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FOUNDATIONS IN THEORETICAL PHYSICS
ESSENTIAL CLASSICAL MECHANICS AND CLASSICAL ELECTRODYNAMICS
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Lecture schedule

e This part of the course will consist of about 32 lectures including 8 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

o We will meet twice a week. The lectures are scheduled for 5:00-7:00 PM on Mondays and Thursdays.
We will be meeting in HSB 210.
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Syllabus and structure

Classical Mechanics

1. Calculus of variations and Lagrangian formulation of mechanics [~ 3 lectures]

Concept of variation — Euler equation

(a
(b
(c
(d

)
) Degrees of freedom — Generalized coordinates and velocities

) Principle of least action — Lagrange equations of motion

) Inertial frames of reference — Newton’s first law — Galileo’s relativity principle — Galilean
transformations

(e) Lagrangian for a free particle and a system of particles — Equations of motion in an external
field — Newton’s second law

Exercise sheet 1
2. Symmetries and conservation laws [~ 2 lectures]
(a) Homogeneity of space and time — Conservation of energy and momentum — Newton’s third
law — Center of mass
(b) Isotropy of space — Conservation of angular momentum
(¢) Mechanical similarity — Virial theorem

Exercise sheet 2
3. Integration of the Lagrange equations of motion [~ 5 lectures]

(a) Motion in one dimension — Determination of the potential energy from the period of oscillation

(b) Two body problem — Reduced mass and the equivalent one-dimensional problem — Motion in
a central field — Kepler’s second law

(¢) Kepler problem — Kepler’s first and third laws — Motion in a repulsive field — Laplace-Runge-
Lenz vector

(d) Scattering in a central field — Rutherford’s formula — Total cross section

Exercise sheets 3 and 4
4. Small oscillations [~ 2 lectures]

(a) Free, damped and forced oscillations in one dimension — Resonance — Parametric resonance
(b) Oscillations of systems with more than one degree of freedom — Vibrations of molecules

Exercise sheet 5
5. Hamiltonian formulation [~ 4 lectures]

(a) Conjugate momentum — Legendre’s transformation — Hamiltonian and Hamilton’s equations
(b) Poisson brackets — Poisson’s theorem

(c) Canonical transformations — Invariance of Poisson brackets under canonical transformations
(d) Phase space — Dynamics in the phase space — Phase portraits — Liouville’s theorem
Exercise sheet 6

Quiz I
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Classical Electrodynamics

6. Special relativity [~ 2 Lectures]

(a) The Michelson-Morley interferometric experiment — Postulates of special relativity
(b) Lorentz transformations — The relativity of simultaneity — Length contraction and time dilation
(¢) Composition law for velocities — Doppler effect

Exercise sheet 7

7. Four vectors, tensors, and transformations [~ 2 Lectures]

Exercise sheet 8
8. Charges in electromagnetic fields [~ 3 Lectures]

a) Four vector potential — Equation of motion of a charge in an electromagnetic field

(a)

(b) Gauge invariance

(¢) Motion in constant, uniform electric and magnetic fields

(d) The electromagnetic field tensor — Lorentz transformation of the field — Invariants of the field

Exercise sheet 9
9. The electromagnetic field equations [~ 4 Lectures]

a) The first pair of Maxwell’s equations

(a)
(b) The action for the electromagnetic field

(c¢) The four dimensional current vector and the equation of continuity

(d) The second pair of Maxwell’s equations

(e) Energy density and energy flux — Energy momentum tensor of the electromagnetic field

Exercise sheet 10

10. Electromagnetic waves and the propagation of light [~ 1 Lecture]

(a) The wave equation — Plane waves — Monochromatic plane waves
(b) Spectral resolution — Partially polarized light

(¢) The Fourier resolution of the electrostatic field

Exercise sheet 11
11. Radiation of electromagnetic waves [~ 4 Lectures]

(a) The retarded potentials — The Lienard-Wiechart potentials
(b) The field of a system of charges at large distances
(c) Dipole radiation

(d) Radiation from a rapidly moving charge

Exercise sheet 12

Quiz II
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Essential texts

Classical mechanics

. L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoretical Physics, Volume 1, Third
Edition (Pergamon Press, New York, 1976).

. D. Kleppner and R. J. Kolenkow, An Introduction to Mechanics (Tata McGraw-Hill, New Delhi,
1999).

. H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Third Edition (Pearson Education, Sin-
gapore, 2002).

. S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems (Cengage Learning,
Singapore, 2004).

. T. W. B. Kibble, Classical Mechanics, Fifth Edition (Imperial College Press, London, 2004).

