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GENERAL RELATIVITY AND COSMOLOGY
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Lecture schedule

• The course will consist of about 45 lectures, including about 10–12 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

• The duration of each lecture will be 50 minutes.

• The first lecture will be on January 2, 2012 and the last lecture on April 20, 2012.

• We will meet for three hours every week. The lectures are scheduled for 11:10 AM–12:50 PM
on Mondays and 10:00–10:50 AM on Thursdays. We may also meet during 12:00–12:50 PM on
Thursdays for either the quizzes or to make up for any lecture that I may have to miss due to
travel.

• We will be meeting in HSB 210.

• Changes in schedule, if any, will be notified sufficiently in advance.

Quizzes, end-of-semester exam and grading

• The grading will be based on three scheduled quizzes and an end-of-semester exam.

• I will consider the best of the two quizzes for grading, and the best two will carry 25% weight each.

• The three quizzes will be on January 30, March 8 and April 5. The first of these three dates is a
Monday, and the quiz will be held during 4:45–5:35 PM on the day. The remaining two dates are
Thursdays, and the quizzes will be held during 12:15–1:45 PM on these dates.

• The end-of-semester exam will be during 2:00–5:00 PM on May 2, and the exam will carry 50%
weight.
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Syllabus and structure

1. Introduction [∼ 3 lectures]

(a) The scope of the general theory of relativity

(b) Geometry and physics

(c) Space, time and gravity in Newtonian physics

2. Spacetime and relativity [∼ 8 lectures]

(a) The Michelson-Morley interferometric experiment – Postulates of special relativity

(b) Lorentz transformations – The relativity of simultaneity – Length contraction and time dilation

(c) Transformation of velocities and acceleration – Uniform acceleration – Doppler effect

(d) Four vectors – Action for the relativistic free particle – Charges in an electromagnetic field
and the Lorentz force law

(e) Conservation of relativistic energy and momentum

Exercise sheets 1, 2 and 3

Quiz I

3. Tensor algebra and tensor calculus [∼ 16 lectures]

(a) Manifolds and coordinates – Curves and surfaces

(b) Transformation of coordinates – Contravariant, covariant and mixed tensors – Elementary
operations with tensors

(c) The partial derivative of a tensor – Covariant differentiation and the affine connection

(d) The metric – Geodesics

(e) Isometries – The Killing equation and conserved quantities

(f) The Riemann tensor – The equation of geodesic deviation

(g) The curvature and the Weyl tensors

Additional exercises I

Exercise sheets 4, 5, 6 and 7

4. The principles of general relativity [∼ 2 lectures]

(a) The equivalence principle – The principle of general covariance – The principle of minimal
gravitational coupling

5. The field equations of general relativity [∼ 4 lectures]

(a) The vacuum Einstein equations

(b) Derivation of vacuum Einstein equations from the action – The Bianchi identities

(c) The stress-energy tensor – The cases of perfect fluid, scalar and electromagnetic fields

(d) The structure of the Einstein equations

Exercise sheet 8

Quiz II
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6. The Schwarzschild solution, and black holes [∼ 6 Lectures]

(a) The Schwarzschild solution – Properties of the metric – Symmetries and conserved quantities

(b) Motion of particles in the Schwarzschild metric – Precession of the perihelion – Bending of
light

(c) Black holes – Event horizon, its properties and significance – Singularities

(d) The Kruskal extension – Penrose diagrams

Exercise sheet 9

Quiz III

7. The Friedmann-Lemaitre-Robertson-Walker cosmology [∼ 6 lectures]

(a) Homogeneity and isotropy – The Friedmann line-element

(b) Friedmann equations – Solutions with different types of matter

(c) Red-shift – Luminosity and angular diameter distances

(d) The horizon problem – The inflationary scenario

Additional exercises II

Exercise sheets 10 and 11

8. Gravitational waves [∼ 3 lectures]

(a) The linearized Einstein equations – Solutions to the wave equation – Production of weak
gravitational waves

(b) Gravitational radiation from binary stars – The quadrupole formula for the energy loss

Exercise sheet 12

End-of-semester exam

Note: The topics in red could not be covered for want of time.
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Basic textbooks

1. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical Physics,
Volume 2), Fourth Edition (Pergamon Press, New York, 1975).

2. B. F. Schutz, A First Course in General Relativity (Cambridge University Press, Cambridge, 1990).

3. R. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992).

4. J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Pearson Education, Delhi,
2003).

Additional references

1. S. Weinberg, Gravitation and Cosmology (John Wiley, New York, 1972).

2. A. P. Lightman, W. H. Press, R. H. Price and S. A. Teukolsky, Problem Book in Relativity and

Gravitation (Princeton University Press, New Jersey, 1975).

3. S. Carroll, Spacetime and Geometry (Addison Wesley, New York, 2004).

4. M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, General Relativity: An Introduction for Physi-

cists (Cambridge University Press, Cambridge, 2006).

5. W. Rindler, Relativity: Special, General and Cosmological (Oxford University Press, Oxford, 2006).

6. T. Padmanabhan, Gravitation: Foundation and Frontiers (Cambridge University Press, Cambridge,
2010).

Advanced texts

1. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge University
Press, Cambridge, 1973).

2. C. W. Misner, K. S. Thorne and J. W. Wheeler, Gravitation (W. H. Freeman and Company, San
Francisco, 1973).

3. R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).

4. E. Poisson, A Relativist’s Toolkit (Cambridge University Press, Cambridge, 2004).
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Exercise sheet 1

Special relativity: Lorentz transformations and some consequences

1. Superluminal motion: Consider a blob of plasma that is moving at a speed v along a direction that
makes an angle θ with respect to the line of sight. Show that the apparent transverse speed of the
source, projected on the sky, will be related to the actual speed v by the relation

vapp =

(

v sin θ

1− (v/c) cos θ

)

.

From this expression conclude that the apparent speed vapp can exceed the speed of light.

2. Aberration of light: Consider two inertial frames S and S′, with the frame S′ moving along the
x-axis with a velocity v with respect to the frame S. Let the velocity of a particle in the frames S
and S′ be u and u′, and let θ and θ′ be the angles subtended by the velocity vectors with respect
to the common x-axis, respectively.

(a) Show that

tan θ =

(

u′ sin θ′

γ [u′ cos θ′ + v]

)

,

where γ =
[

1− (v/c)2
]−1/2

.

(b) For u = u′ = c, show that

cos θ =

(

cos θ′ + (v/c)

1 + (v/c) cos θ′

)

and

sin θ =

(

sin θ′

γ [1 + (v/c) cos θ′]

)

.

(c) For (v/c) ≪ 1, show that
∆θ = (v/c) sin θ′,

where ∆θ = (θ′ − θ).

3. Decaying muons: Muons are unstable and decay according to the radioactive decay law N =
N0 exp−(0.693 t/t

1/2
), where N0 and N are the number of muons at times t = 0 and t, respectively,

while t
1/2

is the half life. The half life of the muons in their own rest frame is 1.52×10−6 s. Consider
a detector on top of a 2, 000 m mountain which counts the number of muons traveling at the speed
of v = 0.98 c. Over a given period of time, the detector counts 103 muons. When the relativistic
effects are taken into account, how many muons can be expected to reach the sea level?

4. Binding energy: As you may know, the deuteron which is the nucleus of deuterium, an isotope
of hydrogen, consists of one proton and one neutron. Given that the mass of a proton and a
neutron are mp = 1.673 × 10−27 kg and mn = 1.675 × 10−27 kg, while the mass of the deuteron is
m

d
= 3.344 × 10−27 kg, show that the binding energy of the deuteron in about 2.225 MeV.

Note: MeV refers to Million electron Volts, and an electron Volt is 1.602 × 10−19 J.

5. Form invariance of the Minkowski line element: Show that the following Minkowski line element is
invariant under the Lorentz transformations:

ds2 = c2 dt2 − dx2.
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Exercise sheet 2

Special relativity: Working in terms of four vectors

1. Compton effect using four vectors: Consider the scattering between a photon of frequency ω and a
relativistic electron with velocity v leading to a photon of frequency ω′ and electron with velocity v′.
Such a scattering is known as Compton scattering. Let α be the angle between the incident and
the scattered photon. Also, let θ and θ′ be the angles subtended by the directions of propagation of
the incident and the scattered photon with the velocity vector of the electron before the collision.

(a) Using the conservation of four momentum, show that
(

ω′

ω

)

=

(

1− (v/c) cos θ

1− (v/c) cos θ′ + (~ω/γ me c2) (1− cosα)

)

,

where γ =
[

1− (v/c)2
]−1/2

and me is the mass of the electron.

