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Lecture schedule and meeting hours

• The course will consist of about 50 lectures, including about 8–10 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

• The duration of each lecture will be 50 minutes. We will be meeting on Google Meet. I will share
the link over smail.

• The first lecture will be on Tuesday, September 8, and the last lecture will be on Friday, Decem-
ber 11.

• We will meet four times a week. The lectures are scheduled for 8:00–8:50 AM on Mondays, 12:00–
12:50 PM on Tuesdays, 11:00–11:50 AM on Thursdays, and 10:00–10:50 AM on Fridays.

• Changes in schedule, if any, will be notified sufficiently in advance.

• If you would like to discuss with me about the course outside the lecture hours, please send me an
e-mail at sriram@physics.iitm.ac.in. We can converge on a mutually convenient time to meet
and discuss online. I would request you to write to me from your smail addresses with the subject
line containing the name of the course, i.e. PH5100: Quantum Mechanics I.

Information about the course

• All the information regarding the course such as the the structure and the syllabus of the course,
suitable textbooks and additional references will be available on the course’s page on Moodle at
the following URL:

https://courses.iitm.ac.in/

• The exercise sheets and other additional material will also be made available on Moodle.

• A PDF file containing these information as well as completed quizzes will also be available at the
link on this course at the following URL:

http://physics.iitm.ac.in/~sriram/professional/teaching/teaching.html

I will keep updating this file and the course’s page on Moodle as we make progress.

Mini tests, quizzes, end-of-semester exam and grading

• The grading will be based on four mini tests, three scheduled quizzes and an end-of-semester exam.

• I will consider the best two mini tests for grading. The mini tests will carry 5% weight each. They
will be conducted on October 26, November 2, November 23 and December 7. All the four days
are Mondays, and the mini test will be held during 8:00–8:15 AM on these dates.

• I will consider the best two quizzes for grading, and the two will carry 20% weight each. The three
quizzes will be held on October 20, November 10 and December 1. All the three days are Tuesdays,
and the quizzes will be held during 12:00–1:15 PM on these dates.

• The end-of-semester exam will be held during 1:30–4:30 PM on Wednesday, December 16, and the
exam will carry 50% weight.
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Syllabus and structure

Quantum Mechanics I

1. Origins of quantum theory and wave aspects of matter [∼ 5 lectures]

(a) Black body radiation – Planck’s law

(b) Photoelectric effect

(c) Bohr atom model – Frank and Hertz experiment

(d) de Broglie hypothesis – The Davisson-Germer experiment

(e) Concept of the wavefunction – The statistical interpretation

(f) Two-slit experiment – The Heisenberg uncertainty principle

Exercise sheet 1

2. Essential classical mechanics [∼ 6 lectures]

(a) The variational principle – Simple examples

(b) Generalized coordinates – Lagrangian of a system – The Euler-Lagrange equations of motion

(c) Symmetries and conserved quantities

(d) Conjugate variables – The Hamiltonian – The Hamilton’s equations of motion

(e) Poisson brackets

(f) The state of the system

Exercise sheet 2

Additional exercises I

3. The postulates of quantum mechanics and the Schrodinger equation [∼ 2 lectures]

(a) Observables and operators

(b) Expectation values and fluctuations

(c) Measurement and the collapse of the wavefunction

(d) The time-dependent Schrodinger equation

Exercise sheet 3

Quiz I

4. The time-independent Schrodinger equation in one dimension [∼ 10 lectures]

(a) The time-independent Schrodinger equation – Stationary states

(b) The infinite square well

(c) Reflection and transmission in potential barriers

(d) The delta function potential

(e) The free particle

(f) Linear harmonic oscillator

(g) Kronig-Penney model – Energy bands

Exercise sheets 4 and 5

Additional exercises II

Page 1



PH5100, Quantum Mechanics I, September–December 2020

5. Essential mathematical formalism [∼ 6 lectures]

(a) Hilbert space

(b) Observables – Hermitian operators – Eigen functions and eigen values of hermitian operators

(c) Orthonormal basis – Expansion in terms of a complete set of states

(d) Position and momentum representations

(e) Generalized statistical interpretation – The generalized uncertainty principle

(f) Studying the simple harmonic oscillator using the operator method

(g) Unitary evolution

Exercise sheets 6, 7 and 8

Quiz II

6. The Schrodinger equation in three dimensions and particle in a central potential
[∼ 7 lectures]

(a) The Schrodinger equation in three dimensions

(b) Particle in a three-dimensional box – The harmonic oscillator in three-dimensions

(c) Motion in a central potential – Orbital angular momentum

(d) Hydrogen atom – Energy levels

(e) Degeneracy

Exercise sheet 9

7. Angular momentum and spin [∼ 3 lectures]

(a) Angular momentum – Eigen values and eigen functions

(b) Electron spin – Pauli matrices

(c) Application to magnetic resonance

Exercise sheet 10

Additional exercises III

8. Time-independent perturbation theory [∼ 4 lectures]

(a) The non-degenerate case

(b) The degenerate case

(c) Fine structure of hydrogen – Hyperfine structure

Exercise sheet 11

9. Charged particle in a uniform and constant magnetic field [∼ 3 lectures]

(a) Landau levels – Wavefunctions

(b) Elements of the quantum Hall effect

Exercise sheet 12

Quiz III
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10. Time-dependent perturbation theory [∼ 5 lectures]

(a) Transition probabilities

(b) Sudden and adiabatic approximations

(c) Fermi golden rule

(d) The variational method – simple examples

Exercise sheet 13

11. The WKB approximation [∼ 4 lectures]

(a) The ‘classical’ regions

(b) Tunneling

(c) The connection formulas

Exercise sheet 14

Additional exercises IV

End-of-semester exam

Advanced problems

Note: The topics in red could not be covered for want of time.
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Basic textbooks

1. P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition (Oxford University Press,
Oxford, 1958).

2. S. Gasiorowicz, Quantum Physics, Third Edition (John Wiley and Sons, New York, 2003).

3. R. L. Liboff, Introductory Quantum Mechanics, Fourth Edition (Pearson Education, Delhi, 2003).

4. W. Greiner, Quantum Mechanics, Fourth Edition (Springer, Delhi, 2004).

5. D. J. Griffiths, Introduction to Quantum Mechanics, Second Edition (Pearson Education, Delhi,
2005).

6. R. W. Robinett, Quantum Mechanics, Second Edition (Oxford University Press, Oxford, 2006).

7. R. Shankar, Principles of Quantum Mechanics, Second Edition (Springer, Delhi, 2008).

Advanced textbooks

1. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Course of Theoretical Physics, Volume 3),
Third Edition (Pergamon Press, New York, 1977).

2. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Singapore, 1994).