. D. Morin, Introduction to Classical Mechanics (Cambridge University Press, Cambridge, England,
2008).

Classical Electrodynamics

. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,
Volume 2), Fourth Edition (Pergamon Press, New York, 1975).

. L. D. Landau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media (Course
of Theoretical Physics, Volume 8), Second Edition (Pergamon Press, New York, 1984).

. D. J. Griffiths, Introduction to Electrodynamics, Third Edition (Prentice Hall of India, New Delhi,
1999).

. J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley and Sons, Singapore, 1999).

Additional references

Classical Mechanics

. D. T. Greenwood, Principles of Dynamics, Second Edition (Prentice-Hall of India, New Delhi,
1988).

. L. N. Hand and J. D. Finch, Analytical Mechanics (Cambridge University Press, Cambridge, 1998).

. W. Greiner, Classical Mechanics: Systems of Particles and Hamiltonian Dynamics (Springer-Verlag,
New York, 2003).

Classical Electrodynamics
. R. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992).
. W. Greiner, Classical Electrodynamics (Springer-Verlag, New York, 1998).

. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi,
2003).

. M. Longair, Theoretical Concepts in Physics, Second Edition (Cambridge University Press, Cam-
bridge, England, 2003).
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Exercise sheet 1

Calculus of variations and Lagrangian formulation of mechanics

. Snell’s law: Two homogeneous media of refractive indices n; and mny are placed adjacent to each
other. A ray of light propagates from a point in the first medium to a point in the second medium.
According to the Fermat’s principle, the light ray will follow a path that minimizes the transit time
between the two points. Use Fermat’s principle to derive the Snell’s law of refraction, viz. that

nq sinf; = no sin 6y,

where 01 and 6 are the angles of incidence and refraction at the interface.

Note: As the complete path is not differentiable at the interface, the problem is not an Euler
equation problem.

. Brachistochrone problem: Consider a particle that is moving in a constant force field starting at
rest from some point to a lower point. Determine the path that allows the particle to accomplish
the transit in the least possible time.

Note: The resulting curve is referred to as the brachistochrone, i.e. the curve of the fastest descent.

. Lagrangian of a free particle in different coordinate systems: Write down the Lagrangian and the
equations of motion for a free particle in (a) Cartesian, (b) cylindrical and (c) spherical polar
coordinates.

. Behavior of Euler-Lagrange equation under point transformations: Let (q1,q2,...,q,) be a set of
independent generalized coordinates for a system with n degrees of freedom. Let the system be
described by the Lagrangian L(g;, ¢;, t) and let us transform to a new set of independent coordinates
(51, 82, ..., sn) by means of the transformation equations

G = qi (81,82, ,8n,t), fori=1,2,....,n.

Such a transformation is known as a point transformation. Show that, if the Lagrangian L(g;, ¢;,t)
is expressed as a function of s;, §; and ¢ through a point transformation, then the system satisfies
the Lagrange’s equations with respect to the new coordinates, viz.

d /0L oL
— =) - =0, forj=1,2,...,n.
dt (88]> (88]') O’ orJ B "

Note: This implies that the form of the Lagrange’s equations remain invariant under a point
transformation.

. Lagrangian for different systems: Construct the Lagrangian and obtain the equations of motion for
the following systems when they are placed in a uniform gravitational field (corresponding to an
acceleration g)

(a) a coplanar double pendulum as shown in the figure below,
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(b) a simple pendulum of mass ms, with a mass m; at the point of support which can move on a
horizontal line lying in the plane in which mgy moves as shown in the figure below,

(¢) a simple pendulum of mass m whose point of support

i. moves uniformly on a vertical circle with constant frequency = as shown in the figure
below,

ii. oscillates horizontally in the plane of motion of the pendulum according to the law x =
acos(yt),
iii. oscillates vertically according to the law y = a cos(yt),

(d) In the system shown in the figure below, the mass my moves on a vertical axis and the whole
system rotates about this axis with a constant angular velocity 2.
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m;
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Exercise sheet 2

Symmetries and conservation laws

. Utilizing conservation of energy and momentum: Consider a region of space divided by a plane.
The potential energy of a particle on one half of the plane is U; and, on the other half, it is Us,
where U; and Uy are constants. A particle of mass m which has a speed‘v; moves from the first
half to the second. If #; and 05 are the angles subtended by the trajectory of particle with respect
to the normal on either side of the plane, show that

ﬁn@l__< UI—UQ>1/2

sinfy

mv?/2
What is the optical analog of the problem?