(b) When (~ω) ≪
(

γ me c
2
)

, show that the frequency shift of the photon can be written as

(

∆ω

ω

)

=

[

(v/c) (cos θ − cos θ′)

1− (v/c) cos θ′

]

,

where ∆ω = (ω′ − ω).

2. Creation of electron-positron pairs: A purely relativistic process corresponds to the production of
electron-positron pairs in a collision of two high energy gamma ray photons. If the energies of the
photons are ǫ1 and ǫ2 and the relative angle between their directions of propagation is θ, then, by
using the conservation of energy and momentum, show that the process can occur only if

(ǫ1 ǫ2) >

(

2m2
e c

4

1− cos θ

)

,

where me is the mass of the electron.

3. Transforming four vectors and invariance under Lorentz transformations: Consider two inertial
frames K and K ′, with K ′ moving with respect to K, say, along the common x-axis with a certain
velocity.

(a) Given a four vector Aµ in theK frame, construct the corresponding contravariant and covariant
four vectors, say, Aµ′ and A′

µ, in the K ′ frame.

(b) Explicitly illustrate that the scalar product (AµA
µ) is a Lorentz invariant quantity, i.e. show

that (AµA
µ) =

(

A′
µA

µ′
)

.

4. Lorentz invariance of the wave equation: Show that the following wave equation:

(

1

c2

) (

∂2φ

∂t2

)

−∇2φ = 0

satisfied by, say, light, is invariant under the Lorentz transformations.

5. Mirrors in motion: A mirror moves with the velocity v in a direction perpendicular its plane. A ray
of light of frequency ν1 is incident on the mirror at an angle of incidence θ, and is reflected at an
angle of reflection φ and frequency ν2.

(a) Show that
(

tan (θ/2)

tan (φ/2)

)

=

(

c+ v

c− v

)

and

(

ν2
ν1

)

=

(

c+ v cos θ

c− v cosφ

)

.

(b) What happens if the mirror was moving parallel to its plane?
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Exercise sheet 3

Electromagnetism in tensorial notation

1. The Lorentz force: In Minkowski spacetime, the action for a relativistic particle that is interacting
with the electromagnetic field is given by

S[xµ] = −mc

∫

ds− e

c

∫

dxµA
µ,

where m is the mass of the particle, while e is its electronic charge. The quantity Aµ = (φ,A) is
the four vector potential that describes the electromagnetic field, with, evidently, φ and A being
the conventional scalar and three-vector potentials.

(a) Vary the above action with respect to xµ to arrive at the following Lorentz force law:

mc

(

duµ

ds

)

=
(e

c

)

Fµν uν ,

where uµ = (dxµ/ds) is the four velocity of the particle and the electromagnetic field tensor Fµν

is defined as
Fµν = (∂µAν − ∂ν Aµ)

with ∂µ ≡ (∂/∂xµ).

(b) Show that the components of the field tensor Fµν are given by

Fµν =









0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









,

where (Ex, Ey, Ez) and (Bx, By, Bz) are the components of the electric and magnetic fields
E and B which are related to the components of the four vector potential by the following
standard expressions:

E = −
(

1

c

) (

∂A

∂t

)

−∇φ and B = ∇×A.

(c) Establish that the spatial components of the above equation of motion for the charge can be
written as

(

dp

dt

)

= eE +
(e

c

)

(v ×B)

with p = (γ mv) being the relativistic three momentum of the particle.

Note: This equation reduces to the familiar equation of motion for a charge driven by the
Lorentz force in the non-relativistic limit [i.e. when terms of order (v/c)2 can be ignored]
wherein p ≃ (mv).

(d) Show that the time component of the the above equation of motion for the charge reduces to

(

dE
KE

dt

)

= e (v ·E) ,

where E
KE

=
(

γ mc2
)

is the kinetic energy of the particle.
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2. The first pair of Maxwell’s equations: Show that the above definition of Fµν leads to the following
Maxwell’s equations in flat spacetime:

(

∂Fµν

∂xλ

)

+

(

∂Fνλ

∂xµ

)

+

(

∂Fλµ

∂xν

)

= 0.

Also, show that these equations correspond to the following two source free Maxwell’s equations:

(∇×E) = −
(

1

c

) (

∂B

∂t

)

and (∇ ·B) = 0.

3. The Lorentz invariant four volume: Show that the spacetime volume d4x = (cdt d3x) is a Lorentz
invariant quantity.

4. The second pair of Maxwell’s equations: Let the four current jµ = (ρ c, j) represent the charge den-
sity ρ and the three-current j that source the electric and magnetic fields. In flat spacetime, the
action describing the electromagnetic field that is sourced by the four current jµ is given by

S[Aµ] = −
(

1

c2

) ∫

d4x (Aµ j
µ)−

(

1

16π c

) ∫

d4x (Fµν Fµν) .

(a) Vary this action with respect to the vector potential Aµ and arrive at the following Maxwell’s
equations:

(∂ν F
µν) = −

(

4π

c

)

jµ.

(b) Show that these equations correspond to the following two Maxwell’s equations with sources:

(∇ ·E) = (4π) ρ and (∇×B) = (4π) j+

(

1

c

) (

∂E

∂t

)

.

5. The continuity equation: Show that, from the second pair of Maxwell’s equations above, one can
arrive at the continuity equation, viz.

(∂µ j
µ) =

(

∂ρ

∂t

)

+∇ · j = 0.
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Quiz I

Special relativity

1. Transformation of angles: Consider two inertial frames K and K ′, with the frame K ′ moving with
respect to the frame K at a given velocity along the common x-axis. A rod in the frame K ′ makes
an angle θ′ with respect to the forward direction of motion. What is the corresponding angle as
seen in the frame K? 10 marks

2. Four velocity and four acceleration: The four velocity and the four acceleration of a relativistic
particle are defined as uµ = (dxµ/ds) and aµ = (d2xµ/ds2), respectively.

(a) Express uµ and aµ in terms of the three velocity v = (dx/dt) and the three acceleration

a = (d2x/dt2). 4 marks

(b) Evaluate (uµ u
µ), (uµ a

µ) and (aµ a
µ) in terms of v and a. 6 marks

3. (a) Colliding particles I: A particle of mass m1 and velocity v1 collides with a particle at rest of
mass m2, and is absorbed by it. Determine the mass as well as the velocity of the compound
system. 4 marks

(b) Colliding particles II: A particle of mass m and kinetic energy Ti collides with a stationary
particle of the same mass. Determine the kinetic energy of the incident particle after the
collision, if it is scattered by an angle θ. 6 marks

Note: The kinetic energy associated with a particle of mass m and energy E is (E −mc2).

4. Null curves: Consider a trajectory in Minkowski spacetime that is parametrized in terms of a
quantity λ in the the following fashion:

c t =

∫

dλ r(λ), x =

∫

dλ r(λ) sin θ(λ) cosφ(λ),

y =

∫

dλ r(λ) sin θ(λ) sinφ(λ), z =

∫

dλ r(λ) cos θ(λ).

Show that the trajectory is a null curve, i.e. the spacetime interval between any two infinitesimally
separated points on the curve vanishes. 10 marks

5. A non-linear coordinate transformation: Consider the following non-linear transformation from the
Minkowski coordinates (c t, x, y, z) to the coordinates (c τ, ξ, y′, z′):

c t = ξ sinh (g τ/c), x = ξ cosh (g τ/c), y = y′ and z = z′.

(a) Assuming ξ to be a constant, draw the trajectory associated with the coordinates (c τ, ξ) in

the c t-x plane. 5 marks

(b) Express the Minkowski line element in terms of the coordinates (c τ, ξ, y′, z′). 5 marks

Note: The coordinates (c τ, ξ, y′, z′) describe a class of uniformly accelerated observers in flat
spacetime, and these coordinates are often referred to as the Rindler coordinates.
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Exercise sheet 4

Tensor algebra

1. (a) Write down the transformations from the Cartesian coordinates xa = (x, y, z) to the spherical
polar coordinates x′a = (r, θ, φ) in R

3.

(b) Express the transformation matrices [∂xa/∂x′b] and [∂x′a/∂xb] in terms of the spherical polar
coordinates.

(c) Evaluate the corresponding Jacobians J and J ′. Where is J ′ zero or infinite?

2. (a) Write down the transformations from the Cartesian coordinates xa = (x, y) to the plane polar
coordinates x′a = (r, φ) in R

2.

(b) Express the transformation matrix [∂x′a/∂xb] in terms of the polar coordinates.

