial theorem, show that the total mass M of a spherical
cluster of stars (or galaxies) of uniform density and radius R is given by

M =

(

5R 〈v2〉
3G

)

,

where 〈v2〉 is the mean-squared velocity of the individual stars and G is, of course, the gravitational
constant.

Note: The above relation allows us to obtain an estimate of the mass of a cluster if we can measure
the mean-squared velocity, say, from the Doppler spread of the spectral lines and the radius of the
cluster, say, from its known distance and angular size.
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Exercise sheet 5

Motion in a central potential

1. Time evolution in the Keplerian potential: Consider a particle of reduced mass m that is moving
on a hyperbolic trajectory in the central potential U(r) = −α/r, where α > 0. Show that the time
evolution of the trajectory can be parametrically expressed as follows:

r = a (e cosh ξ − 1) and t =
√

ma3/α (e sinh ξ − ξ)

or, equivalently, as

x = a (e− cosh ξ) and y = a
√

e2 − 1 sinh ξ,

where the quantity a and the eccentricity of the orbit e are given in terms of the energy E and the
angular momentum M by the relations

a =
α

2E
and e =

√

1 +
2EM2

mα2
,

while −∞ < ξ < ∞.

2. Explicitly establishing the virial theorem: Evaluate the time averages (i.e. the average over one com-
plete period) of the kinetic and potential energies, say, T and U , for a particle that is moving along
an elliptic orbit in the Keplerian central potential, and establish the virial theorem for the case,
viz. that 2 〈T 〉 = −〈U〉, where the angular brackets denote the averages.

3. From the orbit to the force: Consider a particle that is moving in a central field.

(a) Determine the central force, given that the particle is known to move on the following, loga-
rithmic spiral, orbit:

r(φ) = β eγ φ.

(b) Obtain the corresponding time evolution of the radial and the angular coordinates r and φ.

(c) What is the energy associated with the above orbit?

4. Passing through the centre: A particle moves under the influence of a central force given by F (r) =
−δ/rn, where δ > 0. Show that n = 5 if the orbit of the particle is circular and it passes through
the centre of the force.

5. Falling onto each other: Consider two particles which are moving under the influence of their mutual
gravitational force. Let the particles follow circular orbits about one another with a time period T .
Show that, if the particles are suddenly stopped in their orbits and allowed to gravitate towards
each other, they will collide after a time T/4

√
2.
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Quiz II

From conserved quantities to motion in central potentials

1. Invariance under gauge transformations: Recall that, a non-relativistic particle that is moving in
an electromagnetic field described by the scalar potential φ and the vector potential A is governed
by the Lagrangian

L =
mv2

2
+ q (v ·A)− q φ,

where m and q are the mass and the charge of the particle. Show that the corresponding action is
invariant under the following transformations of the scalar and the vector potentials:

φ → φ− ∂χ

∂t
and A → A+∇χ,

where the quantity χ is an arbitrary function of time and the spatial coordinates. 10 marks

Note: The above transformations of the scalar and the vector potentials together are known as the
gauge transformations.

2. Bounded motion in one-dimension: Consider a particle moving in the following one-dimensional
potential:

U(x) =
a

x2
+ b x2, where a, b > 0.

(a) Obtain the solution describing the time evolution of the particle. 7 marks

(b) Also, evaluate the time period of the particle as a function of its energy. 3 marks

3. The Laplace-Runge-Lenz vector: Recall that, for a particle with s degrees of freedom, we require
2 s − 1 constants of motion in order to arrive at a unique trajectory for the particle. According to
this argument, for the Kepler problem, we would then need five integrals of motion to obtain the
solution. We had expressed the solution in terms of the energy E of the system and the amplitude
of the angular momentum vector M, both of which were conserved. However, these quantities, viz.
the energy E and the three components of the angular momentum vector M, only add up to four
constants of motion! Evidently, it will be interesting to examine if we can identify the fifth integral
of motion associated with the system.

(a) Show that, for a particle moving in the Keplerian central potential, i.e. U(r) = −α/r with

α > 0, the following vector is an integral of motion: 3 marks

A = mv ×M− mα r

r
.

Note: The conserved vector A is known as the Laplace-Runge-Lenz vector.

(b) Show that the vector A lies in the plane of the orbit. 2 marks

(c) Indicate the amplitude and the direction of A associated with a planet as it moves in an

elliptical orbit around the Sun. 2 marks

Hint: Determine the amplitude and the direction of A at, say, the perihelion and the aphelion.