. Components and magnitude of angular momentum: Obtain the expressions for the Cartesian com-
ponents and the magnitude of the angular momentum of a particle in the cylindrical and the
spherical polar coordinates.

. Virial theorem: Given a function f(t), the average value of the function is defined as

T
o) = Jim 7 [ ae o),

T—o0

Consider a system in which the forces acting on the particles consist of conservative forces Fj,
determined by the potential U(r;). Show that, for such a system, the so-called virial theorem holds

in the form ou

. Perfect gas law: A perfect gas is defined as one in which the forces of interaction between the
molecules of the gas are negligible. This occurs, for example, when the gas is so dilute that the
collisions between the molecules are rare when compared to the collisions with the walls of the
container. Using these information and the virial theorem, obtain the perfect gas law, viz.

PV =Nk,T,

where P, V, T and N denote the pressure, the volume, the temperature and the number of molecules
of the gas, respectively, and k; is the Boltzmann constant.

. An application of the virial theorem: Using virial theorem, show that the total mass M of a spherical
cluster of stars (or galaxies) of uniform density and radius R is given by

5R (v?

Ygeptiatio}
3G

where (v?) is the mean-squared velocity of the individual stars and G is, of course, the gravitational

constant.

Note: The above relation allows us to obtain an estimate of the mass of a cluster of stars or galaxies
if we can measure the mean-squared velocity, say, from the Doppler spread of the spectral lines and
the radius of the cluster, say, from its known distance and angular size.
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Exercise sheet 3

Integration of the Lagrange equations of motion I

1. Period of oscillation: Determine the period of oscillation as a function of the energy, say, E, when
a particle of mass m is moving in one dimension (along the z-axis) under the influence of the
following potentials: (a) U = A |z|?>" (with A > 0 and n > 0), (b) U(z) = —Up/cosh?(ax) (for
~Uy < E <0), and (c) U(x) = Up tan?(a ).

2. Explicitly establishing the virial theorem: Evaluate the time averages (i.e. the average over one
complete period) of the kinetic and potential energies, say, T and U, for a particle that is moving
along an elliptic orbit in the Keplerian central potential, and establish the virial theorem for the
case, viz. that 2(T') = —(U), where the angular brackets denote the averages.

3. Time evolution in the Keplerian potential: Consider a particle of reduced mass m that is moving
on a hyperbolic trajectory in the central potential U(r) = —a/r, where o > 0. Show that the time
evolution of the trajectory can be parametrically expressed as follows:

r=a (ecoshé —1), t =y/ma3/a (esinh& — &)

or, equivalently, as
z=a (e— coshf), y=ae?—1 sinh¢,

where the quantity a and the eccentricity of the orbit e are given in terms of the energy £ > 0 and
the angular momentum £ by the relations

o 1+2E€2
a=——,e=1/ -
2F’ ma?2’

4. Laplace-Runge-Lenz vector: Recall that, for a particle with s degrees of freedom, we require 2s — 1
constants of motion in order to arrive at a unique trajectory for the particle. According to this
argument, for the Kepler problem, we would then need five integrals of motion to obtain the
solution. We had expressed the solution in terms of the energy E of the system and the amplitude
of the angular momentum vector L, both of which were conserved. However, these quantities, viz.
the energy E and the three components of the angular momentum vector L, only add up to four
constants of motion. Evidently, it will be interesting to examine if we can identify the fifth integral
of motion associated with the system.

while —o0 < € < 0.

(a) Show that, for a particle moving in the Keplerian central potential, i.e. U(r) = —a/r with
a > 0, the following vector is an integral of motion:

maoanr
A=mvx L — .

r

Note: The conserved vector A is known as the Laplace-Runge-Lenz vector.
(b) Show that the vector A lies in the plane of the orbit.
(¢) Indicate the amplitude and the direction of A associated with a planet as it moves in an
elliptical orbit around the Sun.
Hint: Determine the amplitude and the direction of A at, say, the perihelion and the aphelion.
(d) If E, L and A are all constants, then, we seem to have seven integrals of motion instead of
the required five to arrive at a unique solution! How does seven reduce to five?

Hint: Examine if there exist any relations between A and L and/or E.

5. Passing through the centre: Consider a particle that describes a circular orbit under the influence
of an attractive central force directed towards a point on the circle.
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(a) Show that the force varies as the inverse-fifth power of the distance.
(b) Also, show that for the orbit described the total energy of the particle is zero.