Other references

1. D. Danin, Probabilities of the Quantum World (Mir Publishers, Moscow, 1983).

2. G. Gamow, Thirty Years that Shook Physics: The Story of Quantum Theory (Dover Publications,
New York, 1985).

3. R. P. Crease and C. C. Mann, The Second Creation: Makers of the Revolution in Twentieth-Century
Physics (Rutgers University Press, New Jersey, 1996), Chapters 1–4.

4. M. S. Longair, Theoretical Concepts in Physics, Second Edition (Cambridge University Press,
Cambridge, England, 2003), Chapters 11–15.

Page 4



PH5100, Quantum Mechanics I, September–December 2020

Exercise sheet 1

Origins of quantum theory and wave aspects of matter

1. Black body radiation and Planck’s law: Consider a black body maintained at the temperature T .
According to Planck’s radiation law, the energy per unit volume within the frequency range ν and
ν + dν associated with the electromagnetic radiation emitted by the black body is given by

uν dν =
8π h

c3

ν3 dν

exp (h ν/kB T )− 1
,

where h and kB denote the Planck and the Boltzmann constants, respectively, while c represents
the speed of light.

(a) Arrive at the Wien’s law, viz. that λmax T = b = constant, from the above Planck’s radiation
law. Note that λmax denotes the wavelength at which the energy density of radiation from the
black body is the maximum.

(b) The total energy emitted by the black body is described by the integral

u =

∞∫
0

dν uν .

Using the above expression for uν , evaluate the integral and show that

u =
4σ

c
T 4,

where σ denotes the Stefan constant given by

σ =
π2 k4

B

60 ~3 c2
,

with ~ = h/(2π).

(c) The experimentally determined values of the Stefan’s constant σ and the Wien’s constant b
are found to be

σ = 5.67× 10−8 J m−2 s−1 K−4 and b = 2.9× 10−3 m K.

Given that the value of the speed of light is c = 2.998× 108 m s−1, determine the values of the
Planck’s constant h and the Boltzmann’s constant kB from these values.

2. Photoelectrons from a zinc plate: Consider the emission of electrons due to photoelectric effect from
a zinc plate. The work function of zinc is known to be 3.6 eV. What is the maximum energy of the
electrons ejected when ultra-violet light of wavelength 3000 Å is incident on the zinc plate?

3. Radiation emitted in the Frank and Hertz experiment: Recall that, in the Frank and Hertz experi-

ment, the emission line from the mercury vapor was at the wavelength of 2536 Å. The spectrum
of mercury has a strong second line at the wavelength of 1849 Å. What will be the voltage cor-
responding to this line at which we can expect the current in the Frank and Hertz experiment to
drop?

4. Value of the Rydberg’s constant: Evaluate the numerical value of the Rydberg’s constant RH and
compare with its experimental value of 109677.58 cm−1. How does the numerical value change if
the finite mass of the nucleus is taken into account?
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5. Mean values and fluctuations: The expectation values 〈Â〉 and 〈Â2〉 associated with the operator

Â and the wavefunction Ψ are defined as

〈Â〉 =

∫
dx Ψ∗ÂΨ and 〈Â2〉 =

∫
dx Ψ∗Â2 Ψ,

where the integrals are to be carried out over the domain of interest. Note that the momentum
operator is given by

p̂x = −i ~ ∂

∂x
.

Given the wavefunction

Ψ(x) =
(π
α

)−1/4
e−αx

2/2,

calculate the following quantities: (i) 〈x̂〉, (ii) 〈x̂2〉, (iii) ∆x =
[
〈x̂2〉 − 〈x̂〉2

]1/2
, (iv) 〈p̂x〉, (v) 〈p̂2

x〉,
(vi) ∆px =

[
〈p̂2
x〉 − 〈p̂x〉2

]1/2
, and (vii) ∆x ∆px.
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Exercise sheet 2

Essential classical mechanics

1. Geodesics on a cylinder: A geodesic is a curve that represents the shortest path between two points
in any space. Determine the geodesic on a right circular cylinder of a fixed radius, say, R.

2. Non-relativistic particle in an electromagnetic field: A non-relativistic particle that is moving in an
electromagnetic field described by the scalar potential φ and the vector potential A is governed by
the Lagrangian

L =
mv2

2
+ q

(v
c
·A
)
− q φ,

where m and q are the mass and the charge of the particle, while c denotes the velocity of light.
Show that the equation of motion of the particle is given by

m
dv

dt
= q

(
E +

v

c
×B

)
,

where E and the B are the electric and the magnetic fields given by

E = −∇φ− 1

c

∂A

∂t
and B = ∇×A.

Note: The scalar and the vector potentials, viz. φ and A, are dependent on time as well as space.
Further, given two vectors, say, C and D, one can write,

∇ (C ·D) = (D · ∇) C + (C · ∇) D + D× (∇×C) + C× (∇×D) .

Also, since A depends on time as well as space, we have,

dA

dt
=
∂A

∂t
+ (v · ∇) A.

3. Period associated with bounded, one-dimensional motion: Determine the period of oscillation as a
function of the energy, say, E, when a particle of mass m moves in a field governed by the potential
V (x) = V0 |x|n, where V0 is a constant and n is a positive integer.

4. Bead on a helical wire: A bead is moving on a helical wire under the influence of a uniform gravita-
tional field. Let the helical wire be described by the relations z = α θ and ρ = constant. Construct
the Hamiltonian of the system and obtain the Hamilton’s equations of motion.

5. Poisson brackets: Establish the following relations: {qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij ,
q̇i = {qi, H} and ṗi = {pi, H}, where qi, pi and H represent the generalized coordinates, the cor-
responding conjugate momenta and the Hamiltonian, respectively, while the curly brackets denote
the Poisson brackets.

Note: The quantity δij is called the Kronecker symbol and it takes on the following values:

δij =

{
1 when i = j,
0 when i 6= j.

Page 1
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Additional exercises I

Essential classical mechanics

1. Snell’s law of refraction: Two homogeneous media of refractive indices n1 and n2 are placed adjacent
to each other. A ray of light propagates from a point in the first medium to a point in the second
medium. According to the Fermat’s principle, the light ray will follow a path that minimizes the
transit time between the two points. Use Fermat’s principle to derive the Snell’s law of refraction,
viz. that

n1 sin θ1 = n2 sin θ2,

where θ1 and θ2 are the angles of incidence and refraction at the interface.

Note: As the complete path is not differentiable at the interface, actually, the problem is not an
Euler equation problem.

2. The brachistochrone problem: Consider a particle that is moving in a constant force field starting
at rest from some point to a lower point. Determine the path that allows the particle to accomplish
the transit in the least possible time.

Note: The resulting curve is referred to as the brachistochrone, i.e. the curve of the fastest descent.

3. Geodesics on a sphere: A geodesic is a curve that represents the shortest path between two points
in any space. Find the geodesics on the surface of a sphere.