(d) If E, M and A are all constants, then, we seem to have seven integrals of motion instead of

the required five to arrive at a unique solution! How does seven reduce to five? 3 marks

Hint: Examine if there exist any relations between A and M and/or E.

4. Motion in a repulsive central potential: Consider a particle that is moving in the repulsive central
potential U(r) = β/r, where β > 0.
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(a) Obtain the second order differential equation satisfied by the quantity v = 1/r in terms of the

angular coordinate φ. 3 marks

(b) Solve the second order differential equation to obtain the orbital trajectory, and express the
constants of integration in terms of the energy and the angular momentum of the parti-
cle. 3 marks

(c) Assuming that the trajectory of the particle to be in the x-y plane, show that the trajectory

is a hyperbola with the following asymptotes: 2 marks

y = ±
√

e2 − 1 x− e p√
e2 − 1

,

where p = M2/(mβ), while e denotes the eccentricity which is given by

e =

√

1 +
2EM2

mβ2
.

(d) Also, plot the hyperbolic trajectory for the corresponding attractive central potential (i.e.

when β < 0). 2 marks

5. (a) Period of a binary system: Two double stars of the same mass as the Sun rotate about their
common center of mass. Their separation is 4 light years. Estimate their period of revolu-
tion. 5 marks

Note: The mass of the Sun is about 2× 1030 kg, while the value of the gravitational constant
is G = 6.673 × 10−11 m3 kg−1 s−2.

(b) Perihelion and aphelion of the Halley’s comet: Halley’s comet, which passed around the Sun
early in 1986, moves in a highly elliptical orbit with an eccentricity of 0.967 and a period of 76
years. Calculate the perihelion and aphelion of the comet. 5 marks
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Exercise sheet 6

The Hamiltonian formulation and the structure in phase space

1. Bead on a helical wire: A bead is moving on a helical wire under the influence of a uniform gravita-
tional field. Let the helical wire be described by the relations z = α θ and ρ = constant. Construct
the Hamiltonian of the system and obtain the Hamilton’s equations of motion.

2. Particle in the Keplerian central potential: Working in the plane polar coordinates, write down the
Hamiltonian and the Hamilton’s equations for a particle of mass m that is moving in the Keplerian
central potential U(r) = −α/r, where α > 0.

3. Poisson brackets: Establish the following relations: [qi, qj ] = 0, [pi, pj ] = 0, [qi, pj] = δij , q̇i = [qi,H]
and ṗi = [pi,H], where qi, pi and H represent the generalized coordinates, the corresponding
conjugate momenta and the Hamiltonian, respectively, while the square brackets denote the Poisson
brackets.

Note: The quantity δij is called the Kronecker symbol and it takes on the following values:

δij =

{

1 when i = j,
0 when i 6= j.

4. Phase portraits: Draw the phase portraits of a particle moving in the following one dimensional
potentials: (a) U(x) = a |x|n and (b) U(θ) = −a cos θ, where a > 0 and n > 2.

5. An illustration of the Liouville’s theorem: Consider, a collection of non-interacting particles, each
of mass m, in a uniform gravitational field. At an initial time, let the particles have momenta and
energies in the range p1 < p < p2 and E1 < E < E2.

(a) What is the area occupied by the particles in the phase space at the initial time?

(b) Evaluate the area of the phase space occupied at a later time and show that it is the same as
the area occupied by the particles initially.
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Exercise sheet 7

Basic concepts in probability

1. The binomial distribution: Consider an ideal system of N spin 1
2 particles, each having an associated

magnetic moment µ0. Suppose that the system is located in an external magnetic field. Let us assume
that the system is in equilibrium so that a statistical ensemble consisting of N such systems is time-
independent. Let p and q denote the probability that the magnetic moment of one of the spins points
up or down, respectively.

(a) Show that the probability P (n) that n of the N moments point up is given by

P (n) =
N !

n! (N − n)!
pn qN−n.

(b) Argue that P (n) is the coefficient of the pn qN−n term in the binomial expansion (p + q)N .

(c) Evaluate
N
∑

n=0

P (n).

(d) Plot P (n) for a given N .

2. Mean values and fluctuations: Suppose that a variable u of a system can take any of the following
α possible distinct values

u1, u2, u3, . . . , uα

with respective probabilities
P1, P2, P3, . . . , Pα.

This means that, in an ensemble of N systems (where N → ∞), the variable u assumes the
particular value ur in a number Nr = N Pr of these systems. In such a case, the mean value 〈u〉 of
u is given by

〈u〉 =
α
∑

r=1

Pr ur,

and the dispersion of u is defined as

〈(∆u)2〉 =
α
∑

r=1

Pr (ur − 〈u〉)2 .