(¢) Moreover, obtain the period of the motion.
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Exercise sheet 4

Integration of the Lagrange equations of motion II

1. Falling onto each other: Consider two particles which are moving under the influence of their mutual
gravitational force. Let the particles follow circular orbits about one another with a time period T'.
Show that, if the particles are suddenly stopped in their orbits and allowed to gravitate towards
each other, they will collide after a time T/(4+/2).

2. Precessing orbits: Show that the motion of a particle in the central potential

«a h
U(T):—;‘Fﬁ,

with a > 0, is the same as that of motion under the Kepler potential alone when expressed in terms
of a coordinate system rotating or precessing around the center of the force.

3. Precession of the perihelion of Mercury: When a small correction 6U(r) is added to the potential
energy U = —a/r, with a > 0, the paths of finite motion are no longer closed and in each revolution
the perihelion is displaced through a small angle, say, d¢.

(a) Find 6¢ when: (i) 6U = $/r? and (ii) 6U = ~/r3. Compare the result for the first case with
the result from the previous exercise.

(b) For the case of the planet Mercury, the value of the semi-major axis of its orbit is a = 5.79 X

10 m and its eccentricity is e = 0.206. Also, the period of the Mercury’s orbit around the Sun
is 88 days. Further, the value of the gravitational constant is G = 6.673x 10 kgt m3s~2, the
speed of light is ¢ = 2.998 x 10% m /s, and the mass of the Sun is My = 1.989x 10%° kg. Estimate
the extent of precession of Mercury’s orbit if 6U = —a ¢?/(m? c?r?®), where « = G M'm, { is
the angular momentum, and c is the velocity of light.
Note: The 6U mentioned above arises due to general relativistic effects. The measured pre-
cession of the perihelion of the planet Mercury turns out to be 5599”.7 4= 0”.4 per century,
but a large part of it is caused due to the influences of the other planets. When the other
contributions have been subtracted, the precession of the perihelion of the planet Mercury due
to the purely general relativistic effects amounts to 43.1 £ 0.5 seconds of arc per century.

4. Motion in the Yukawa potential: A particle moves in the Yukawa potential described by

k
V(r) = —— exp—(r/a),
T
where k and a are positive quantities.

(a) Write down the equations of motion and reduce them to the equivalent one-dimensional prob-
lem.

(b) Use the effective potential to discuss the qualitative nature of the orbits for different values of
the energy and the angular momentum.

(c) Also, show that if the orbit is nearly circular, the apsides will advance approximately by 7 p/a
per revolution, where p is the radius of the circular orbit.
Note: The radial distances to the turning points are known as apsidal distances.

5. (a) Scattering by a rigid sphere: Consider scattering by a perfectly rigid sphere of radius a, i.e.
when the interaction is such that U(r) = oo for r < a and U(r) = 0 for r > a. Determine
the effective cross-section for the scattering of particles by the rigid sphere. What is the total
cross-section?

(b) Rutherford scattering in the centre-of-mass frame: Consider scattering by the repulsive poten-
tial U(r) = a/r with a > 0.
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i. Find the effective cross-section for scattering.
ii. What is the total cross-section? What does the result imply?

Note: This corresponds to the famous experiment by Rutherford wherein a-particles were
scattered by atoms in a gold foil.
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Exercise sheet 5

Small oscillations

1. (a) Frequency of oscillations I: Find the frequency of oscillations of a particle of mass m which is
attached to a spring whose other end is fixed at a distance [ and that is

i. Free to move along a line,
ii. Moving on a circle of radius r.
Assume that a force F is required to extend the spring to the length .-

(b) Frequency of oscillations II: Find the frequency of small oscillations of a pendulum whose
point of support carries a mass mj and is free to move horizontally as shown in the figure on
the left below.

2. Forced oscillations: Assuming that, at time ¢ = 0, a system is at rest in equilibrium (i.e. z(0) =
#(0) = 0), determine the forced oscillations of the system under a force F(t) of the following
forms: (a) F = Fy, (b) F = at, (¢) F = Fy exp—(at), and (d) F = Fy exp—(at) cos(St), with
Fy, a, o and B being constants.

3. Final amplitude: Assuming that a system is at rest in equilibrium up to time ¢ = 0, determine the
final amplitude for the oscillations of the system under: (a) a force which is zero for ¢t < 0, Fyt/T
for 0 <t < T, and Fy for t > T, (b) a constant force Fy that acts for a finite time 7', and (c) forces
(i) Fot/T and (ii) Fy sin (wt), which act between t =0 and t =T

4. System with two degrees of freedom: Determine the oscillations of a system with two degrees of
freedom (say, « and y) whose Lagrangian is given by

1 .o .o wp? 2 2
L:§(£L‘ —l—y)—T( +y°)+axy.