(c) Consider the tangent vector to a circle of radius, say, a, that is centered at the origin. Find
the components of the tangent vector in one of the two coordinate system, and use the trans-
formation property of the vector to obtain the components in the other coordinate system.

3. Consider a scalar quantity φ. Show that, while the quantity (∂φ/∂xa) is a vector, the quantity
(

∂2φ/∂xa ∂xb
)

is not a tensor.

4. If Xa
bc is a mixed tensor of rank (1, 2), show that the contracted quantity Yc = Xa

ac is a covariant
vector.

5. Evaluate the quantities δaa and
(

δab δ
b
a

)

on a n-dimensional manifold.
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Additional problems I

Special relativity, electromagnetism and tensors

1. Relative velocity between two inertial frames: Consider two inertial frames that are moving with the
velocities v1 and v2 with respect to, say, the laboratory frame. Show that the relative velocity v
between the two frames can be expressed as

v2 =
(v1 − v2)

2 − (v1/c) × (v2)
2

[1− (v1/c) · v2/c2)]
2 .

2. The pole in the barn paradox: An athlete carrying a pole 20 m long runs towards a barn of length
15 m at the speed of 0.8 c. A friend of the athlete watches the action, standing at rest by the door
of the barn.

(a) How long does the friend measure the length of the pole to be, as it approaches the barn?

(b) The barn door is initially open, and immediately after the runner and the pole are inside the
barn, the friend shuts the door. How long after the door is closed does the front of the pole
hits the wall at the other end of the barn, as measured by the friend? Compute the interval
between the events of the friend closing the door and the pole hitting the wall. Is it spacelike,
null or timelike?

(c) In the frame of the runner, what are the lengths of the barn and the pole?

(d) Does the runner believe that the pole is entirely inside the barn, when its front hits the opposite
wall? Can you explain why?

(e) After the collision, the pole and the runner come to rest relative to the barn. From the friend’s
point of view, the 20 m pole is now inside a 15 m barn, since the barn door was shut before the
pole stopped. How is this possible? Alternatively, from the runner’s point of view, the collision
should have occurred before the door was closed, so the door should not be closed at all. Was
or was not the door closed with the pole inside?

3. The twin paradox: Alex and Bob are twins working on a space station located at a fixed position
in deep space. Alex undertakes an extended return spaceflight to a distant star, while Bob stays on
the station. Show that, on his return to the station, the proper time interval experienced by Alex
must be less than that experienced by Bob, hence Bob is now the elder. How does Alex explain this
age difference?

4. Motion in a constant and uniform electric field: Consider a particle that is moving in a constant
and uniform electric field that is directed, say, along the positive x-axis. Let the relativistic three
momentum of the particle at time t = 0 be p = (0, p

0
, 0), where p

0
is a constant.

(a) Solve the equation of motion to arrive at x(t) and y(t).

(b) Determine the corresponding velocities along the two directions.

(c) What is the velocity of the particle along the x-direction as t → ∞?

(d) Plot the trajectory of the particle in the c t-x plane.

(e) What is the trajectory of the particle in the x-y plane?

(f) Show that, in the non-relativistic limit, i.e. when v/c ≪ 1, the trajectory in the x-y plane
reduces to a parabola.

Note: Recall that, a non-relativistic particle that is moving in a uniform field (such as the
gravitational field on the surface of the Earth or in a constant electric field) describes a
parabola.
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5. Three acceleration in terms of the electromagnetic fields: Express the three acceleration (i.e. v̇) of
a charged particle in terms of the electric and the magnetic fields E and B.

Note: The overdot denotes differentiation with respect to the coordinate time t.

6. Motion in a constant and uniform magnetic field: Consider a particle of mass m and charge e that
is moving in a magnetic field of strength B that is directed, say, along the positive z-axis.

(a) Show that the energy E = γ mc2 of the particle is a constant.

(b) Determine the trajectory x(t) of the particle and show that, in the absence of any initial
momentum along the z-direction, the particle describes a circular trajectory in the x-y plane
with the angular frequency ω = e cB/E .

7. Lorentz transformation of the electromagnetic field: Evaluate how the electromagnetic field tensor
Fµν transforms under a Lorentz boost, say, along the positive x-direction. From the result, arrive
at how the electric and magnetic fields transform under the Lorentz transformation.

8. (a) Scalar invariant I: Express the Lorentz invariant quantity Fµν F
µν in terms of the electric and

the magnetic fields E and B.

(b) Scalar invariant II: Show that E ·B is a Lorentz invariant quantity.

9. Equation of motion for a scalar field: Consider the following action that describes a scalar field,
say, φ, in Minkowski spacetime:

S[φ] =
1

c

∫

c dt d3x

(

1

2
ηµν ∂

µφ∂νφ− 1

2
σ2 φ2

)

,

where ηµν is the metric tensor in flat spacetime, while the quantity σ is related to the mass of the
field. Vary the above action to arrive at the equation of motion for the scalar field.

Note: The resulting equation of motion is called the Klein-Gordon equation.

10. The Minkowski line element in a rotating frame: In terms of the cylindrical polar coordinates, the
Minkowski line element is given by

ds2 = c2 dt2 − dρ2 − ρ2 dφ2 − dz2.

Consider a coordinate system that is rotating with an angular velocity Ω about the z-axis. The coor-
dinates in the rotating frame, say, (c t′, ρ′, φ′, z′) are related to the standard Minkowski coordinates
through the following relations:

c t = c t′, ρ = ρ′, φ = φ′ +Ω t′ and z = z′.

(a) Determine the line element in the rotating frame.

(b) What happens to the line element when ρ′ ≥ c/Ω?
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Exercise sheet 5

The Christoffel symbols and the geodesic equation

1. The metric of R3: Evaluate the covariant and the contravariant components of the metric tensor
describing the three-dimensional Euclidean space (usually denoted as R

3) in the Cartesian, cylin-
drical polar and the spherical polar coordinates. Also, evaluate the determinant of the covariant
metric tensor in each of these coordinate systems.

2. Geodesics on a two sphere: Evaluate the Christoffel symbols on S
2, and solve the geodesic equation

to show that the geodesics are the great circles.

3. Important identities involving the metric tensor: Establish the following identities that involve the
metric tensor:

(a) g,c = g gab gab,c,

(b) gab gbc,d = −gab,d gbc,

where the commas denote partial derivatives, while g is the determinant of the covariant metric
tensor gab.

4. Useful identities involving the Christoffel symbols: Establish the following identities involving the
Christoffel symbols:

(a) Γa
ab =

1
2 ∂b ln |g|,

(b) gab Γc
ab = − 1√

|g|
∂d

(

√

|g| gcd
)

,

(c) gab,c = −
(

Γa
cd g

bd + Γb
cd g

ad
)

,

where the Christoffel symbol Γa
bc is given by

Γa
bc =

1

2
gad (gdb,c + gdc,b − gbc,d) .

5. Invariant four volume: Show that the spacetime volume
√−g d4x is invariant under arbitrary

coordinate transformations.
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Exercise sheet 6

Killing vectors and conserved quantities

1. Killing vectors in R
3: Construct all the Killing vectors in the three dimensional Euclidean space R3

by solving the Killing’s equation.

2. Killing vectors on S
2: Construct the most generic Killing vectors on a two sphere.

3. Killing vectors in Minkowski spacetime: Solve the Killing’s equation in flat spacetime, and construct
all the independent Killing vectors. What do these different Killing vectors correspond to?

4. The line element and the conserved quantities around a cosmic string: The spacetime around a
cosmic string is described by the line-element

ds2 = c2 dt2 − dρ2 − α2 ρ2 dφ2 − dz2,

where α is a constant that is called the deficit angle.

(a) List the components of the momentum of a relativistic particle on geodesic motion in this
spacetime that are conserved.

(b) Consider a particle of mass m that is moving along a time-like geodesic in the spacetime of a
cosmic string. Using the relation pµ pµ = m2 c2 and the conserved momenta, obtain the (first
order) differential equation for dρ/dt of the particle in terms of all the conserved components
of its momenta.

5. Conserved quantities in the Schwarzschild spacetime: The spacetime around a central mass M is
described by the following Schwarzschild line element:

ds2 = c2
(

1− 2GM

c2 r

)

dt2 −
(

1− 2GM

c2 r

)−1

dr2 − r2
(

dθ2 + sin2 θ dφ2
)

.