4. Variation involving higher derivatives: Show that the Euler equation corresponding to the integral

J [y(x)] =

x2∫
x1

dx f(y, yx, yxx, , x),

where yx = dy/dx and yxx = d2y/dx2, is given by

d2

dx2

(
∂f

∂yxx

)
− d

dx

(
∂f

∂yx

)
+
∂f

∂y
= 0.

Note: In order to obtain this equation, the variation as well its first derivative need to be set to
zero at the end points.

5. Period associated with bounded, one-dimensional motion: Determine the period of oscillation as a
function of the energy, say, E, when a particle of mass m moves in fields for which the potential
energy is given by (a) U = −U0/cosh2(αx), for E such that−U0 < E < 0, and (b) U = U0 tan2(αx).

6. Motion in one dimension: Obtain the solutions describing the time evolution of a particle moving
in the one-dimensional potential

U(x) = α
(
e−2β x − 2 e−β x

)
, where α, β > 0,

for the cases E < 0, E = 0 and E > 0, where E is the energy of the particle. Also, evaluate the
period of oscillation of the particle when E < 0.

7. A bead on a wire: Consider a bead that is sliding without friction down a wire in a uniform gravi-
tational field. Let the shape of the wire be y = f(x).

(a) Obtain the Hamiltonian for the system.

(b) Also, write down the corresponding Hamilton equations of motion.
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8. Phase portraits: Draw the phase portraits of a particle moving in the following one-dimensional
potentials: (a) U(x) = α |x|n, (b) U(x) = αx2 − β x3, (c) U(x) = α (x2 − β2)2, and (d) U(θ) =
−α cos θ, where (α, β) > 0 and n > 2.

9. Hamiltonian of a free particle: Show that the Hamiltonian of a free particle can be written as

H =
p2
r

2m
+

L2

2mr2
,

where pr is the momentum conjugate to the radial coordinate r and L = r × p.

10. Angular momentum of a free particle: Show that the angular momentum of a free particle can be
written as

L2 = L2
x + L2

y + L2
z = p2

θ +
p2
φ

sin2θ
,

where pθ and pφ are the conjugate momenta corresponding to the angular coordinates θ and φ.
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Exercise sheet 3

The postulates of quantum mechanics and the Schrodinger equation

1. Hermitian operators: Recall that the expectation value of an operator Â is defined as

〈Â〉 =

∫
dx Ψ∗ÂΨ.

An operator Â is said to be hermitian if

〈Â〉 = 〈Â〉∗.

Show that the position, the momentum and the Hamiltonian operators are hermitian.

2. Motivating the momentum operator: Using the time-dependent Schrodinger equation, show that

d〈x〉
dt

= − i ~
m

∫
dx Ψ∗

∂Ψ

∂x
= 〈p̂x〉,

a relation which can be said to motivate the expression for the momentum operator, viz. that
p̂x = −i ~ ∂/∂x.

3. The conserved current: Consider a quantum mechanical particle propagating in a given potential
and described by the wave function Ψ(x, t). The probability P (x, t) of finding the particle at the
position x and the time t is given by

P (x, t) = |Ψ(x, t)|2.

Using the one-dimensional Schrodinger equation, show that the probability P (x, t) satisfies the
conservation law

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0,

where the quantity j(x, t) represents the conserved current given by

j(x, t) =
~

2 im

[
Ψ∗(x, t)

(
∂Ψ(x, t)

∂x

)
−Ψ(x, t)

(
∂Ψ∗(x, t)

∂x

)]
.

4. Ehrenfest’s theorem: Show that

d〈p̂x〉
dt

= −
〈
∂V

∂x

〉
,

a relation that is often referred to as the Ehrenfest’s theorem.

5. Conservation of the scalar product: The scalar product between two normalizable wavefunctions,
say, Ψ1 and Ψ2, which describe a one-dimensional system is defined as

〈Ψ2|Ψ1〉 ≡
∫

dx Ψ∗2(x, t) Ψ1(x, t),

where the integral is to be carried out over the domain of interest. Show that

d〈Ψ2|Ψ1〉
dt

= 0.
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Exercise sheet 4

The time-independent Schrodinger equation in one dimension

1. Probability of finding an energy eigen value: A particle in a box with its walls at x = 0 and x = a
is described by the following wave function:

ψ(x) =

{
A (x/a) for 0 < x < a/2,
A [1− (x/a)] for a/2 < x < a,

where A is a real constant. If the energy of the system is measured, what is the probability for
finding the energy eigen value to be En = n2 π2 ~2/(2ma2)?

2. Spreading of wave packets: A free particle has the initial wave function

Ψ(x, 0) = A e−a x
2
,

where A and a are constants, with a being real and positive.

(a) Normalize Ψ(x, 0).

(b) Find Ψ(x, t).

(c) Plot Ψ(x, t) at t = 0 and for large t. Determine qualitatively what happens as time goes on?

(d) Find 〈x̂〉, 〈x̂2〉, 〈p̂〉, 〈p̂2〉, ∆x and ∆p.

(e) Does the uncertainty principle hold? At what time does the system have the minimum uncer-
tainty?

3. Particle in an attractive delta function potential: Consider a particle moving in one-dimension in
the following attractive delta function potential:

V (x) = −a δ(1)(x),

where a > 0.

(a) Determine the bound state energy eigen functions.

(b) Plot the energy eigen functions.

(c) How many bound states exist? What are the corresponding energy eigen values?

4. From the wavefunction to the potential: Consider the one dimensional wave function

ψ(x) = A (x/x0)n exp−(x/x0),

where A, n and x0 are constants. Determine the time-independent potential V (x) and the energy
eigen value E for which this wave function is an energy eigen function.

5. Encountering special functions: Solve the Schrodinger equation in a smoothened step that is de-
scribed by the potential

V (x) =
V0

2

[
1 + tanh

( x

2 a

)]
,

and determine the reflection and the transmission probabilities.
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The potential step

Consider the potential

V (x) =

{
0 for x < 0
V0 for x > 0,

where V0 > 0.
For E < V0, over the domain −∞ < x < 0, the wavefunction is given by

ψ(x) = ei k x +R e−i k x,

where k =
√

2mE/~, while over 0 < x <∞, we have

ψ(x) = T e−q x,

where q =
√

2m (V0 − E)/~. Matching the wavefunction and its derivative at x = 0, we obtain that

1 +R = T, i k (1−R) = −q T,

which can be solved to arrive at

T =
2 k

k + i q
, R =

k − i q
k + i q

.

Note that |R|2 = 1.
When E > V0, over the domain −∞ < x < 0, the wavefunction is again given by

ψ(x) = ei k x +R e−i k x,

with k =
√

2mE/~, whereas over 0 < x <∞, we have

ψ(x) = T ei q x,

with q =
√

2m (E − V0)/~. On matching the wavefunction and its derivative at x = 0, we obtain that

1 +R = T, i k (1−R) = i q T.

These relations can be easily solved to obtain that

T =
2 k

k + q
, R =

k − q
k + q

.