5. Forced oscillations in the presence of friction: Determine the forced oscillations due to the external
force F' = Fy exp (at) cos (yt) in the presence of friction.
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Exercise sheet 6

Hamiltonian formulation

. Bead on a wire: A bead slides without friction down a wire that has the shape y = f(x) in a uniform
gravitational field (corresponding to an acceleration g).

(a) Obtain the Hamiltonian of the system.

(b) Also, write down the Hamilton’s equation of motion.

. A complicated Lagrangian: Consider a system described by the Lagrangian

L =ai? +b% teig+ fylii+gy—kvalt g,
where (a, b, ¢, g, k) are constants.

(a) What is the Hamiltonian of the system?

(b) What are the quantities that are conserved?

. Phase portraits: Draw the phase portraits of a particle moving in the following one dimensional
potentials: (a) U = axz, (b) U = ax?/2, (¢) U = —az?/2, (d) U = —acosf and (e) U = a|z|,
where a > 0 and n > 2.

. Poisson brackets: Determine: (a) the Poisson brackets formed from the Cartesian components of
the momentum p and the angular momentum M = r X p of a particle, and (b) the Poisson brackets
formed from the Cartesian components of the angular momentum M .

. Evolution of density in phase space: Show that the density of points in phase space corresponding
to the motion of a system of particles remains constant during the motion.

Note: This result is known as Liouville’s theorem.
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Exercise sheet 7

Special relativity

1. Decaying muons: Muons are unstable and decay according to the radioactive decay law N =

Ny exp —(0.693 t/tl/Q), where Ny and N are the number of muons at times ¢t = 0 and ¢, respectively,
while ¢, , is the half life. The half life of the muons in their own rest frame is 1.52 x 1076 s. Consider
a detector on top of a 2,000 m mountain which counts the number of muons traveling at the speed
of v = 0.98 c. Over a given period of time, the detector counts 103 muons. When the relativistic

effects are taken into account, how many muons can be expected to reach the sea level?

2. (a) Radial Doppler effect: Consider a source of photons that is moving radially away with a veloc-
ity v from an observer who is at rest. Let w, and w, denote the frequency of the photons in
the frames of the source and the observer, respectively. Obtain the relation between w, and
w, in terms of the velocity v.

(b) Transverse Doppler effect: What is the relation between wy and w, if the source is moving
transversely to the direction of the photon, as it occurs, say, when the source is on a circular
trajectory about the observer?

3. Superluminal motion: Consider a blob of plasma that is moving at a speed v along a direction that
makes an angle 6 with respect to the line of sight. Show that the apparent transverse speed of the
source, projected on the sky, will be related to the actual speed v by the relation

v sin 6
Vapp = ——F——————.
PP 1 — (v/c) cos B

From this expression conclude that the apparent speed vap, can exceed the speed of light.

4. Aberration of light: Consider two inertial frames S and S’, with the frame S’ moving along the
z-axis with a velocity v with respect to the frame S. Let the velocity of a particle in the frames S
and S’ be u and W/, and let 6 and #’ be the angles subtended by the velocity vectors with respect
to the common z-axis, respectively.

(a) Show that

tand — u' sin @’
= v [u cos 6’ + v]’
where v = [1 — (@/0)2]71/2.
(b) For u =" = ¢, show that
/
cosf — cost + (v/c)
1+ (v/c)cos@’
and
sinf = sin '

v [14 (v/e)cost]

(¢) For (v/c) <« 1, show that
Al = (v/c)sind,

where A6 = (6’ — ).

5. Form invariance of the Minkowski line element: Show that the following Minkowski line element is
invariant under the Lorentz transformations:

ds® = 2 dt? — dz?.
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Exercise sheet 8

Four vectors, tensors, and transformations

1. Transforming four vectors and invariance under Lorentz transformations: Consider two inertial
frames K and K’, with K’ moving with respect to K, say, along the common z-axis with a certain
velocity.

(a) Given a four vector A* in the K frame, construct the corresponding contravariant and covariant
four vectors, say, A#" and Aj,, in the K’ frame.

(b) Explicitly illustrate that the scalar product A, A" is a Lorentz invariant quantity, i.e. show
that A, At = A:L AH

2. Four velocity and four acceleration: The four acceleration of a relativistic particle is defined as a* =
du*/ds, where u* = da* /ds is the four velocity of the particle.

(a) Express a* in terms of the three velocity v and the three acceleration a = dv/dt of the particle.

(b) Evaluate a* u, and " a, in terms of v and a.