Identify the Killing vectors and the corresponding conserved quantities in such a static and spher-
ically symmetric spacetime.
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Exercise sheet 7

The Riemann and the Ricci tensors and the scalar curvature

1. Algebraic identity involving the Riemann tensor: Recall that, the Riemann tensor is defined as

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ec Γ
e
bd − Γa

ed Γ
e
bc.

Using this expression, establish that

Ra
bcd +Ra

dbc +Ra
cdb = 0.

2. The number of independent components of the Riemann tensor: Show that, on a n-dimensional

manifold, the number of independent components of the Riemann tensor are
(

n2/12
) (

n2 − 1
)

.

3. The flatness of the cylinder: Calculate the Riemann tensor of a cylinder of constant radius, say, R,
in three dimensional Euclidean space. What does the result you find imply?

Note: The surface of the cylinder is actually two-dimensional.

4. The curvature of a two sphere: Calculate all the components of the Riemann and the Ricci tensors,
and also the corresponding scalar curvature associated with the two sphere.

Note: Given the Riemann tensor Ra
bcd, the Ricci tensor Rab and the Ricci scalar R are defined as

Rab = Rc
acb and R = gabRab.

5. Identities involving the covariant derivative and the Riemann tensor: Establish the following rela-
tions:

(a) ∇c∇b Aa −∇b∇c Aa = Rd
abc Ad,

(b) ∇d∇c Aab −∇c∇d Aab = Re
bcd Aae +Re

acd Aeb.
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Quiz II

Tensor algebra and tensor calculus

1. Conformally flat metrics: Given that, a (3+1) dimensional spacetime is described by the following
metric:

gµν = ηµν exp ψ(xλ),

where the quantity ψ is an arbitrary function of the coordinates xλ, compute the corresponding
gµν , g as well as Γµ

νλ. 2 + 3 + 5 marks

Note: Such spacetimes are said to be conformally flat.

2. Geodesics on R
2: Solve the geodesic equation in the polar coordinates to arrive at the geodesics on

a plane. 10 marks

Note: You are expected to solve the geodesic equation involving the Christoffel symbols, and not
the more familiar variation of the problem!

3. Another derivation of the geodesic equation: Consider the following action:

S[xc(λ)] =

λ2
∫

λ1

dλ
1

2
gab ẋ

a ẋb,

where λ is an affine parameter, and the overdots denote differentiation with respect to λ. Show that
the Euler-Lagrange equation corresponding to this action leads to the geodesic equation. 10 marks

4. Klein-Gordon equation in curved spacetime: A scalar field of ‘mass’ m (in suitable units) satisfies
the following Klein-Gordon equation in a curved spacetime:

φ;µ;µ +m2 φ = 0.

Show that this equation can be written as 10 marks

1√−g ∂µ
(√−g gµν ∂ν

)

φ+m2 φ = 0.

5. Properties of Killing vectors: If ξa is a Killing vector, show that

(a) ξa;b;c = Rdcba ξ
d, 7 marks

(b) ξ ;b
a;b +Rac ξ

c = 0. 3 marks
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Quiz II – Again

Tensor algebra and tensor calculus

1. Behavior of the Christoffel symbols under conformal transformations: Consider the following trans-
formation of the metric tensor:

gab → g̃ab = Ω2(xc) gab,

where Ω(xc) is an arbitrary function of the coordinates. Express the Christoffel symbols associ-
ated with the metric tensor g̃ab in terms of the Christoffel symbols corresponding to the metric
tensor gab. 10 marks

Note: Transformations of the metric tensor as above are known as conformal transformations. It is
important to note that conformal transformations are not coordinate transformations.

2. Geodesics on a cylinder: Solve the geodesic equation to determine the geodesics on a two dimen-

sional cylindrical surface. 10 marks

3. Some properties involving covariant derivatives: Prove that

(a) For any second rank tensor Aab, 5 marks

Aab
;ab = Aab

;ba.

(b) For an anti-symmetric tensor Fµν , 5 marks

Fµν
;ν =

1√−g ∂ν
(√−g Fµν

)

.

4. Conserved currents: If ξa is a Killing vector and Tab is the stress energy tensor, show that ja = T ab ξb
is a conserved current, i.e. ja;a = 0. 10 marks

5. Spaces of constant curvature: Consider a space that is described by the following Riemann tensor:

Rabcd = κ (gac gbd − gad gbc) .

(a) Evaluate the Ricci tensor and the scalar curvature associated with this Riemann ten-

sor. 3+3 marks

(b) Show that the above Riemann tensor describes spaces of constant scalar curvature. 4 marks

Hint: Initially assume that κ is dependent on the coordinates and make use of the Bianchi
identity.
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Exercise sheet 8

The stress energy tensor and the Einstein’s equations

1. The Bianchi identity: Recall that, the Riemann tensor is defined as

Rabcd = gae R
e
bcd = gae

(

Γe
bd,c − Γe

bc,d + Γe
fc Γ

f
bd − Γe

fd Γ
f
bc

)

.

Also, note that, given the Riemann tensor Ra
bcd, the Ricci tensor Rab and the Ricci scalar R are

defined as
Rab = Rc

acb and R = gabRab.

Further, the Einstein tensor is given by

Gab = Rab −
1

2
Rgab.

(a) Using the expression for the Riemann tensor, establish the following Bianchi identity:

∇eRabcd +∇dRabec +∇cRabde = 0.

Note: It will be a lot more convenient to use a different version of the Riemann tensor and
work in the local coordinates, where the Christoffel symbols vanish, but their derivatives do
not.

(b) Using the above identity, show that
∇bG

b
a = 0.

2. The stress energy tensor of an ideal fluid: Consider an ideal fluid described by the energy density
ρ c2 (with ρ being the mass density) and pressure p. Further, assume that the fluid does not possess
any anisotropic stress.

(a) Argue that, in the comoving frame, the stress energy tensor of the fluid is given by

T µ
ν = diag.

(

ρ c2,−p,−p,−p
)

.

(b) Further, show that, in a general frame, the stress energy tensor of the fluid can be written as

T µ
ν = (ρ c2 + p)uµ uν − p δµν ,

where uµ is the four velocity of the fluid.

(c) Using the law governing the conservation of the stress energy tensor, arrive at the equations
of motion that describe an ideal fluid in Minkowski spacetime.

3. The stress energy tensor of a scalar field: Recall that, given an action that describes a matter field,
the stress energy tensor associated with the matter field is given by the variation of the action with
respect to the metric tensor as follows:

δS =
1

2 c

∫

d4x
√−g Tµν δgµν = − 1

2 c

∫

d4x
√−g T µν δgµν .

Consider a scalar field φ that is governed by the following action:

S[φ] =
1

c

∫

d4x
√−g

[

1

2
gµν ∂µφ∂νφ− V (φ)

]

,

where V (φ) is the potential describing the scalar field.
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(a) Upon varying this action with respect to the metric tensor, arrive at the stress energy tensor
of the scalar field.

(b) Show that the conservation of the stress energy tensor leads to the equation of motion of the
scalar field.

4. The stress energy tensor of the electromagnetic field: In a curved spacetime, the action describing
the electromagnetic field is given by

S[Aµ] = − 1

16π c

∫

d4x
√−g Fµν F

µν ,

where
Fµν = Aµ;ν −Aν;µ = Aµ,ν −Aν,µ.

(a) Construct the stress energy tensor associated with the electromagnetic field.

(b) What are the time-time and the time-space components of the stress energy tensor of the
electromagnetic field in flat spacetime?

5. The nature of a worm hole: The spacetime of a worm hole is described by the line-element

ds2 = c2 dt2 − dr2 −
(

b2 + r2
) (

dθ2 + sin2θ dφ2
)

,

where b is a constant with the dimensions of length that reflects the size of the ‘traversable’ region.
Show that the energy density of matter has to be negative to sustain such a spacetime.
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Exercise sheet 9

The Schwarzschild metric

1. Spherically symmetric spacetimes: Consider the following line element that describes spherically
symmetric spacetimes in (3 + 1)-dimensions:

ds2 = c2 eΦ(t,r) dt2 − eΨ(t,r) dr2 − r2
(

dθ2 + sin2θ dφ2
)

,

where Φ(t, r) and Ψ(t, r) are arbitrary functions of the coordinates t and r.

(a) Find gµν and gµν corresponding to this line element.

(b) Evaluate the resulting Γα
µν .

(c) Also, calculate the corresponding Rµν and R.