(a) Show that, in case of the spin 1
2 systems discussed in the previous problem, the mean value of

the total magnetic moment M of the system is given by

〈M〉 = N (p − q)µ0.

(b) Also, establish that the dispersion in M is given by

〈(∆M)2〉 = 4N p q µ2
0.

Note: Each spin 1
2 particle is a statistically independent system.

3. Distribution of molecules in an ideal gas: Consider an ideal gas of N molecules contained in a box
of volume V0. Determine the mean number and the dispersion in the number of molecules found in
a sub-volume, say, V , of the box. How does the ratio of the standard deviation in the number of
molecules to the mean number within the volume V behave as a function of N?

Note: The square root of the dispersion is referred to as the standard deviation.
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4. The Gaussian distribution: Let P(x) denote the probability density associated with a continuous
variable x. The mean value and the dispersion of the quantity x in such a case are defined as follows:

〈x〉 =
∞
∫

−∞

dx P(x) x and 〈(∆x)2〉 =
∞
∫

−∞

dx P(x) (x− 〈x〉)2 .

Consider the following Gaussian distribution for P(x):

P(x) =
1√
2π σ

exp−(x− µ)2/2σ2,

where it is has been assumed that x can take values in the range −∞ < x < ∞.

(a) Show that this distribution is normalized, i.e.

∞
∫

−∞

dx P(x) = 1.

(b) Also, establish that, for the above Gaussian distribution, 〈x〉 = µ and 〈(∆x)2〉 = σ2.

5. The Poisson distribution: Consider a system such as the spin 1
2 system we had discussed above

wherein the number n of the N moments pointing up is given by the binomial distribution. Suppose
the probability p is small (i.e. p ≪ 1) and one is interested in the case wherein n ≪ N . In such a
case, show that the probability distribution P (n) reduces to the following Poisson form:

P (n) =
λn

n!
e−λ,

where λ = N p.

Note: To arrive at this result, one needs to make use of the Stirling’s approximation, according to
which, we can write

N !

(N − n)!
≃ Nn.
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Additional exercises

From the calculus of variations to basic concepts in probability

1. Walking around a volcano: Consider a conical surface defined by the relation z = 1−
√

x2 + y2.

(a) What is the geodesic on the surface?

Note: This geodesic describes the shortest mountain path around a volcano.

(b) Determine the distance between the points (x, y, z) = (0,−1, 0) and (0, 1, 0) along the geodesic
on the surface.

2. The action for simple systems: Evaluate the action for the following one-dimensional systems: (a) a
particle (of mass m) that is subjected to a constant force (say, of magnitude α), and (b) a simple
harmonic oscillator (of mass m and frequency ω). Assume that these systems are at the points q1
and q2 at times t1 and t2, respectively.

3. A messy Lagrangian for a well known system: Find the equation of motion corresponding to the
Lagrangian

L = e−(x
2+ẋ2) + 2 ẋ e−x2

ẋ
∫

0

dα e−α2

.

Obtain the energy integral for the system and also construct a simpler Lagrangian that will lead
to the same equation of motion.

4. Moving on a surface under the influence of gravity: A particle of mass m is constrained to move
under gravity without friction on the surface x y = z. What is the trajectory of the particle if it
starts from rest at (x, y, z) = (1,−1,−1) with the z-axis being vertical?

5. Form invariance of the Lagrange equations under a point transformation: Let (q1, q2, . . . , qn) be a
set of independent generalized coordinates for a system with n degrees of freedom. Let the system be
described by the Lagrangian L(qi, q̇i, t) and let us transform to a new set of independent coordinates
(s1, s2, . . . , sn) by means of the transformation equations

qi = qi (s1, s2, . . . , sn, t) , i = 1, 2, . . . , n.

Such a transformation is known as a point transformation.

Show that if the Lagrangian L(qi, q̇i, t) is expressed as a function of sj, ṡj and t through the above
transformation equations, then the system satisfies the Lagrange equations with respect to the new
coordinates, viz.

d

dt

(

∂L

∂ṡj

)

−
(

∂L

∂sj

)

= 0, j = 1, 2, . . . , n.

6. The isotropic oscillator: Consider a particle moving in the central potential U(r) = α r2, where
α > 0.

(a) Obtain the orbit equation.

(b) Solve for the radial motion in time.