3. Compton effect using four vectors: Consider the scattering between a photon of frequency w and a
relativistic electron with velocity v leading to a photon of frequency w’ and electron with velocity v’.
Such a scattering is known as Compton scattering. Let a be the angle between the incident and
the scattered photon. Also, let 6 and ' be the angles subtended by the directions of propagation of
the incident and the scattered photon with the velocity vector of the electron before the collision.

(a) Using the conservation of four momentum, show that

w' 1—(v/c)cosf

w  1- (v/c)cos b + (hw/ymec?) (1 —cosa)’

where v = [1 — (1}/(:)2]71/2 and m, is the mass of the electron.

(b) When Aw < vy mec?, show that the frequency shift of the photon can be written as
Aw  (v/c) (cos@ — cos b))

w  1—(v/c)cosl

where Aw = (W — w).

4. Creation of electron-positron pairs: A purely relativistic process corresponds to the production of
electron-positron pairs in a collision of two high energy gamma ray photons. If the energies of the
photons are €; and €2 and the relative angle between their directions of propagation is 6, then, by
using the conservation of energy and momentum, show that the process can occur only if

S 2m?2ct
€1 €2 PE—
1—cosf’

where m, is the mass of the electron.

5. Mirrors in motion: A mirror moves with the velocity v in a direction perpendicular its plane. A
ray of light of frequency v is incident on the mirror at an angle of incidence 6, and is reflected at
an angle of reflection ¢ and frequency vs.

(a) Show that

tan (0/2) c+w and vy c+uvcosd
tan (¢/2) c—w " v c—wvcosd

(b) What happens if the mirror was moving parallel to its plane?
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Exercise sheet 9

Charges in electromagnetic fields

1. The Lorentz force: The action for a relativistic particle that is interacting with the electromagnetic

field is given by

S[x”(s)]z—mc/ds—%/dxﬂA“,

where m is the mass of the particle, while e is its electric charge. The quantity A* = (¢, A) is the
four vector potential that describes the electromagnetic field, with, evidently, ¢ and A being the
conventional scalar and three vector potentials.

(a)

(c)

Vary the above action with respect to z* to arrive at the following Lorentz force law:

e
me——=- F"u
ds ¢ v
where u# is the four velocity of the particle and the electromagnetic field tensor F),,, is defined
as

F,=0,4,-0,A,
with 9, = 0/0xH.
Show that the components of the field tensor F),, are given by

0O E E, E.
0 -B. B,
~E, B. 0 -B, |’

~E. =B, B, 0

F, =

where (E,, Ey, E;) and (B, By, B;) are the components of the electric and magnetic fields
E and B which are related to the components of the four vector potential by the following
standard expressions:

1 0A

E=——-V¢ and B=VxA.
c Ot

Express the above equation governing the motion of the charge in the more familiar three
vector notation. What does the zeroth component of the equation describe?

2. FElectron in an electric field: An electron moving relativistically enters a region of constant electric

field that is pointed along the positive y-axis. Let the relativistic three-momentum of the electron
as it enters the region of the electric field at time, say, t = 0, be p = (p%p?,7 ).

(a)
(b)

Integrate the equation of motion describing the electron to determine p, and p, as function of
time. Express the energy of the electron in terms of p,(t) and py(t).

From the equation governing the conservation of energy of the electron and the above expres-
sion for energy, arrive at the expression for v, in terms of time. Using the above results, also
arrive at the expression for v, in terms of time. Determine the asymptotic (i.e. the large time)
behavior of v; and vy.

Hint: It is useful to note that we can write v = dz/dt = pc?/E, where £/c = \/p? + m? c2.

(c) Arrive at y(t). Assuming that p0 = pg = 0, plot the trajectory of the particle in the ct-y plane.

3. Motion in a constant and uniform magnetic field: Consider a particle of mass m and charge e that

is moving in a magnetic field of strength B that is directed, say, along the positive z-axis.

(a) Show that the energy & = vm c? of the particle is a constant.
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(b) Determine the trajectory x(t) of the particle and show that, in the absence of any initial
momentum along the z-direction, the particle describes a circular trajectory in the z-y plane
with the angular frequency w =ecB/E.

4. Transformation of electric and magnetic fields: Consider two inertial frames, say, K and K’, with
the frame K’ moving with a velocity v with respect to the frame K along the common z-axes.

(a) Given the components of the electric and the magnetic fields, say, F and B, in the frame K,
using the transformation properties of the electromagnetic field tensor F),,, construct the
corresponding components in the frame K.