Moreover, it is straightforward to establish that

|R|2 +
q

k
|T |2 = 1.
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The potential barrier

Consider the potential

V (x) =


0 for −∞ < x < −a
V0 for −a < x < a,
0 for a < x <∞

where V0 > 0.
Let us focus on the case wherein E < V0. For −∞ < x < −a, the wavefunction is given by

ψ(x) = ei k x +R e−i k x,

where k =
√

2mE/~, Similarly, over a < x <∞, we can write

ψ(x) = T ei k x,

Over the domain −a < x < a, we can write

ψ(x) = A eq x +B e−q x,

where q =
√

2m (V0 − E)/~. Matching the wavefunction and its derivative at x = −a, we obtain that

e−i k a +R ei k a = A e−q a +B eq a,

i k
(

e−i k a −R ei k a
)

= q
(
A e−q a −B eq a

)
.

We can use these two equations to eliminate R and arrive at the following relation between A and B

B =
−2 i k

q − i k
e(q+i k) a +A

q + i k

q − i k
e−2 q a.

Similarly, at x = a, the matching conditions lead to the relations

A eq a +B e−q a = T ei k a,

q (A eq a −B eq a) = i k T ei k a.

On eliminating T from these two relations, we obtain that

A = B
q + i k

q − i k
e−2 q a.

The two equations relations between A and B can be used to determine B to be

B = − −2 i k (q − i k) e−(q+i k) a

(q − i k)2 − (q + i k)2 e−4 q a
.

From the second set of relations, we can then obtain T to be

T =
2 k q e−2 i k a

2 q k cosh (2 q a)− i (k2 − q2) sinh (2 q a)

leading to

|T |2 =
(2 k q)2

(2 k q)2 + (k2 + q2)2 sinh2(2 q a)
,

which, for (q a)� 1, can be approximated to be

|T |2 ' (4 k q)2

(k2 + q2)2
e−4 q a.
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A request

As you know, I will be conducting the first online quiz of my course tomorrow. In this regard, I have a
request to all of you who are attending the course and will be taking the quiz. My request is simple: kindly
do not copy.

Let me elaborate. In all my years of teaching, I have always adopted the following two methods for the
quizzes and exams I have conducted: (1) I have allowed the students to keep their own handwritten notes
with them, and (2) I have never been strict with the time limit. These methods have been motivated
by my belief that the quizzes and exams should free of stress, allowing the students to think clearly and
perform at their best. I recall an instance when a set of Ph.D. students took nine hours to complete an
exam!

I would like to adopt the same methods for my online quiz as well. During the quiz, you are welcome
to look up your own handwritten notes or materials such as the recorded lectures and the solutions to
exercises that are available on Moodle. I would request you not to look up books or the internet. Needless
to add, I would request you not to consult your classmates or anyone else for that matter. Evidently, it
will not be possible for me to monitor all of you remotely. I do not intend to get you to sign an honor
code or warn you of dire consequences. I would prefer to trust all of you. I am hoping that you will not
break my trust.

Let us not lose sight of the fact that we are here to learn. I should mention that I too learn as I teach.
You stand to benefit in your understanding of the topic by working through the problems in the quiz. I
will be available online on our regular online platform during the period of the quiz. If you are having
any difficulty, you are welcome to speak to me. I will be happy to assist you to the extent that it does
not unduly benefit you when compared to the other students.

I am also hoping that you will be able to finish the quiz within the stipulated time. If many of you are
having difficulty in completing the quiz in time, I will be glad to permit a little more time to complete it.

To repeat my request, kindly do not copy either from books, the internet or your classmates during
the quiz.

Good luck.

Page 1



PH5100, Quantum Mechanics I, September–December 2020

Quiz I

From the origins of quantum theory to
the Schrodinger equation in one dimension

1. Particle in a one-dimensional potential: Consider a particle that is moving in the following one-
dimensional potential:

V (x) = αx2 e−β x,

where (α, β) > 0.

(a) Sketch the potential indicating, in particular, the locations of the extrema and the correspond-

ing values of the potential. 2 marks

(b) Draw the phase portrait of the system, specifically indicating with arrows the direction of

motion of the particle in phase space. 4 marks

(c) Will the energy eigen values of the corresponding problem in quantum mechanics be continuous

or discrete? 1 marks

(d) Let ψE(x) denote the energy eigen functions of the system. Evaluate the second derivative of

the energy eigen functions, i.e. d2ψE/dx
2, at the classical turning points. 3 marks

2. Particle in a box I: Consider a particle of mass m that is confined to a box with its walls at x = 0
and x = a.

(a) Estimate the ground state energies of (i) an electron that is confined to a box of width 10−10 m

and (ii) a ball of mass m = 10−2 kg confined to a box of width 0.1 m. 3+3 marks

(b) Using the uncertainty principle, estimate the velocities of the electron and the ball. 2+2 marks

Note: The value of the Planck’s constant is h = 6.636 × 10−34 J s and the mass of the electron is
me = 9.109× 10−31 kg.

3. Particle in a box II: At time t = 0, a particle of mass m that is confined to a box with its walls at
x = 0 and x = a is described by the wave function

Ψ(x, 0) = A sin3
(π x
a

)
.

(a) Determine A. 1 marks

(b) What is Ψ(x, t) for t > 0? 1 marks

(c) If one measures the energy of the system prepared in the above state, what are the energy
eigen values one would obtain? What would be the corresponding probabilities? Do these
probabilities change with time? 3 marks

(d) Evaluate d〈x̂〉/dt in the state Ψ(x, t). 5 marks

4. Particle in a finite potential well: Consider a particle that is moving in the following potential:

V (x) =


0 for x < 0,
−V0 for 0 ≤ x ≤ a,
0 for x > a,

where V0 > 0.

(a) Write down the energy eigen functions in the three domains, i.e. x < 0, 0 ≤ x ≤ a and x > a,

for energy eigen values such that E < 0. 2 marks
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(b) Impose the matching conditions at x = 0 and x = a and arrive at the relations between the

various coefficients. 3 marks

(c) Note that, in the limit V0 � E, the problem reduces to the case of a particle in a box with
its energy shifted by the amount −V0 (when compared to the situation wherein the potential
energy inside the box is zero). Consider the limit V0 � E and utilize the above matching
conditions to obtain the standard result for the energy eigen values for a particle in a box
(with energy shifted by −V0.) 5 marks
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Quiz I again

From the origins of quantum theory to
the Schrodinger equation in one dimension

1. Particle in a one-dimensional potential: Consider a particle that is moving in the following one-
dimensional potential:

V (x) = αx e−β x
2
,

where (α, β) > 0.