7. A bead on a wire: Consider a bead that is sliding without friction down a wire in a uniform gravi-
tational field. Let the shape of the wire be y = f(x).

(a) Obtain the Hamiltonian for the system.

(b) Also, write down the corresponding Hamilton equations of motion.
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8. Phase portraits: Draw the phase portrait for the following cases:

(a) A particle moving vertically in a uniform gravitational field.

(b) A particle moving in the one-dimensional potential U(x) = αx2 e−β x2

, where α and β are
positive definite quantities.

9. A messy Lagrangian and the corresponding Hamiltonian: If a system has the Lagrangian

L =
1

2
G(q, t) q̇2 + F (q, t) q̇ − V (q, t),

show that the corresponding Hamiltonian is given by

H =
[p− F (q, t)]2

2G(q, t)
+ V (q, t),

where
p = G(q, t) q̇ + F (q, t).

10. Probabilities in one-dimensional random walk: A person starts from a lamppost in the middle of a
street, taking steps of equal length. Suppose that the probabilities of the person taking a step to
right or to the left are equal. What is the probability that the person will be back at the lamppost
after taking N steps,

(a) When N is odd?

(b) When N is even?

11. Displacement distribution of random oscillators: Consider an ensemble of classical one-dimensional
simple harmonic oscillators. Let ω and A describe the angular frequency and the amplitude of the
oscillators, and let the displacement x of an oscillator as a function of time t be given by

x = A cos (ω t+ ϕ),

where ϕ is an arbitrary constant which can assume any value in the range 0 ≤ ϕ < 2π with equal
probability. Determine the probability P (x) dx that, at any time t, the displacement lies between
x and x+ dx. Express P (x) in terms of A and x.

12. Mean values and fluctuations associated with the Poisson distribution: Consider an event that is
characterized by the probability p, which occurs n times in N trials. The probability distribution
P (n) associated with such an event is given by the binomial distribution. As we have discussed, in
the limit p ≪ 1 and n ≪ N , the binomial distribution reduces to the following, simpler, Poissonian
form:

P (n) =
λn

n!
e−λ,

where λ = N p. Assuming that the sum over N can be extended to infinity,

(a) Evaluate the mean value of n associated with the above Poisson distribution.

(b) Also, calculate the dispersion in n.

(c) Further, compute 〈n3〉.
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Exercise sheet 8

Statistical description of systems of particles

1. Transforming probability distributions: Suppose that a two-dimensional vector B of constant mag-
nitude is equally likely to point in any direction specified by the angle θ. What is the probability,
say, P (Bx) dBx that the x component of the vector lies between Bx and Bx + dBx?

2. A classical particle in a box: Consider a particle of mass m that is moving in one dimension, say,
along the x-direction. The particle is confined by a hard box, whose walls are located at x = 0 and
x = L. Suppose the energy of particle is known to lie between E and E + δE. Draw the trajectory
of the particle in the phase space and indicate the regions of the phase space that are accessible to
the particle.

3. One spin in thermal contact with a small spin system: Consider a system A consisting of a spin 1
2

particle having a magnetic moment µ0, and another system A′ consisting of three spin 1
2 particles

each having magnetic moment µ0. The total system A + A′ is isolated, and both the systems are
in the same magnetic field B. The systems are placed in thermal contact with each other so that
they can exchange energy. Suppose that, when the moment of A points up, two of the moments of
A′ point up and one points down.

(a) Count the total number of states accessible to the combined system A+A′ when the moment
of A points up, and when it points down.

(b) Calculate the ratio of the probabilities of the moment A pointing down to the moment pointing
up.

4. A quantum particle in a box: Consider a single, quantum mechanical, free particle of mass m that
is confined to a one-dimensional box of width L. It can be shown that the energy levels of the
particle are discrete, and are given by

En =
~
2 π2

2mL2
n2,

where n is a quantum number that is a non-zero and positive integer, while ~ = (h/2π) with h
being the Planck’s constant. Instead, had the box been a cube of side L, the energy levels of the
particle would be given in terms of three non-zero and positive integers, say, n, l and m, as follows:

Enlm =
~
2 π2

2mL2

(

n2 + l2 +m2
)

.

Determine the number of states that are accessible to the system if its energy lies between E and
E + δE.

Note: Assume that E is large enough so that it is associated with fairly large quantum numbers.