(b) Show that |E|?> — | B|? is invariant under the Lorentz transformations.
(c) Express the quantity |E|?> — |B|* explicitly as a scalar in terms of the field tensor F,,.

5. Invariance of the action under gauge transformations: Show that the action for a relativistic parti-
cle that is interacting with the electromagnetic field, viz.

S[x“(s)]:—mc/ds—g/dmuA“,

is invariant under gauge transformations of the form A* — A* 4 0#y, where x is a scalar function.
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Exercise sheet 10

Theory of the electromagnetic field

1. Equivalence of actions under gauge transformations: Recall that the action governing the electro-
magnetic field described by the vector potential A, that is interacting with the four current j* is
given by

S[AM(F)] = —C% /d‘{% G* A, — ﬁ d*z F,, F™,
where F),, is the field tensor defined as
Fu = 0,A, — 0,A,.
Since F},, is explicitly invariant under the gauge transformation
Ay — Ay + 04,

evidently, the second term in the above action is invariant as well. Determine if the first term
transforms to an equivalent action under the gauge transformation.

2. The spatial components of the stress-energy tensor of the free electromagnetic field: We had ar-
rived at the forms of the time-time and the time-space components of the stress-energy tensor
of the free electromagnetic field in terms of the components of the electric and magnetic fields E
and B. Arrive at the corresponding expressions for the purely spatial components of the stress-
energy tensor.

Note: These components are usually referred to as the Maxwell stress tensor.

3. From source free Mazwell’s equations to the conservation of the stress-energy tensor: Establish that
the source free Maxwell’s equations imply that the stress-energy tensor of the free electromagnetic
field is conserved.

4. Conservation of the stress-energy tensor in the presence of sources: The above exercise had in-
volved the electromagnetic field in the absence of charges. If the charges are also present, then
it is the sum of the stress-energy tensors of the charges as well as the field that will be conserved.
The stress-energy tensor of a collection of mutually non-interacting particles can be written as

ds
T = Py —
fa peutu e

where p is the mass density associated with the particles, while u#* denotes the four velocity of the
particles.

Note: The above expression for the stress-energy tensor for a collection of mutually non-interacting
particles is equivalent to a pressureless relativistic fluid. Often, such a system is referred to as
‘dust’.

(a) Show that, upon using the second pair Maxwell’s equations, in the presence of sources, the
stress-energy of the electromagnetic field, say, TX", satisfies the equation

1
T = == F" .

(b) As in the case of charges, the continuity equation corresponding to the mass flow can be

expressed as follows:
dzH
) — | =0.
2 (H az >
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Using this equation and the following Lorentz force law:

du#
pe'g = S .

where p denotes the charge density of the particles, show that
o, = L i
Hre T, IA
so that the total stress-energy tensor of the system, viz. TH" =TI + Tl is conserved, as
required.

5. Traceless nature of the stress-energy tensor of the electromagnetic field: Show that the trace of the
stress-energy tensor of the electromagnetic field vanishes. Can you identify the reason behind the
vanishing trace?
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Exercise sheet 11

Electromagnetic waves

1. Coulomb gauge and the degrees of freedom of the electromagnetic field: Recall that the Lorenz
gauge was determined by the covariant condition 9,A4* = 0. However, even the Lorenz condi-
tion does not uniquely fix the gauge. Further gauge transformations of the form A, — A, + J,A
are possible, provided A satisfies the condition OA = 0. In such a situation, often, one breaks
Lorentz covariance and works in the so-called Coulomb gauge wherein A’ is set to zero, so that the
Lorenz condition reduces to V- A = 0.

(a) Show that this implies that the free electromagnetic field possesses two independent degrees
of freedom.

(b) What do these two degrees of freedom correspond to?

2. Massive vector field: Consider the following action that governs a massive vector field A,

S[AM(Z)] = 161m / A4 (~Fu F' +20% AF A,

where F,,, represents the field tensor defined in the usual form, viz.
Fuv = 0 A, — 0L AL,
and ¢ has dimensions of mass in suitable units.

(a) Obtain the equation of motion governing the field A,,.

(b) Show that the Lorentz condition, viz. 9,A" = 0, has to be satisfied by the field apart from
satisfying the equation of motion.

(c) Is the action invariant under gauge transformations of the form A, — A, + 9,A?

(d) How many independent degrees of freedom does the massive field A* possess?
Note: The massive vector field A* is known as the Proca field.

3. Polarization of electromagnetic waves: Consider a monochromatic, plane electromagnetic wave
propagating along the positive z-direction.

(a) Write down solutions of the vector potential A that correspond to linearly and circularly
polarized electromagnetic waves.