(a) Sketch the potential indicating, in particular, the locations of the extrema. 2 marks

(b) Draw the phase portrait of the system, specifically indicating with arrows the direction of

motion of the particle in phase space. 4 marks

(c) Will the energy eigen values of the corresponding problem in quantum mechanics be continuous

or discrete? 2 marks

(d) Approximately indicate the behavior of the ground state wave function of system. 2 marks

2. Particle in a box I: Consider a particle of mass m that is confined to a box with its walls at x = 0
and x = a. It is subject to the additional delta function potential

V (x) = V0 δ
(1)(x− a/2).

(a) Write down the energy eigen functions in the domains 0 ≤ x ≤ a/2 and a/2 ≤ x ≤ a. 4 marks

(b) Impose the matching conditions and arrive at the conditions that determine the energy eigen

values of the system. 6 marks

3. Particle in a box II: At time t = 0, a particle of mass m that is confined to a box with its walls at
x = 0 and x = a is described by the wave function

Ψ(x, 0) = A [ψ1(x) + ψ3(x)] ,

where ψ1(x) and ψ3(x) denote the ground and the second excited states of the particle.

(a) Normalize the wave function Ψ(x, 0). 1 mark

(b) What is Ψ(x, t) for t > 0? 1 mark

(c) Evaluate the expectation value of the position in the state Ψ(x, t) and show that it oscillates.

What are the angular frequency and the amplitude of the oscillation? 4 marks

(d) What will be the values that you will obtain if you measure the energy of the particle? What

are the probabilities for obtaining these values? 2 marks

(e) Evaluate the expectation value of the Hamiltonian operator corresponding to the particle in
the state Ψ(x, t). How does it compare with the energy eigen values of the ground and the

second excited states? 2 marks

4. Evolution of a wave packet: Consider a free particle described by the following wave function at
time t = 0:

Ψ(x, 0) = A e−α (x−x0)2 ei p0 x/~.

where α, x0 and p0 are real and positive quantities.

(a) Determine A. 1 mark

(b) What is Ψ(x, t) for t > 0? 3 marks

(c) Determine 〈x̂〉 and 〈x̂2〉 in the state Ψ(x, t). 3 marks

(d) Determine 〈p̂x〉 and 〈p̂2
x〉 in the state Ψ(x, t). 3 marks
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Exercise sheet 5

The harmonic oscillator

1. Properties of Hermite polynomials: In this problem, we shall explore a few useful relations involving
the Hermite polynomials.

(a) According to the so-called Rodrigues’s formula

Hn(x) = (−1)n ex
2

(
d

dx

)n (
e−x

2
)
.

Use this relation to obtain H3(x) and H4(x).

(b) Utilize the following recursion relation:

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x),

and the results of the above problem to arrive at H5(x) and H6(x).

(c) Using the expressions for H5(x) and H6(x) that you have obtained, check that the following
relation is satisfied:

dHn

dx
= 2nHn−1(x).

(d) Obtain H0(x), H1(x) and H2(x) from the following generating function for the Hermite poly-
nomials:

e−(z2−2 z x) =
∞∑
n=0

zn

n!
Hn(x).

2. Orthonormality conditions: Explicitly carry out the integrals to show that the energy eigen functions
of the ground, the first and the second excited states of the harmonic oscillator are normalized and
orthogonal.

3. Expectation values in the excited states of the harmonic oscillator: Determine the following expec-

tation values in the nth excited state of the harmonic oscillator: 〈x̂〉, 〈p̂x〉, 〈x̂2〉, 〈p̂2
x〉, 〈T̂ 〉, 〈V̂ 〉 and

〈Ĥ〉, where T and V denote the kinetic and the potential energies of the system.

4. Half-an-oscillator: Determine the energy levels and the corresponding eigen functions of an oscillator
which is subjected to the additional condition that the potential is infinite for x ≤ 0.

Note: You do not have to separately solve the Schrodinger equation. You can easily identify the
allowed eigen functions and eigen values from the solutions of the original, complete, oscillator!

5. Wagging the dog: Recall that the time-independent Schrodinger equation satisfied by a simple har-
monic oscillator of mass m and frequency ω is given by

− ~2

2m

d2ψE

dx2
+

1

2
mω2 x2 ψE = E ψE .

In terms of the dimensionless variable

ξ =

√
mω

~
x,

the above time-independent Schrodinger equation reduces to

d2ψE

dξ2
+
(
E − ξ2

)
ψE = 0,
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where E is the energy expressed in units of (~ω/2), and is given by

E =
2E

~ω
.

According to the ‘wag-the-dog’ method, one solves the above differential equation numerically, say,
using Mathematica, varying E until a wave function that goes to zero at large ξ is obtained.

Find the ground state energy and the energies of the first two excited states of the harmonic
oscillator to five significant digits by the ‘wag-the-dog’ method.
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Additional exercises II

From the origins of quantum theory and wave aspects of matter to
the time-independent Schrodinger equation in one dimension

1. Semi-classical quantization precedure: Consider a particle moving in one spatial dimension. Let
the particle be described by the generalized coordinate q, and let the corresponding conjugate
momentum be p. According to Bohr’s semi-classical quantization rule, the so-called action I satisfies
the following relation:

I ≡
∫

dq p = nh,

where n is an integer, while h is the Planck constant. Using such a quantization procedure, deter-
mine the energy levels of a particle in an infinite square well. Why does the semi-classical result
exactly match the result from the complete quantum theory?

2. Molecules as rigid rotators: A rigid rotator is a particle which rotates about an axis and is located
at a fixed length from the axis. Also, the particle moves only along the azimuthal direction. The
classical energy of such a plane rotator is given by E = L2/(2 I), where L is the angular momentum
and I is the moment of inertia.

(a) Using Bohr’s rule, determine the quantized energy levels of the rigid rotator.

(b) Molecules are known to behave sometimes as rigid rotators. If the rotational spectra of
molecules are characterized by radiation of wavelength of the order of 106 nm, estimate the
interatomic distances in a molecule such as H2.

3. The Klein-Gordon equation: Consider the following Klein-Gordon equation governing a wavefunc-
tion Ψ(x, t):

1

c2

∂2Ψ(x, t)

∂t2
− ∂2Ψ(x, t)

∂x2
+
(µ c

~

)2
Ψ(x, t) = 0,

where c and µ are constants. Show that there exists a corresponding ‘probability’ conservation law
of the form

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0,

where the quantity j(x, t) represents the conserved current given by

j(x, t) =
~

2 i µ

[
Ψ∗(x, t)

(
∂Ψ(x, t)

∂x

)
−Ψ(x, t)

(
∂Ψ∗(x, t)

∂x

)]
.

(a) Express the ‘probability’ P (x, t) in terms of the wavefunction Ψ(x, t).

(b) Can you identify any issue with interpreting P (x, t) as the probability?

4. Quantum revival: Consider an arbitrary wavefunction describing a particle in the infinite square
well.

(a) Show that the wave function will return to its original form after a time TQ = 4ma2/(π ~).

Note: The time TQ is known as the quantum revival time.

(b) Determine the classical revival time TC for a particle of energy E bouncing back and forth
between the walls.