5. Work done by a gas: The mean pressure p of a thermally insulated gas varies with the volume V
according to the relation

p V γ = C,

where γ and C are constants. Find the work done by the gas in a quasi-static process from a
macrostate with pressure pi and volume Vi to one with pressure pf and volume Vf . Express the final
result in terms of pi, Vi, pf and Vf .
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Quiz III

From the Hamiltonian formalism to statistical thermodynamics

1. Phase portraits: Draw the phase portraits for a particle moving in the following one-dimensional
potentials:

(a) U(x) = αx2 + β x−2, 5 marks

(b) U(x) = α
(

e−2 β x − 2 e−β x
)

, 5 marks

where α and β are both positive definite quantities.

2. Poisson brackets: Consider a system that is described by the Hamiltonian H. Let f , g and h
be arbitrary functions of the generalized coordinates and the corresponding conjugate momenta
associated with the system.

(a) Establish the following relation: 3 marks

[f g, h] = f [g, h] + g [f, h],

where the square brackets denote the Poisson brackets.

(b) Also, show that 4 marks

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0.

Note: This relation, with its characteristic cyclic structure, is known as the Jacobi’s identity.

(c) Let u and v denote two constants of motion associated with the system that do not depend

explicitly on time. Show that, in such a case, 3 marks

[H, [u, v]] = 0.

Note: While the above relations are to be established for a system with many degrees of freedom,
if faced with difficulty, it may be convenient to try and establish them first for a system with just
one degree of freedom.

3. Accessible states for a spin 1
2 system, entropy and temperature: Consider an ideal system of N

spin 1
2 particles, each having an associated magnetic moment µ0. Suppose that the system is located

in an external magnetic field B. The energy of the system is then given by

E = −(n− n′)µ0B,

where n denotes the number of particles whose spins are up, while n′ = N−n represents the number
of particles whose spins are down.

(a) Calculate the number of states Ω(E) that are accessible to the system when it has an ener-

gy E. 2 marks

(b) Assuming N to be large and using the Stirling’s approximation for factorials, evaluate the
entropy, i.e. S = k ln Ω(E), with k being the Boltzmann constant, associated with the sys-

tem. 3 marks

(c) Evaluate the corresponding temperature (i.e. in the large N limit) of the system. 3 marks

(d) Show that the temperature turns negative for E > 0. 2 marks
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4. The Maxwell distribution and the equipartition theorem: Consider an ideal gas of non-interacting
atoms at the temperature T . For simplicity, let us assume that there exists only one spatial dimen-
sion. In such a case, according to the Maxwell distribution (which we shall soon derive in the class),
the probability of finding an atom with a momentum p is given by

P (p) ∝ exp−p2/2mk T,

where m is the mass of the atom, while k, as we mentioned above, is the Boltzmann constant.

(a) Normalize the above probability distribution. 2 marks

(b) Utilize the normalized probability distribution to evaluate the mean momentum and the dis-

persion in the momentum of an atom. 3 marks

(c) Calculate the mean energy of the atom as well as the dispersion in its energy. 5 marks

5. Mean energy of a quantum oscillator in a thermal bath: Consider a one-dimensional quantum os-
cillator that is immersed in a thermal bath at the temperature T . Let ω be the angular fre-
quency of the oscillator. Note that the quantized energy levels of the oscillator are given by
En = (n + 1/2)~ω, where ~ = h/(2π), with h being the Planck constant, while n is a posi-
tive integer (i.e. n = 0, 1, 2, . . .). As we shall discuss later (in the class), the probability of finding
the oscillator in the nth energy level with the energy En is given by

P (En) ∝ exp−En/k T.

(a) Normalize the above probability distribution. 2 marks

(b) Utilize the normalized probability distribution to evaluate the mean energy of the oscilla-

tor. 4 marks

(c) Determine the behavior of the mean energy at low and high temperatures, i.e. when k T ≪ ~ω

and when k T ≫ ~ω. 2 marks

Note: As one can imagine, the system can be expected to behave ‘more’ quantum mechanically
at low temperatures, and ‘more’ classically at high temperatures.

(d) Assuming ~ω to be a constant, plot the behavior of the mean energy of the system as a

function of k T . 2 marks
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Exercise sheet 9

Statistical thermodynamics and the canonical ensemble

1. Sharpness of the probability distribution: Consider a system A that is interacting thermally with
another system, say, A′. We had discussed as to how the probability of finding the system A with
a given energy is peaked around the mean value 〈E〉. Argue that the probability distribution is
sharply peaked around the mean value with a width that is given by

∆E

〈E〉 ≃ 1√
N

,

where N denotes the degrees of freedom associated with the system A.

2. Law of atmospheres: Consider an ideal gas of molecules at a finite temperature in a uniform gravi-
tational field, as on the surface of the Earth. Determine the probability of finding a molecule at a
given height from the surface of the Earth.