2. Utilizing the Bianchi identities: Compute the Einstein tensor corresponding to the above line ele-
ment and show that its non-zero components are given by

Gt
t =

(

Ψ′

r
− 1

r2

)

e−Ψ +
1

r2
,

Gr
t = − Ψ̇

r eΨ
= −Gt

r e
(Ψ−Φ),

Gr
r = −

(

Φ′

r
+

1

r2

)

e−Ψ +
1

r2
,

Gθ
θ = Gφ

φ =
1

2

(

Φ′ Ψ′

2
+

Ψ′

r
− Φ′

r
− Φ′2

2
− Φ′′

)

e−Ψ +
1

2

(

Ψ̈ +
Ψ̇2

2
− Φ̇ Ψ̇

2

)

e−Φ,

where the overdots and the overprimes denote differentiation with respect to c t and r, respectively.
Show that the contracted Bianchi identities, viz. ∇µG

µ
ν = 0, imply that the last of the above

equations vanishes, if the remaining three equations vanish.

3. Spherically symmetric vacuum solution of the Einstein’s equations: In the absence of any sources,
the above components of the Einstein tensor should vanish. Integrate the equations to arrive at the
following Schwarzschild line element:

ds2 = c2
(

1− 2GM

c2 r

)

dt2 −
(

1− 2GM

c2 r

)−1

dr2 − r2
(

dθ2 + sin2θ dφ2
)

,

where M is a constant of integration that denotes the mass of the central object that is responsible
for the gravitational field.

4. The precession of the perihelion of Mercury: Consider a particle of massm propagating in the above
Schwarzschild spacetime.

(a) Using the relation pµ pµ = m2 c2 and the conserved momenta, arrive at the following differential
equation describing the orbital motion of massive particles:

d2 u

dφ2
+ u =

GM

L̃2
+

3GM

c2
u2,

where u = 1/r, while L̃ = L/m = r2 (dφ/dτ), with L being the angular momentum of the
particle and τ its proper time.
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(b) The second term on the right hand side of the above equation would have been absent in
the case of the conventional, non-relativistic, Kepler problem. Treating the term as a small
perturbation, show that the orbits are no more closed, and the perihelion precesses by the
angle

∆φ ≃ 6π (GM)2

L̃2 c2
=

6π GM

a (1− e2) c2
radians/revolution,

where e and a are the eccentricity and the semi-major axis of the original closed, Keplerian
elliptical orbit.

(c) For the case of the planet Mercury, a = 5.8 × 1010 m, while e = 0.2. Also, the period of the
Mercury’s orbit around the Sun is 88 days. Further, the mass of the Sun is M⊙ = 2× 1030 kg.
Use these information to determine the angle by which the perihelion of Mercury would have
shifted in a century.

Note: The measured precession of the perihelion of the planet Mercury proves to be 5599′′.7±
0′′.4 per century, but a large part of it is caused due to the influences of the other planets.
When the other contributions have been subtracted, the precession of the perihelion of the
planet Mercury due to the purely relativistic effects amounts to 43.1 ± 0.5 seconds of arc per
century.

5. Gravitational bending of light: Consider the propagation of photons in the Schwarzschild spacetime.

(a) Using the relation pµ pµ = 0 and the conserved momenta, arrive at the following differential
equation describing the orbital motion of photons in the spacetime:

d2 u

dφ2
+ u =

3GM

c2
u2,

(b) Establish that, in the absence of the term on the right hand side, the photons will travel in
straight lines.

(c) As in the previous case, treating the term on the right hand side as a small perturbation, show
that it leads to a deflection of a photon’s trajectory by the angle

∆φ ≃ 4GM

c2 b
,

where b is the impact parameter of the photon (i.e. the distance of the closest approach of the
photon to the central mass).

(d) Given that the radius of the Sun is 6.96 × 108 m, determine the deflection angle ∆φ for a ray
of light that grazes the Sun.

Note: The famous 1919 eclipse expedition led by Eddington led to two sets of results, viz.

∆φ = 1′′.98± 0′′.16 and ∆φ = 1′′.61± 0′′.4,

both of which happen to be consistent with the theory.

Page 2



PH5870, General relativity and cosmology, January–May 2012

Additional problems II

Tensor algebra, calculus and general relativity

1. Metric on a three sphere: The three sphere S
3 is a three-dimensional spherical surface in the four-

dimensional Euclidean space R
4. Let (x, y, z, w) be the coordinates of R4, while R is the radius of

the three sphere. The three sphere can be then described by the constraint

x2 + y2 + z2 + w2 = R2.

(a) Show that the following equations:

x = R sinχ sin θ cosφ, y = R sinχ sin θ sinφ, z = R sinχ cos θ and w = R cosχ,

which relate the coordinates (θ, φ, χ) on the three-sphere to the Euclidean coordinates
(x, y, z, w) satisfy the above constraint.

Note: These generalize the familiar spherical polar coordinates to a higher dimension.

(b) Evaluate the metric of the three sphere in terms of the coordinates (θ, φ, χ).

2. Parallel transporting a vector on S
2: The components of a vector Aa on the two sphere S2 are found

to be (1, 0) at (θ = θ0, φ = 0), where θ0 is a constant. The vector is parallel transported around the
circle θ = θ0. Determine the vector when it returns to the original point.

3. Rewriting the Riemann tensor: Recall that, the Riemann tensor is defined as

Rabcd = gae R
e
bcd = gae

(

Γe
bd,c − Γe

bc,d + Γe
fc Γ

f
bd − Γe

fd Γ
f
bc

)

.

Show that this can be rewritten as

Rabcd =
1

2
(gad,bc + gbc,ad − gac,bd − gbd,ac) + gef

(

Γe
bc Γ

f
ad − Γe

bd Γf
ac

)

,

an expression which reflects the symmetries of the Riemann tensor more easily.

4. Geodesic deviation: Consider two nearby geodesics, say, xa(λ) and x̄a(λ), where λ is an affine
parameter. Let ξa(λ) denote a ‘small vector’ that connects these two geodesics. Working in the
locally geodesic coordinates, show that ξa satisfies the differential equation

D2ξa

Dλ2
+Ra

bcd ẋ
b ξc ẋd = 0,

where
D2ξa

Dλ2
≡
(

ξ̇a + Γa
bc ξ

b ẋc
)

�

,

while the overdots denote differentiation with respect to λ.

Note: This implies that a non-zero Riemann tensor Ra
bcd will lead to a situation where geodesics, in

general, will not remain parallel as, for instance, on the surface of the two sphere S
2.

5. Gravity in two dimensions: Consider an arbitrary spacetime in two dimensions that is described by
the metric gab.

(a) Argue that, in such a case, the Riemann tensor can be expressed as follows:

Rabcd = κ (gac gbd − gad gbc) ,

where κ is a scalar that is, in general, a function of the coordinates.

Note: It is useful to recall that, in n-dimensions, the number of independent components of
the Riemann tensor is n2 (n2 − 1)/12.
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(b) Using this result, show that the Einstein tensor vanishes identically in two dimensions.

6. Conformal transformation: Show that, under the conformal transformation,

gab(x
c) → Ω2(xc) gab(x

c),

the Christoffel symbols Γa
bc, the Ricci tensor Ra

b , and the scalar curvature R of a n-dimensional
manifold are modified as follows:

Γa
bc → Γa

bc +Ω−1
(

δab Ω;c + δac Ω;b − gbc g
ad Ω;d

)

,

Ra
b → Ω−2Ra

b − (n − 2) Ω−1 gac
(

Ω−1
)

;bc
+

1

n− 2
Ω−n δab g

cd
[

Ω(n−2)
]

;cd
,

R → Ω−2R+ 2 (n − 1) Ω−3 gab Ω;ab + (n − 1) (n − 4) Ω−4 gab Ω;a Ω;b.

7. Conformal invariance of the electromagnetic action: Recall that, in a curved spacetime, the dynam-
ics of the source free electromagnetic field is governed by the action

S[Aµ] = − 1

16π c

∫

d4x
√−g Fµν F

µν ,

where
Fµν = Aµ;ν −Aν;µ = Aµ,ν −Aν,µ

and the semi-colons denote covariant differentiation, while the commas denote partial derivatives.
Show that this action is invariant under the following conformal transformation:

xµ → xµ, Aµ → Aµ and gµν → Ω2 gµν .

8. k-essence: Consider a generic scalar field φ that is described by the action

S[φ] =
1

c

∫

d4x
√−g L(X,φ),

where X denotes the kinetic energy of the scalar field and is given by

X =
1

2
gµν ∂µφ ∂νφ.

Let the Lagrangian density L be an arbitrary function of the kinetic term X and the field φ. Vary
the above action with respect to the metric tensor, and show that the corresponding stress energy
tensor can be written as

T µ
ν =

∂L
∂X

∂µφ ∂νφ− δµν L.