(c) What is the energy for which TQ = TC?

5. Absence of degenerate bound states in one spatial dimension: Two or more quantum states are said
to be degenerate if they are described by distinct solutions to the time-independent Schrodinger
equation corresponding to the same energy. For example, the free particle states are doubly
degenerate—one solution describes motion to the right and the other motion to the left. It is
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not an accident that we have not encountered normalizable degenerate solutions in one spatial
dimension. By following the steps listed below, prove that there are no degenerate bound states in
one spatial dimension.

(a) Suppose that there are two solutions, say, ψ1 and ψ2, with the same energy E. Multiply the
Schrodinger equation for ψ1 by ψ2 and the equation for ψ2 by ψ1, and show that the quantity

W = ψ1
dψ2

dx
− ψ2

dψ1

dx

is a constant.

(b) Use further the fact that, since the wavefunctions ψ1 and ψ2 are normalizable, the quantity
W defined above must vanish.

(c) If W = 0, integrate the above equation to show that ψ2 is a multiple of ψ1 and hence the
solutions are not distinct.

6. ‘Wagging the dog’ in the case of the infinite square well: Find the first three allowed energies nu-
merically to, say, five significant digits, of a particle in the infinite square well, by the ‘wagging the
dog’ method.

7. The twin delta function potential: Consider a particle moving in the following twin delta function
potential:

V (x) = −a
[
δ(1)(x+ x0) + δ(1)(x− x0)

]
,

where a > 0.

(a) Obtain the bound energy eigen states.

(b) Do the states have definite parity? Or, in other words, do the energy eigen functions ψE(x)
satisfy the conditions ψE(±x) = ±ψE(x)?

(c) Show that the energy eigen values corresponding to the states with even and odd parity are
determined by the conditions

κx0 [1 + tanh (κx0)] = 2max0/~2,

κ x0 [1 + coth (κx0)] = 2max0/~2,

respectively, where κ =
√
−2mE/~.

(d) Argue that the odd eigen states are ‘less bound’ that the corresponding even ones.

8. The Dirac ‘comb’: Consider a particle propagating in an infinite series of evenly spaced, attractive,
Dirac delta function potentials of the following form:

V (x) = −a
∞∑

n=−∞
δ(1)(x− nx0),

where a > 0. Such a situation can describe, for instance, the potential encountered by an electron
as it traverses along a given direction in a solid. Due to the periodic nature of the potential,
one can expect that the energy eigen states satisfy the condition ψE(x + x0) = ei q x0 ψE(x) so
that |ψE(x + x0)|2 = |ψE(x)|2. Further, to avoid boundary effects, one often imposes the periodic
boundary condition

ψ(x+N x0) = ψ(x),

where N � 1. In such a case, we obtain that

ψ(x+N x0) =
(
ei q x0

)N
ψ(x) = ψ(x),
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which leads to (
ei q x0

)N
= 1

or, equivalently, q = 2π n/(N x0), where n = 0, 1, 2, . . . , N . For large N , q ranges almost continu-
ously between 0 and 2π.

(a) By matching the wavefunction and its derivative suitably across one of the delta functions,
show that, for bound states wherein E < 0, the energy eigen values satisfy the equation

2κx0 [cosh (κx0)− z]
sinh (κx0)

=
2max0

~2
,

where κ =
√
−2mE/~ and z = cos (q x0).

(b) Also, show that, for scattering states wherein E > 0, the corresponding condition is given by

z = cos (k x0)− ma

~2 k
sin (k x0),

where k =
√

2mE/~.

(c) Argue that, for 2max0/~2 � 1, these conditions lead to a series of energy bands, i.e. an
almost continuous range of allowed energy levels, separated by disallowed energy gaps.

9. A smooth potential barrier: Consider a particle moving in the following smooth potential barrier:

V (x) =
V0

cosh2(αx)
,

where V0 > 0. Evaluate the reflection and the tunneling probabilities for a particle that is being
scattered by the potential.

10. Quasi-probabilities in phase space: Given a normalized wave function Ψ(x, t), the Wigner function
W (x, p, t) is defined as

W (x, p, t) =
1

π ~

∞∫
−∞

dy Ψ∗(x+ y, t) Ψ(x− y, t) e2 i p y/~.

(a) Show that the Wigner function W (x, p, t) can also be expressed in terms of the momentum
space wave function Φ(p, t) as follows:

W (x, p, t) =
1

π ~

∞∫
−∞

dq Φ∗(p+ q, t) Φ(p− q, t) e−2 i q x/~.

Note: Recall that, given the wave function Ψ(x, t), the momentum space wavefunction Φ(p, t)
is described by the integral

Φ(p, t) =
1√

2π ~

∞∫
−∞

dx Ψ(x, t) e−i p x/~.

(b) Show that the Wigner function is a real quantity.

(c) Show that

∞∫
−∞

dp W (x, p, t) = |Ψ(x, t)|2 and

∞∫
−∞

dx W (x, p, t) = |Φ(p, t)|2.

Page 3



PH5100, Quantum Mechanics I, September–December 2020

(d) Consider the following normalized Gaussian wave packet

Ψ(x, t) =
(√
π αF(t) ~

)−1/2
ei [p0 (x−x0)−(p20 t/2m)]/~ e−[x−x0−(p0 t/m)]2/[2α2 ~2 F(t)],

where
F(t) = 1 + i (t/τ) and τ = m ~α2.

The peak of wave function is located at x = x0 + (p0 t/m), and the peak follows the trajectory
of a classical free particle of mass m, whose position and momentum at the initial time t = 0
were x0 and p0, respectively.

i. Evaluate the Wigner function corresponding to this wave function.

ii. Plot the Wigner function, say, using Mathematica, at different times.
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Exercise sheet 6

Essential mathematical formalism I

1. Eigen values and eigen functions of the momentum operator: Determine the eigen values and the
eigen functions of the momentum operator. Establish the completeness of the momentum eigen
functions.

2. The angular momentum operator: Consider the operator

Lφ = −i ~ d

dφ
,

where φ is an angular variable. Is the operator hermitian? Determine its eigenfunctions and
eigenvalues.

Note: The operator Lφ, for instance, could describe the conjugate momentum of a bead that is
constrained to move on a circle of a fixed radius.

3. Probabilities in momentum space: A particle of mass m is bound in the delta function well V (x) =
−a δ(x), where a > 0. What is the probability that a measurement of the particle’s momentum
would yield a value greater than p0 = ma/~?

4. The energy-time uncertainty principle: Consider a system that is described by the Hamiltonian

operator Ĥ.

(a) Given an operator, say, Q̂, establish the following relation:

d〈Q̂〉
dt

=
i

~
〈[Ĥ, Q̂]〉+

〈
∂Q̂

∂t

〉
,

where the expectation values are evaluated in a specific state.