3. Equipartition theorem and the ideal gas law: Consider a gas of N identical monatomic molecules of
mass m enclosed in a container of volume V . Assume that the gas is sufficiently dilute so that the
interaction between the molecules can be neglected. Let the gas be at the temperature T .

(a) Evaluate the partition function of the system.

(b) Determine the mean energy of the gas as well as the mean energy per molecule.

(c) Calculate the mean pressure, say, 〈p〉, associated with the system and show that the system
obeys the ideal gas law, viz. 〈p〉V = N k T , with k being the Boltzmann constant.

4. Specific heats of solids: Consider any simple solid with Avogadro number N
A
of atoms per mole.

Examples of such solids could be copper, gold, aluminum or diamond. These atoms are free to
oscillate about their equilibrium positions, oscillations which are referred to as lattice vibrations.
Such vibrations are supposed to be small so that the potential energy of the atoms are quadratic
in their displacements about their equilibrium positions. The energy associated with each of these
atoms can be expressed as

E =
p2

2m
+

mω2

2
q2,

where ω is the characteristic frequency of the oscillations. The specific heat capacity of the solid at
constant volume defined as

c
V
=

(

∂〈E〉
∂T

)

V

.

Assuming the oscillators to be quantum, determine the behavior of c
V
as a function of temperature.

5. Magnetization of systems with arbitrary spin: Consider a system of N non-interacting atoms in a
substance at the absolute temperature T and placed in an external magnetic field, say, B, that is
pointing along the positive z-direction. The magnetic energy of an atom in such a case is given
by ǫ = −µ · B, where µ is the magnetic moment of the atom. The magnetic moment proves to
be proportional to the total angular momentum J ~ of the atom, and is conventionally written
in the form µ = g µ0 J, where µ0 is a standard unit of magnetic moment (usually, the Bohr
magneton µ0 = e~/(2me c), with e being the charge of the electron and me its mass), while g is
a number of order unity called the g-factor of the atom. The energy of the atom is then given by
ǫ = −g µ0 J·B = −g µ0B Jz, sinceB points in the z-direction. In a quantum mechanical description,
Jz can assume only integral values running from −J to J . Evaluate the partition function of the
system and determine the mean magnetic moment of an atom.
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Exercise sheet 10

Special relativity

1. Aberration of light: Consider two inertial frames S and S′, with the frame S′ moving along the
x-axis with a velocity v with respect to the frame S. Let the velocity of a particle in the frames S
and S′ be u and u′, and let θ and θ′ be the angles subtended by the velocity vectors with respect
to the common x-axis, respectively.

(a) Show that

tan θ =

(

u′ sin θ′

γ [u′ cos θ′ + v]

)

,

where γ =
[

1− (v/c)2
]−1/2

.

(b) For u = u′ = c, show that

cos θ =

(

cos θ′ + (v/c)

1 + (v/c) cos θ′

)

and

sin θ =

(

sin θ′

γ [1 + (v/c) cos θ′]

)

.

(c) For (v/c) ≪ 1, show that
∆θ = (v/c) sin θ′,

where ∆θ = (θ′ − θ).

2. Decaying muons: Muons are unstable and decay according to the radioactive decay law N =
N0 exp−(0.693 t/t

1/2
), where N0 and N are the number of muons at times t = 0 and t, respectively,

while t
1/2

is the half life. The half life of the muons in their own rest frame is 1.52×10−6 s. Consider
a detector on top of a 2, 000 m mountain which counts the number of muons traveling at the speed
of v = 0.98 c. Over a given period of time, the detector counts 103 muons. When the relativistic
effects are taken into account, how many muons can be expected to reach the sea level?

3. Binding energy: As you may know, the deuteron which is the nucleus of deuterium, an isotope
of hydrogen, consists of one proton and one neutron. Given that the mass of a proton and a
neutron are mp = 1.673 × 10−27 kg and mn = 1.675 × 10−27 kg, while the mass of the deuteron is
m

d
= 3.344 × 10−27 kg, show that the binding energy of the deuteron in about 2.225 MeV.

Note: MeV refers to Million electron Volts, and an electron Volt is 1.602 × 10−19 J.

4. Form invariance of the Minkowski line element: Show that the following Minkowski line element is
invariant under the Lorentz transformations:

ds2 = c2 dt2 − dx2.