Note: Such scalar fields are often referred to as k-essence.

9. Charged and rotating black holes: Use the given Mathematica file to evaluate the metric connec-
tions, the Riemann, the Ricci, and the Einstein tensors as well as the Ricci scalar around the
charged Reissner-Nordstrom and the rotating Kerr black holes that are described by the following
line elements:

ds2 = c2
(

1− 2µ

r
+
q2

r2

)

dt2 −
(

1− 2µ

r
+
q2

r2

)−1

dr2 − r2
(

dθ2 + sin2θ dφ2
)

,

where

µ =
GM

c2
and q2 =

GQ2

4π c4
,
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and

ds2 = c2
ρ2 ∆

Σ2
dt2 − Σ2 sin2 θ

ρ2
(dφ− ω dt)2 − ρ2

∆
dr2 − ρ2 dθ2,

where

ρ2 = r2+ a2 cos2 θ, ∆ = r2− 2µ r+ a2, Σ2 = (r2+ a2)2− a2∆ sin2 θ, ω =
2µ c r a

Σ2
and a =

J

M c
.

The quantities M , Q and J are constants that denote the mass, the electric charge and the angular
momentum associated with the black holes, respectively.

10. The Newtonian limit and the Poisson equation: Recall that, in the non-relativistic limit, the metric
corresponding to the Newtonian potential φ is given by

ds2 = c2
[

1 +
2 φ(x)

c2

]

dt2 − dx2.

Let the energy density of the matter field that is giving rise to the Newtonian potential φ be ρ c2.
Show that, in such a case, the time-time component of the Einstein’s equations reduces to the
conventional Poisson equation in the limit of large c.

Note: As I had mentioned during the lectures, it is this Newtonian limit that determines the overall
constant in the Einstein-Hilbert action.
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Quiz III

The Einstein’s equations and the Schwarzschild metric

1. Scalar curvature in two dimensions: Consider the following (1 + 1)-dimensional line element:

ds2 = f2(η, ξ)
(

dη2 − dξ2
)

,

where f(η, ξ) is an arbitrary function of the coordinates η and ξ. Show that the scalar curvature

associated with this line element can be expressed as 10 marks

R = −∇µ∇µ ln f2 = −2 ln f2.

Note: In (1 + 1)-dimensions, any metric can be reduced to the above conformally flat form.

2. Einstein’s equations for a homogeneous and isotropic spacetime: A homogeneous and isotropic
spacetime can be described by the following line element:

ds2 = c2 dt2 − a2(t)
(

dx2 + dy2 + dz2
)

,

where a is a function of the time coordinate t.

(a) Evaluate the Christoffel symbols corresponding to this line element. 4 marks

(b) Calculate the corresponding Ricci and the Einstein tensors. 4 marks

(c) In such a line element, the stress energy tensor of a perfect fluid reduces to the following simple
form:

T µ
ν = diag.

(

ρ c2,−p,−p,−p
)

,

where the mass density ρ and the pressure p are only functions of the time t. Arrive at the
Einstein’s equations assuming that the above line element is driven by such a source. 2 marks

3. Effective potential for massive particles in the Schwarzschild metric: Consider a particle of mass m
which is moving in the Schwarzschild metric. The trajectory of the particle can be described by an
equation of the following form:

1

2

(

dr

dτ

)2

+ Veff(r) =
c2

2

[

(

E

mc2

)2

− 1

]

,

where Veff is the ‘effective potential’ which governs the motion of the relativistic particle, E is its
energy, while τ denotes the proper time as measured in the frame of the particle.

(a) Obtain the form of the effective potential Veff . 5 marks

(b) Show that the potential admits two circular orbits. Also, determine the radii of the or-

bits. 3 marks

(c) Arrive at the condition on the angular momentum of the particle that leads to a situation
wherein these two circular orbits merge into one. Further, determine the radius of the corre-
sponding orbit. 2 marks

4. Circular orbits of photons in the Schwarzschild spacetime: Recall that the orbital trajectory of a
photon in the Schwarzschild metric is governed by the differential equation

d2u

dφ2
+ u =

3GM

c2
u2,

where u = (1/r).
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(a) Does this equation admit circular orbits? If it does, utilize the equation to arrive at the radii

of the circular orbits. 7 marks

(b) Determine if these circular orbits are stable or unstable. 3 marks

5. Radial motion of particles and photons in the Schwarzschild metric: Consider particles and pho-
tons which are traveling radially in the Schwarzschild spacetime.

(a) Let a particle fall radially from rest at radius r0 to a radius r (< r0). Show that the proper time

taken by the particle to travel from the larger radius to the smaller one is given by 5 marks

τ =
2

3

[
√

r30
2GM

−
√

r3

2GM

]

.

(b) Show that the trajectories of radially outgoing and ingoing photons can be expressed

as 5 marks

c t = r +
2GM

c2
ln

∣

∣

∣

∣

c2 r

2GM
− 1

∣

∣

∣

∣

+ constant

and

c t = −r − 2GM

c2
ln

∣

∣

∣

∣

c2 r

2GM
− 1

∣

∣

∣

∣

+ constant,

respectively.
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Exercise sheet 10

The kinematics of the Friedmann model

1. Spaces of constant curvature: Consider spaces of constant curvature that are described by the metric
tensor gab.

(a) Argue that, the Riemann tensor associated with such a space can be expressed in terms of the
metric gab as follows:

Rabcd = κ (gac gbd − gad gbc) ,

where κ is a constant.

(b) Show that the Ricci tensor corresponding to the above Riemann tensor is given by

Rab = 2κ gab.

Note: Examples of spacetimes with a constant scalar curvature are the Einstein static universe, the
de Sitter and the anti de Sitter spacetimes.

2. Visualizing the Friedmann metric: The Friedmann universe is described by the line-element

ds2 = dt2 − a2(t) dℓ2,

where

dℓ2 =
dr2

(1− κ r2)
+ r2

(

dθ2 + sin2θ dφ2
)

and κ = 0,±1.

(a) Let us define a new coordinate χ as follows:

χ =

∫

dr√
1− κ r2

.

Show that in terms of the coordinate χ the spatial line element dℓ2 reduces to

dℓ2 = dχ2 + S2
κ(χ)

(

dθ2 + sin2θ dφ2
)

,

where

Sκ(χ) =







sinχ for κ = 1,
χ for κ = 0,
sinhχ for κ = −1.

(b) Show that, for κ = 1, the spatial line-element dℓ2 can be described as the spherical surface

x21 + x22 + x23 + x24 = 1

embedded in an Euclidean space described by the line-element

dℓ2 = dx21 + dx22 + dx23 + dx24.

(c) Show that, for κ = −1, the spatial line-element dℓ2 can be described as the hyperbolic surface

x21 + x22 + x23 − x24 = −1

embedded in a Lorentzian space described by the line-element

dℓ2 = dx21 + dx22 + dx23 − dx24.
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3. Geodesic equations in a Friedmann universe: Obtain the following non-zero components of the
Christoffel symbols for the Friedmann line element:

Γt
ij =

a ȧ

c
σij,

where σij denotes the spatial metric defined through the relation dℓ2 = σij dxi dxj. Use these
Christoffel symbols to arrive at the geodesic equations corresponding to the t coordinate for massive
as well as massless particles in a Friedmann universe.

4. Weyl tensor and conformal invariance: In (3 + 1)-spacetime dimensions, the Weyl tensor Cαβγδ is
defined as follows:

Cαβγδ = Rαβγδ +
1

2
(gαδ Rβγ + gβγ Rαδ − gαγ Rβδ − gβδ Rαγ) +

1

6
(gαγ gδβ − gαδ gγβ) R.

(a) Show that the Weyl tensor vanishes for the Friedmann metric.

(b) The vanishing Weyl tensor implies that there exists a coordinate system in which the Fried-
mann metric (for all κ) is conformal to the Minkowski metric. It is straightforward to check
that the metric of the κ = 0 (i.e. the spatially flat) Friedmann universe can be expressed in
the following form:

gµν = a2(η) ηµν ,

where η is the conformal time coordinate defined by the relation

η =

∫

dt

a(t)
,

and ηµν denotes the flat spacetime metric. Construct the coordinate systems in which the
metrics corresponding to the κ = ±1 Friedmann universes can be expressed in a form wherein
they are conformally related to flat spacetime.

5. Consequences of conformal invariance: As we have seen, the action of the electromagnetic field in
a curved spacetime is invariant under the conformal transformation.