(b) When Q̂ does not explicitly depend on time, using the generalized uncertainty principle, show
that

∆H ∆Q ≥ ~
2

∣∣∣∣∣d〈Q̂〉dt

∣∣∣∣∣ .
(c) Defining

∆t ≡ ∆Q

|d〈Q̂〉/dt|
,

establish that

∆E∆t ≥ ~
2
,

and interpret this result.

5. Two-dimensional Hilbert space: Imagine a system in which there are only two linearly independent
states, viz.

|1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
.

The most general state would then be a normalized linear combination, i.e.

|ψ〉 = α |1〉+ β |2〉 =

(
α
β

)
,
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with |α|2+|β|2 = 1. The Hamiltonian of the system can, evidently, be expressed as a 2×2 hermitian
matrix. Suppose it has the following form:

H =

(
a b
b a

)
,

where a and b are real constants. If the system starts in the state |1〉 at an initial time, say, t = 0,
determine the state of the system at a later time t.
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Exercise sheet 7

Essential mathematical formalism II

1. A three-dimensional vector space: Consider a three-dimensional vector space spanned by the or-
thonormal basis |1〉, |2〉 and |3〉. Let two kets, say, |α〉 and |β〉 be given by

|α〉 = i |1〉 − 2 |2〉 − i |3〉 and |β〉 = i |1〉+ 2 |3〉.

(a) Construct 〈α| and 〈β| in terms of the dual basis, i.e. 〈1|, 〈2| and 〈3|.
(b) Find 〈α|β〉 and 〈β|α〉 and show that 〈β|α〉 = 〈α|β〉∗.
(c) Determine all the matrix elements of the operator Â = |α〉〈β| in this basis and construct the

corresponding matrix. Is the matrix hermitian?

2. A two level system: The Hamiltonian operator of a certain two level system is given by

Ĥ = E

(
|1〉〈1| − |2〉〈2|+ |1〉〈2|+ |2〉〈1|

)
,

where |1〉 and |2〉 form an orthonormal basis, while E is a number with the dimensions of energy.

(a) Find the eigen values and the normalized eigen vectors, i.e. as a linear combination of the
basis vectors |1〉 and |2〉, of the above Hamiltonian operator.

(b) What is the matrix that represents the operator Ĥ in this basis?

3. Matrix elements for the harmonic oscillator: Let |n〉 denote the orthonormal basis of energy eigen
states of the harmonic oscillator. Determine the matrix elements 〈n|x̂|m〉 and 〈n|p̂x|m〉 in this
basis.

4. Coherent states of the harmonic oscillator: Consider states, say, |α〉, which are eigen states of the
annihilation (or, more precisely, the lowering) operator, i.e.

â|α〉 = α |α〉,

where α is a complex number.

Note: The state |α〉 is called the coherent state.

(a) Calculate the quantities 〈x̂〉, 〈x̂2〉, 〈p̂x〉 and 〈p̂2
x〉 in the coherent state.

(b) Also, evaluate the quantities ∆x and ∆px in the state, and show that ∆x ∆px = ~/2.

(c) Like any other general state, the coherent state can be expanded in terms of the energy eigen
states |n〉 of the harmonic oscillator as follows:

|α〉 =
∞∑
n=0

cn |n〉.

Show that the quantities cn are given by

cn =
αn√
n!
c0.

(d) Determine c0 by normalizing |α〉.
(e) Upon including the time dependence, show that the coherent state continues to be an eigen

state of the lowering operator â with the eigen value evolving in time as

α(t) = α e−i ω t.

Note: Therefore, a coherent state remains coherent, and continues to minimize the uncertainty.
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(f) Is the ground state |0〉 itself a coherent state? If so, what is the eigen value α?

5. A three level system: The Hamiltonian for a three level system is represented by the matrix

H = ~ω

 1 0 0
0 2 0
0 0 2

 .

Two other observables, say, A and B, are represented by the matrices

A = λ

 0 1 0
1 0 0
0 0 2

 and B = µ

 2 0 0
0 0 1
0 1 0

 ,

where ω, λ and µ are positive real numbers.

(a) Find the eigen values and normalized eigen vectors of H, A, and B.

(b) Suppose the system starts in the generic state

|ψ(t = 0)〉 =

 c1

c2

c3

 ,

with |c1|2 + |c2|2 + |c3|2 = 1. Find the expectation values of H, A and B in the state at t = 0.

(c) What is |ψ(t)〉 for t > 0? If you measure the energy of the state at a time t, what are the
values of energies that you will get and what would be the probability for obtaining each of
the values?

(d) Also, arrive at the corresponding answers for the quantities A and B.
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Quiz II

From the time-independent Schrodinger equation in one dimension
to essential mathematical formalism

1. Virial theorem in classical and quantum mechanics: Consider a system in one-dimension described
by the position x and momentum px which exhibits bounded motion.

(a) For a classical system, show that the time-derivative of (x px), when averaged over the time

period of the system, vanishes. 2 marks

(b) Using the above result, arrive at the relation between the kinetic and the potential energies
of the system when averaged over the time period, for a potential of the form V (x) = α |x|n,

where α > 0 and n is a positive integer. 3 marks

Note: This relation between the average kinetic and potential energies of a bounded system is
known as the virial theorem.

(c) Show that the system satisfies the following quantum version of the classical virial theo-

rem: 5 marks〈
p̂2
x

〉
2m

=
1

2

〈
x̂
∂̂V

∂x

〉
,

where the expectation values are evaluated in a stationary state described by a real wavefunc-
tion (as applicable for bounded systems).

Hint: Establish the above virial theorem in the following two steps. To begin with, show that

∞∫
−∞

dxψ x
dV

dx
ψ = −〈V̂ 〉 − 2

∞∫
−∞

dx
dψ

dx
xV ψ

and then, using the time-independent Schrodinger equation, illustrate that

−2

∞∫
−∞

dx
dψ

dx
xV ψ = E +

~2

2m

∞∫
−∞

dx

(
dψ

dx

)2

.

2. Energy eigen kets and observables: Consider a system described by the Hamiltonian H. Let A be

an observable associated with the system. Let the operators Ĥ and Â describing the Hamiltonian
and the observable A be given by the matrices

Ĥ = E

 0 −i 0
i 0 2 i
0 −2 i 0

 , Â = a

 0 −i 0
i 1 1
0 1 0

 ,

where E and a are real quantities.

(a) Can the energy and the observable A of the system be measured simultaneously? 2 marks

(b) If we measure the energy of the system, what are the values we would obtain? 3 marks

(c) What are the corresponding energy eigen kets? 3 marks

(d) What is the expectation value 〈Â〉 in the energy eigen state characterized by the energy eigen

value
√

5E? 2 marks
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3. Describing a free particle: Consider a free particle of mass m moving in one-dimension along, say,
the x-direction. At t = 0, let 〈x̂〉 = x0, 〈p̂x〉 = p0, ∆x2 = 〈x̂2〉 − 〈x̂〉2 = ∆x2

0 and ∆p2
x =

〈p̂2
x〉 − 〈p̂x〉2 = ∆p2

0.