5. Compton effect using four vectors: Consider the scattering between a photon of frequency ω and a
relativistic electron with velocity v leading to a photon of frequency ω′ and electron with velocity v′.
Such a scattering is known as Compton scattering. Let α be the angle between the incident and the
scattered photon and θ and θ′ be the angles between the direction of propagation of photon and
the velocity vector of the electron before and after the collision.

(a) Using the conservation of four momentum, show that

(

ω′

ω

)

=

(

1− (v/c) cos θ

1− (v/c) cos θ′ + (~ω/γ me c2) (1− cosα)

)

,

where γ =
[

1− (v/c)2
]−1/2

and me is the mass of the electron.
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(b) When (~ω) ≪
(

γ me c
2
)

, show that the frequency shift of the photon can be written as

(

∆ω

ω

)

=

[

(v/c) (cos θ − cos θ′)

1− (v/c) cos θ′

]

,

where ∆ω = (ω′ − ω).
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End-of-semester exam

From calculus of variations to special relativity

1. (a) Curve on a surface: Consider a curve on the surface z = x3/2 joining the points (x, y, z) =
(0, 0, 0) and (1, 1, 1).

i. Determine the curve that has the shortest arc length between the two points. 3 marks

ii. What is the arc length along the curve between the points? 2 marks

(b) Maximum area of a rectangle inscribed within an ellipse: The corners of a rectangle lie on the
ellipse

x2

a2
+

y2

b2
= 1.

i. Where should the corners be located in order to maximize the area of the rectan-
gle? 3 marks

ii. What fraction of the area of the ellipse is covered by the rectangle with the maximum
area? 2 marks

2. Particle in a constant magnetic field: Consider a non-relativistic particle that is moving in a con-
stant magnetic field of strength, say, B, that is oriented along the positive z-direction.

(a) Write down the Lagrangian describing the particle. 2 marks

(b) Obtain the corresponding Lagrange equations of motion describing the system. 3 marks

(c) Solve the Lagrange equations to arrive at the most generic solution to the system. 5 marks

3. Motion in a non-central force: Consider a particle that is moving in the field of a magnetic dipole.
Let the magnetic moment of the dipole be µ, so that the vector potential A due to the dipole is
given by

A =
µ× r

r3
.

For convenience, let us assume that the dipole moment µ is oriented along the positive z-direction.

Note: This system is often referred to as the Störmer problem.

(a) Write down the Lagrangian describing the particle moving in the field of the dipole. 2 marks

Note: The symmetry of the problem suggests that it would be convenient to work in the
cylindrical polar coordinates.

(b) Identify the conserved quantities associated with the system. 2 marks

(c) Using the second order equation of motion along the z-direction, show that if z = 0 and ż = 0,
then z̈ = 0 implying that the particle will be confined to move in the z = 0 plane in such a
case. 2 marks

(d) Assuming that the particle moves in the z = 0 plane, determine the effective potential de-
scribing the particle along the radial direction on the plane. Plot the effective potential as a
function of the radial coordinate, say, ρ, on the plane. 2 marks

(e) Draw the corresponding phase portrait in the ρ-ρ̇ plane. 2 marks

4. (a) Virial theorem in a central potential: A particle moves in a circular orbit (centered on the ori-
gin) in the field of an attractive central potential with the potential energy U(r) = k rn, where
k and n are constants. If 〈T 〉 and 〈U〉 denote the average kinetic and potential energies of the

particle, then establish the virial theorem for the particle, viz. that 〈T 〉 = n 〈U〉/2. 5 marks
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(b) The Kelvin-Helmholtz timescale: According to various observations and estimates, the mass of
the Sun is M⊙ = 2 × 1030 kg, while its radius is found to be R⊙ = 1.4 × 106 km. Also, the
luminosity, i.e. the energy emitted per unit time, of the Sun is found to be L⊙ = 3.8×1026 J/s.
Let us assume that the energy being radiated by the Sun is essentially the gravitational energy
that it has accumulated since it has been collapsing from a very large radius. Let us also assume
that the luminosity of the Sun has been roughly constant throughout its lifetime. Using the
virial theorem and the observed luminosity of the Sun, estimate the the lifetime of the Sun
under these assumptions. 5 marks

Hint: Apart from the virial relation between the kinetic and the potential energies for particles
in a gravitational field, you will need to make use of the relation arrived at upon applying
the virial theorem for a gravitationally bound system (in this context, see Exercise sheet 4,
Exercise 5).

Note: The value of the gravitational constant is G = 6.673 × 10−11 m3 kg−1 s−2.