(a) Utilizing the conformal invariance of the electromagnetic action, show that the electromagnetic
waves in the spatially flat Friedmann universe can be written in terms of the conformal time
coordinate η as follows:

Aµ ∝ exp−(i k η) = exp−
[

i k

∫

dt/a(t)

]

.

(b) Since the time derivative of the phase defines the instantaneous frequency ω(t) of the wave,
conclude that ω(t) ∝ a−1(t).
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Exercise sheet 11

The dynamics of the Friedmann model

1. The Friedmann equations: Recall that the Friedmann universe is described by the line element

ds2 = c2 dt2 − a2(t)

[

dr2

1− κ r2
+ r2

(

dθ2 + sin2θ dφ2
)

]

,

where κ = 0,±1.

(a) Arrive at the following expressions for the Ricci tensor Rµ
ν , the scalar curvature R, and the

Einstein tensor Gµ
ν for the above Friedmann metric:

Rt
t = − 3 ä

c2 a
,

Ri
j = −

[

ä

c2 a
+ 2

(

ȧ

c a

)2

+
2κ

a2

]

δij ,

R = −6

[

ä

c2 a
+

(

ȧ

c a

)2

+
κ

a2

]

,

Gt
t = 3

[

(

ȧ

c a

)2

+
κ

a2

]

,

Gi
j =

[

2 ä

c2 a
+

(

ȧ

c a

)2

+
κ

a2

]

δij ,

where the overdots denote differentiation with respect to the cosmic time t.

(b) Consider a fluid described by the stress energy tensor

T µ
ν = diag.

(

ρ c2,−p,−p,−p
)

,

where ρ and p denote the mass density and the pressure associated with the fluid. In a smooth
Friedmann universe, the quantities ρ and p depend only on time. Using the above Einstein
tensor, obtain the following Friedmann equations for such a source:

(

ȧ

a

)2

+
κ c2

a2
=

8π G

3
ρ,

2 ä

a
+

(

ȧ

a

)2

+
κ c2

a2
= − 8πG

c2
p.

(c) Show that these two Friedmann equations lead to the equation

ä

a
= − 4π G

3

(

ρ+
3 p

c2

)

.

Note: This relation implies that ä > 0, i.e. the universe will undergo accelerated expansion,
only when

(

ρ c2 + 3 p
)

< 0.

2. Conservation of the stress energy tensor in a Friedmann universe: Recall that the conservation of
the stress energy tensor is described by the equation T µ

ν;µ = 0.

(a) Show that the time component of the stress energy tensor conservation law leads to the fol-
lowing equation in a Friedmann universe:

ρ̇+ 3H
(

ρ+
p

c2

)

= 0,

where H = ȧ/a, a quantity that is known as the Hubble parameter.
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(b) Also arrive at this equation from the two Friedmann equations obtained above.

(c) Show that the above equation can be rewritten as

d

dt

(

ρ a3
)

= − p

c2

(

da3

dt

)

.

3. Evolution of energy density in a Friedmann universe: The different types of matter that are present
in the universe are often described by an equation of state, i.e. the relation between the density and
the pressure associated the matter. Consider the following equation of state p = w ρ c2, where w is
a constant.

(a) Using the above equation which governs the evolution of ρ in a Friedmann universe, show that,
in such a case,

ρ ∝ a−3 (1+w).

(b) While the quantity w vanishes for pressure free non-relativistic matter (such as baryons and
cold dark matter), w = 1/3 for relativistic particles (such as photons and the nearly massless
neutrinos). Note that the energy density does not change with time when w = −1 or, equiva-
lently, when p = −ρ c2. Such a type of matter is known as the cosmological constant. Utilizing
the above result, express the total density of a universe filled with non-relativistic (NR) and
relativistic (R) matter as well as the cosmological constant (Λ) as follows:

ρ(a) = ρ0
NR

(a0
a

)3
+ ρ0

R

(a0
a

)4
+ ρ

Λ
,

where ρ0
NR

and ρ0
R
denote the density of non-relativistic and relativistic matter today (i.e. at,

say, t = t0, corresponding to the scale factor a = a0).

(c) Also, further rewrite the above expression as

ρ(a) = ρ
C

[

Ω
NR

(a0
a

)3
+Ω

R

(a0
a

)4
+Ω

Λ

]

= ρ
C

[

Ω
NR

(1 + z)3 +Ω
R
(1 + z)4 +ΩΛ

]

,

where Ω
NR

= ρ0
NR
/ρ

C
, Ω

R
= ρ0

R
/ρ

C
and Ω

Λ
= ρ

Λ
/ρ

C
, while ρ

C
is the so-called critical density

defined as

ρ
C
=

3H2
0

8π G
,

with the quantity H0 being the Hubble parameter (referred to as the Hubble constant) today.

Note: The quantities H0, ΩNR
, Ω

R
and Ω

Λ
are cosmological parameters that are to be deter-

mined by observations.

(d) Observations suggest that H0 ≃ 72 km s−1 Mpc−1. Evaluate the corresponding numerical
value of the critical density ρc.

Note: A parsec (pc) corresponds to 3.26 light years, and a Mega parsec (Mpc) amounts to 106

parsecs.

4. The Cosmic Microwave Background: It is found that we are immersed in a perfectly thermal
and nearly isotropic distribution of radiation, which is referred to as Cosmic Microwave Back-
ground (CMB), as it energy density peaks in the microwave region of the electromagnetic spectrum.
The CMB is a relic of an earlier epoch when the universe was radiation dominated, and it provides
the dominant contribution to the relativistic energy density in the universe.

(a) Given that the temperature of the CMB today is T ≃ 2.73 K, show that one can write

Ω
R
h2 ≃ 2.56 × 10−5,

where h is related to the Hubble constant H0 as follows:

H0 ≃ 100 h km s−1 Mpc−1.
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(b) Show that the redshift zeq at which the energy density of matter and radiation were equal is
given by

1 + zeq =
Ω

NR

Ω
R

≃ 3.9× 104
(

ΩNR h
2
)

.

(c) Also, show that the temperature of the radiation at this epoch is given by

Teq ≃ 9.24
(

Ω
NR
h2
)

eV.

5. Solutions to the Friedmann equations: We had discussed the solutions to Friedmann equations in
the presence of a single component when the universe is spatially flat (i.e. when κ = 0). It proves
to be difficult to obtain analytical solutions for the scale factor when all the three components
of matter (viz. non-relativistic and relativistic matter as well as the cosmological constant) are
simultaneously present. However, the solutions can be obtained for the cases wherein two of the
components are present.

(a) Integrate the first Friedmann equation for a κ = 0 universe with matter and radiation to
obtain that

a(η) =
√

Ω
R
a40 (H0 η) +

Ω
NR
a30

4
(H0 η)

2 ,

where η is the conformal time coordinate. Show that, at early (i.e. for small η) and late times
(i.e. for large η), this solution reduces to the behavior in the radiation and matter dominated
epochs, respectively, as required.

Note: In obtaining the above result, it has been assumed that a = 0 at η = 0.

(b) Integrate the Friedmann equation for a κ = 0 universe with matter and cosmological constant
to obtain that

a(t)

a0
=

Ω
NR

Ω
Λ

sinh2/3

(

3Ω
3/2
Λ H0 t

2Ω
NR

)

.

Also, show that, at early times, this solution simplifies to a ∝ t2/3, while at late times, it

behaves as a ∝ exp (Ω
3/2
Λ H0 t/ΩNR

), as expected.
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Exercise sheet 12

Gravitational waves

1. The linearized metric I: Consider a small perturbation to flat spacetime so that the standard
Minkowski metric can be expressed as

gµν ≃ ηµν + ǫ hµν ,

where ǫ is a small dimensionless quantity. Show that, at the same order in ǫ, the corresponding
contravariant metric tensor and the Christoffel symbols are given by

gµν ≃ ηµν + ǫ hµν

and
Γα
βγ ≃ ǫ

2

(

hαγ,β + hαβ,γ − h ,α
βγ

)

,

respectively.

2. The linearized metric II: Let us now turn to the evaluation of the curvature and the Einstein tensors
corresponding to the above metric.

(a) Show that, at the linear order, the Riemann and the Ricci tensors and the scalar curvature
are given by

Rαβγδ ≃ ǫ

2
(hαδ,βγ + hβγ,αδ − hαγ,βδ − hβδ,αγ) ,

Rβδ ≃ ǫ

2

(

hγδ,βγ + hαβ,αδ − h,βδ − ηαγ hβδ,αγ

)

and
R = ǫ

(

hαβ,αβ −2h
)

,

where 2 is the d’Alembertian corresponding to the Minkowski metric ηµν , while h = ηµν hµν
denotes the trace of the perturbation hµν .