(b) Determine the associated electric and magnetic fields. Show that they satisfy the Maxwell’s
equations in the absence of sources.

(c) Determine the energy density, Poynting vector and the pressure exerted by the wave, when
averaged over a cycle.

4. Motion of charged particle in electromagnetic waves: Determine the motion of a charged particle
in the fields of: (i) a monochromatic, linearly polarized plane electromagnetic wave, and (ii) a
circularly polarized electromagnetic wave.

5. Laws of reflection and refraction: Consider a monochromatic, plane electromagnetic wave that is
incident on the homogeneous planar medium.

(a) Determine the conditions on the electric and magnetic fields at the boundary.

(b) Utilizing the boundary conditions, arrive at the laws of reflection and refraction.
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Exercise sheet 12
Radiation of electromagnetic waves by moving charges

1. Green’s functions: Consider a real scalar field ¢ that is sourced by a charge density p. Such a scalar
field would be governed by the following equation of motion:

(O+0%) p=ap,

where « is a quantity of suitable dimensions. This inhomogeneous partial differential equation can
be solved using the method of Green’s functions as follows.

(a) Show that the inhomogeneous solution to the above equation can be expressed as
o) =a [ 4 G @)
where the Green’s function G(Z, ') satisfies the differential equation
(Oz + 0?) G(&,7) = oW (z - 7).

(b) Express the Green’s function as a Fourier transform as

"
G(z,7) = /(;1:)4 G(k) exp [i k! (x, —i,)]

and substitute it into the above equation to determine the form of G(k).

2. The retarded Green’s function for a massless field: Using the form of G(k), evaluate the above in-
tegral to determine the Green’s function G(Z,z’) for a field with o = 0.

3. The Lienard- Wiechart potentials: Consider a point particle with charge e that is moving along the
trajectory r#(7), where 7 is the proper time in the frame of the charge. The four current associated
with the charge is given by

ME) =ed? / dr u* 6W [z — 7 (7)],

where 7(7) = r#(7) is the trajectory of the charge and u* = dr#/ds is its four velocity, so that the
corresponding charge and current densities are given by

p(@)=ecd®x—r®t) and @) =ev(t) @z —rt)]

with v(t) = dr/d¢, as required. In the Lorenz gauge, the electromagnetic vector potential A
satisfies the equation

OA* = 4771-]'/{
C

(a) Using the retarded Green’s function for a massless field that we had obtained earlier, solve the
above equation to arrive at the following expression for the vector potential A*:

- e u!
Ar(z) = m;
where R¥ = a# —r# and R, R* = 0.
(b) Show that the above vector potential A* can be written in the three dimensional form as
e ev/c
R—(v-R)/c R—(v-R)/c’

where R =  — r and R = |R|, with the right hand sides evaluated at the so-called retarded
time determined by the condition R*R,, = 0.
Note: These are known as the Lienard-Wiechart potentials.

o(Z) = and A(Z)=
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4. The radiation field: Using the above Lienard-Wiechart potentials, obtain the following expressions
for the electric and magnetic fields E and B generated by a point charge that is moving along an
arbitrary trajectory:

B = i - @)+ gogp x (A~ (0/0] < a)].
B = nxE,

where 7 is the standard Lorentz factor, a = dv/d¢ is the acceleration of the charge, while the
quantity u is given by
v-n\
M= (1 - ) )
c
with n = R/R.

Note: The contribution to the electric and the magnetic fields above which depends on the acceler-
ation of the charge and behaves as 1/R with distance is known as the radiation field.

5. Relativistic beaming: Recall that the flux of energy being carried by electromagnetic radiation is
described by the Poynting vector, viz.

C

S:
41

(E x B).
When B = n x E, the amount of energy, say, d€, that is propagating into a solid angle df) in unit
time is then given by

dé
— =|S|R*=
dQdt 1]
(a) Upon using the above expressions for the radiative component of the electric field, show that

the energy emitted by a point charge per unit time within a unit solid angle can be written as

c|E|* R?
47

d€ €2

_ 6 _—2 (n 2
dtdQ 4ne3 '

24 (-a) (v-afc) + p*a* = 1572 (- a)

(b) Clearly, the intensity of the radiation is the largest along directions wherein g > 1. Show
that, if 8 is the angle between v and 7, then, for # < 1 and |v| =~ ¢, we can write

272

=T 2e2

(c) Argue that, for v > 1, this expression is sharply peaked around 6 = 0, with a width A ~ 1.

Note: This effect, where most of the intensity is pointed along the direction of velocity of the
charge, is known as relativistic beaming.
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