5. Poisson brackets involving angular momentum: Establish the following relations involving the Pois-

son brackets: 4+3+4 marks

[L,L · n̂] = n̂× L, [L2,L · n̂] = 0 and [p,L · n̂] = n̂× p,

where p and L are the momentum and the angular momentum vectors, while n̂ denotes a unit
vector along an arbitrary direction.

6. (a) Two Poissons make a Poisson: Two types of events, say, a and b, are known to be described
by Poisson distributions with means λa and λb, respectively. Consider a total of r events that
could be all of type a, or one of type b and the rest of type a, and so on. The total probability
for such an event to occur is

P (r) =

r
∑

ra=0

P (ra, λa) P (rb = r − ra, λb),

where P (ra, λa) and P (rb, λb) are the distributions associated with the two types of events a

and b. Show that the total probability distribution P (r) is a Poisson too! 5 marks

(b) The von Neumann entropy: Let Pr be the probability of finding a system in a given mi-
crostate r. Suppose that the expression

S = −k
∑

r

Pr lnPr,

is accepted as the general definition of the entropy of the system. Imagine that the system A1

has the probability P
(1)
r of being found in the state r, while A2 has the probability P

(2)
s of

being found in the state s. Then the entropy of the two systems A1 and A2 are given by

S1 = −k
∑

r

P (1)
r lnP (1)

r and S2 = −k
∑

s

P (2)
s lnP (2)

s .

Assume that the two systems are brought together. Let the systems interact weakly so that
they are statistically independent, i.e. the joint probability Prs of finding the systems in the

states r and s is just P
(1)
r P

(2)
s . Show that, in such a case, the total entropy of the composite

system of A1 and A2 is the sum of the individual entropies S1 and S2. 5 marks

Note: The entropy as defined above is known as the von Neumann entropy (or as the Shannon
entropy in certain other contexts).

7. Mean kinetic and potential energies of a particle in one-dimension: Consider a particle that is mov-
ing in one-dimension in a potential U(x). Let the system be immersed in a thermal bath maintained
at the temperature T . Assume that the potential U(x) is such that the particle exhibits bounded
motion.
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(a) Show that the mean kinetic energy of the particle is k T/2 for any such poten-

tial U(x). 2 marks

(b) Evaluate the mean potential energy for the quadratic potential describing the conventional

oscillator, viz. U(x) = mω2 x2/2. 3 marks

(c) What is the mean potential energy of the particle if the potential is of the form U(x) = A |x|n,
where A > 0? 5 marks

8. Spin-1 particle in a magnetic field: A spin-1 particle of magnetic moment µ is in an external mag-
netic field of strength B that is directed along the positive z-direction. The system is immersed in
a thermal bath at the temperature T .

(a) Evaluate the partition function of the system. 5 marks

(b) Calculate the mean magnetic moment of the system using the partition function. 5 marks

Note: The spin-1 particle can be in one of the states with the following values for the z-component of
angular momentum: m = −1, 0 and 1. The magnetic moment of the particle in the state m is given
µ = mµ0, where µ0 is a constant, while the corresponding energy of the particle is E = −mµ0B.

9. (a) Transformation of angles: Consider two inertial frames K and K ′, with the frame K ′ moving
with respect to the frameK at a given velocity along the common x-axis. A rod in the frameK ′

makes an angle θ′ with respect to the forward direction of motion. What is the corresponding
angle as seen in the frame K? 5 marks

(b) Stellar aberration: Given that the Earth moves around the Sun at the speed of 30 km/s, de-

termine the aberration angle of light from distant stars in seconds of arc. 5 marks

Hint: Recall that, for small velocities of the observer and when small angles are involved, the
aberration angle is essentially given by v/c, where v is the velocity of the observer (in this
context, see Exercise sheet 10, Exercise 1).

10. (a) Colliding particles I: Show that it is impossible for an isolated free electron to absorb a pho-

ton. 5 marks

Note: Recall that, the relativistic energy and three momentum of a particle of mass m are
given by E = γ mc2 and p = γ mv, where γ = 1/

√

1− (|v|/c)2 and c is the velocity of light.
These relations lead to E2 − |p|2 c2 = m2 c4. Further, for a photon, since its mass is zero, its
three momentum can be written in terms of the energy E of the photon as p = (E/c) n̂, where
n̂ is the direction of propagation of the photon.

(b) Colliding particles II: A relativistic particle of mass m1 and velocity v1 collides with a particle
at rest of mass m2, and is absorbed by it. Determine the mass, say, m, as well as the velocity,
say, v, of the compound system. 5 marks
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