(b) Finally, show that the corresponding Einstein tensor can be expressed as

Gαβ =
ǫ

2

(

hγβ,αγ + hγα,βγ −2hαβ − h,αβ − ηαβ h
γδ
,γδ + ηαβ 2h

)

.

3. Gauge transformations: Consider the following ‘small’ coordinate transformations:

xµ → x′µ ≃ xµ + ǫ ξµ,

which are of the same amplitude as the perturbation hµν . Show that under such a transformation,
the perturbation hµν transforms as follows:

hµν → h′µν ≃ hµν − (ξµ,ν + ξν,µ) .

Note: Such a ‘small’ transformation is known as a gauge transformation.

4. The de Donder gauge: Let us define a new set of variables ψµν , which are related to the metric
perturbation hµν as follows:

ψµν = hµν −
1

2
ηµν h.

(a) Show that, in terms of ψµν , the above Einstein tensor is given by

Gαβ =
ǫ

2

(

ψγ
α,βγ + ψγ

β,αγ −2ψαβ − ηαβ ψ
γδ
,γδ

)

.
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(b) Show that, under the above-mentioned gauge transformations, the variables ψµν transform as

ψµν → ψ′
µν ≃ ψµν − (ξµ,ν + ξν,µ) + ηµν ξ

λ
,λ.

(c) If we now impose the condition
ψα
β,α = 0,

show that, this corresponds to
ψ′α
β,α = ψα

β,α −2 ξβ.

Note: These conditions correspond to four equations, which can be achieved using the gauge
functions ξµ. A gauge wherein the condition is satisfied is known as the de Donder gauge.

(d) Also, show that the above condition corresponds to the following condition on hαβ :

hαβ,α − 1

2
h,β = 0.

5. The wave equation: In the absence of sources, one has Gαβ = 0.

(a) Show that, in a gauge wherein ψα
β,α = 0, the vacuum Einstein’s equations simplify to

2ψαβ = 0.

(b) Show that, in terms of hαβ , this equation corresponds to the equation

2hαβ = 0,

along with the additional condition
2h = 0.

Note: The solutions to these equations describe propagating gravitational waves in flat space-
time.
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End-of-semester exam

From special relativity to gravitational waves

1. Relative velocity between two inertial frames: Consider two inertial frames that are moving with the
velocities v1 and v2 with respect to, say, the laboratory frame. Show that the relative velocity v
between the two frames can be expressed as 10 marks

v2 =
(v1 − v2)

2 − (v1 × v2/c)
2

[1− (v1 · v2/c2)]
2 .

2. Lorentz transformation of the electromagnetic field: Consider a charge e that is moving along, say,
the positive x-axis at the constant velocity v with respect to the laboratory frame.

(a) Write down the electric field in the frame of the charge. 3 marks

(b) Show that the electric field in the laboratory frame can be written as 5 marks

E =
eR

R3

[

1− v2/c2

1− (v2/c2) sin2 θ

]

,

where R is the radius vector from the location of the charge to the point of observation, while
the quantity θ is the angle between the direction of motion of the charge and the radius vector
R in the laboratory frame.

(c) What is the value of θ for which the strength of the electric field is the maximum? 2 marks

3. Is it three or is it two? A space purports to be three dimensional, with coordinates x, y and z, and
the metric

dℓ2 = dx2 + dy2 + dz2 −
(

3

13
dx+

4

13
dy +

12

13
dz

)2

.

(a) Show that it is actually a two dimensional space. 7 marks

(b) Is a constant z surface two dimensional? 3 marks

4. Klein-Gordon equation in a spatially flat Friedmann universe: Recall that a scalar field, say, φ, sat-
isfies the following Klein-Gordon equation in a curved spacetime:

1√−g ∂µ
(√−g gµν ∂ν

)

φ+m2 φ = 0.

Assuming that the field φ to be dependent only on the cosmic time t, arrive at the equation of
motion of the field in a spatially flat, Friedmann universe. 10 marks

Note: It would be to convenient to work in the Cartesian coordinates to describe the spatial part
of the spatially flat Friedmann universe.

5. Rewriting the Riemann tensor: Recall that, the Riemann tensor is defined as

Rabcd = gae R
e
bcd = gae

(

Γe
bd,c − Γe

bc,d + Γe
fc Γ

f
bd − Γe

fd Γ
f
bc

)

.

Show that this can be rewritten as

Rabcd =
1

2
(gad,bc + gbc,ad − gac,bd − gbd,ac) + gef

(

Γe
bc Γ

f
ad − Γe

bd Γf
ac

)

,

an expression which reflects the symmetries of the Riemann tensor more easily. 10 marks

Page 1



PH5870, General relativity and cosmology, January–May 2012

6. Scalar curvature corresponding to a gravitational wave: Recall that a gravitational wave propagat-
ing in a flat spacetime can be described as a perturbation about the Minkowski metric ηµν as
follows:

gµν ≃ ηµν + ǫ hµν

with ǫ being a small dimensionless quantity. Show that, at the order ǫ, the scalar curvature associated
with the above metric can be expressed as

R ≃ ǫ
(

hαβ,αβ −2h
)

,

where 2 is the d’Alembertian corresponding to the Minkowski metric ηµν , while h = ηµν hµν denotes

the trace of the perturbation hµν . 10 marks

7. Schwarzschild metric in the Eddington-Finkelstein coordinates: Recall that, in a Schwarzschild
spacetime, the trajectory of radially ingoing photons is given by

c t = −r − 2GM

c2
ln

∣

∣

∣

∣

c2 r

2GM
− 1

∣

∣

∣

∣

+ constant.

Define a new time coordinate t̄ that is related to the coordinates t and r through the following
relation for r > 2GM/c2:

c t̄ = c t+ r +
2GM

c2
ln

(

c2 r

2GM
− 1

)

.

Show that, in terms of the new time coordinate t̄, the Schwarzschild line-element reduces
to 10 marks

ds2 = c2
(

1− 2GM

c2 r

)

dt̄2 − 2 cdt̄ dr − r2
(

dθ2 + sin2θ dφ2
)

.

Note: The new coordinates (t̄, r, θ, φ) are known as the Eddington-Finkelstein coordinates.

8. Numbers describing our universe: Various observations indicate the value of the Hubble constant
H0 to be

H0 ≃ 72 km s−1 Mpc−1.

Given this information,

(a) Evaluate the corresponding time scale H−1
0 in terms of billions of years. 3 marks

(b) Estimate the resulting distance cH−1
0 in units of Mpc. 3 marks

(c) Determine the corresponding critical density of the universe, viz. 4 marks

ρ
C
=

3H2
0

8π G

in units of kg/m3.

Note: A parsec (pc) corresponds to 3.26 light years, and a Mega parsec (Mpc) amounts to 106

parsecs. The value of the Newton’s gravitational constant G is 6.673 × 10−11 m3 kg−1 s−2.

9. An empty Friedmann universe: Consider a Friedmann universe without any matter, i.e. ρ = 0 and
p = 0.

(a) For what values of the spatial curvature κ do the Friedmann equations lead to realistic and
non-trivial solutions for the scale factor. What are the corresponding solutions for the scale
factor? 3 marks
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(b) Evaluate the Ricci tensor and the scalar curvature associated with the scale factors. 3 marks

(c) Can you identify the resulting spacetime, one which is completely devoid of matter? Construct
a coordinate transformation that reduces the non-trivial line-element to its more familiar
form. 4 marks

Note: It will be convenient to express the Friedmann line-element in the terms of the coordinate
χ which is related to r through the relation dχ = dr/

√
1− κ r2.

10. Behavior of the Hubble radius and the luminosity distance during matter domination: Consider a
spatially flat Friedmann universe. Recall that, in such a case, the luminosity distance d

L
(z) can

be expressed as
d
L
(z) = rem(z) (1 + z),

where the quantity rem(z) is described by the integral

rem(z) =

z
∫

0

dz d
H
(z),

while d
H
(z) denotes the Hubble radius which is defined as

d
H
= cH−1 = c

(

ȧ

a

)−1

.

Show that, when the spatially flat universe is dominated by non-relativistic matter, the Hubble
radius and the luminosity distance can be expressed in terms of the red-shift as follows: 7+3 marks

d
H
(z) = cH−1

0 (1 + z)−3/2 ,

d
L
(z) = 2 cH−1

0 (1 + z)
[

1− (1 + z)−1/2
]

,

where H0 is the value of the Hubble parameter today.
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