Note: Recall that the expectation value of an operator, say, Â, is defined as 〈Ψ|Â|Ψ〉, where |Ψ〉
satisfies the time-dependent Schrodinger equation

i ~
∂|Ψ〉
∂t

= Ĥ |Ψ〉

with Ĥ being the Hamiltonian operator describing the system.

(a) Evaluate 〈x̂〉 and 〈p̂x〉 as a function of time, and express it in terms of p0 and x0. 2 marks

(b) Show that 2 marks

d〈x̂2〉
dt

=
2

m
〈p̂x x̂〉+

i ~
m
.

(c) Establish that 2 marks

d〈p̂2
x〉

dt
= 0.

(d) Show that 2 marks

d2(∆x2)

dt2
=

2

m
∆p2

x

(e) Solve the above equation to establish that 2 marks

∆x2 =
∆p2

0

m2
t2 + ∆x2

0.

4. Coherent states: Recall that the coherent state |α〉 of a harmonic oscillator is defined as

â |α〉 = α |α〉,

where â is the lowering operator and α is a complex number.

(a) Let ψα(x) denote the wave function of the coherent state in the position representation. Using

the above definition of the coherent state, obtain the functional form of ψα(x). 5 marks

(b) If Ψα(x, t = 0) = ψα(x), what is Ψα(x, t) for t > 0? 1 mark

(c) Evaluate 〈Ψα|x̂|Ψα〉 and 〈Ψα|p̂x|Ψα〉 at time t. 4 marks
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Exercise sheet 8

Essential mathematical formalism III

1. Expectation values in momentum space: Given a wave function, say, Ψ(x, t), in the position space,
the corresponding wave function in momentum space is given by

Φ(p, t) =

∫ ∞
−∞

dp√
2π ~

Ψ(x, t) e−i p x/~.

(a) Show that, if the wavefunction Ψ(x, t) is normalized in position space, it is normalized in
momentum space as well, i.e.∫ ∞

−∞
dx |Ψ(x, t)|2 =

∫ ∞
−∞

dp |Φ(p, t)|2 = 1.

(b) Recall that, in the position representation, the expectation value of the momentum operator
can be expressed as follows:

〈p̂〉 = −i ~
∫ ∞
−∞

dxΨ∗(x, t)
∂Ψ(x, t)

∂x
.

Show that, in momentum space, it can be expressed as

〈p̂〉 =

∫ ∞
−∞

dp p |Φ(p, t)|2.

(c) Similarly, show that the following expectation value of the position operator in position space

〈x̂〉 =

∫ ∞
−∞

dxx |Ψ(x, t)|2,

can be written as

〈x̂〉 = i ~
∫ ∞
−∞

dpΦ∗(p, t)
∂Φ(p, t)

∂p
.

2. The Schrodinger equation in momentum space: Assuming that the potential V (x) can be expanded
in a Taylor series, show that the time-dependent Schrodinger equation in momentum space can be
written as

p2

2m
Φ(p, t) + V

(
i ~

∂

∂p

)
Φ(p, t) = i ~

∂Φ(p, t)

∂t
.

3. Uniformly accelerating particle: A simple system wherein it turns out to be easier to solve the
Schrodinger equation in momentum space is the case of a particle that is exerted by a constant
force, say, F , so that V (x) = −F x. Classically, this corresponds to a uniformly accelerating particle.

(a) Show that, in such a case, the momentum space wavefunction can be written as

Φ(p, t) = Φ0(p− F t) e−i p
3/(6mF ~).

where Φ0(p− F t) is an arbitrary function.

(b) Since Φ0(p− F t) is arbitrary, argue that we can write the above wave function as

Φ(p, t) = φ0(p− F t) e−i [(p−F t)
3−p3]/(6mF ~),

where φ0(p) is the momentum space amplitude at t = 0, i.e. φ0(p, t = 0) = φ0(p).
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(c) Note that the expectation value of the operator p̂ at t = 0, say, 〈p̂〉0, is determined by the
initial momentum space amplitude φ0(p). Show that, for t > 0, the expectation value 〈p̂〉 is
given by

〈p̂〉 = 〈p̂〉0 + F t,

which is the same as the corresponding classical result.

4. Commutator in momentum space: Working in the momentum space representation, establish that
[x̂, p̂] = i ~.

5. Feynman-Kac formula: Given that a quantum mechanical particle is at the location x at time t,
show that the probability amplitude for finding the particle at the location x′ at a later time t′ can
be expressed as

K(x′, t′|x, t) = 〈x′, t′|x, t〉 =
∑
all n

ψn(x′)ψ∗n(x) e−i En (t′−t)/~,

where ψn(x) denote the energy eigen states corresponding to the energy eigen values En and the
sum over n represents either the sum or a suitable integral in the case of a continuum of states over
all the energy eigen values. Evaluate the quantity 〈x′, t′|x, t〉 for the case of a free particle.

Note: The above expression for the probability amplitude is known as the Feynman-Kac formula.
The probability amplitude 〈x′, t′|x, t〉 can be given a so-called path integral interpretation, i.e. it
can be expressed as a sum over all paths with the probability amplitude for each path given the
same weightage, being proportional to exp {i S[x(t)]/~}, with S[x(t)] denoting the corresponding
classical action.
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Exercise sheet 9

The Schrodinger equation in three dimensions and particle in a central potential

1. Commutation relations: Establish the following commutation relations between the components of
the position and the momentum operators in three dimensions:

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0 and [x̂i, p̂j ] = i ~ δij ,

where (i, j) = (1, 2, 3).

2. Particle in a three dimensional box: Consider a particle that is confined to a three dimensional box
of side, say, a. In other words, the particle is free inside the box, but the potential energy is infinite
on the walls of the box, thereby confining the particle to the box.

(a) Determine the energy eigen functions and the corresponding energy eigen values.

(b) Does there exist degenerate energy eigen states? Identify a few of them.

3. Particle in a spherical well: Consider a particle that is confined to the following spherical well:

V (r) =

{
0 for r < a,
∞ for r ≥ a.

Find the energy eigen functions and the corresponding energy eigen values of the particle.

4. Orthogonality of Legendre polynomials: Recall that, according to the Rodrigues formula, the Leg-
endre polynomials Pl(x) are given by

Pl(x) =
1

2l l!

dl

dxl

[(
x2 − 1

)l]
.

Using this representation, arrive at the following orthonormality condition for the Legendre poly-
nomials: ∫ 1

−1
dxPl(x)Pl′(x) =

2

2 l + 1
δll′ .

Hint: The differentials appearing in the representation suggests integration by parts.

5. Expectation values in the energy eigen states of the hydrogen atom: Recall that, the normalized
wavefunctions that describe the energy eigen states of the electron in the hydrogen atom are given
by

ψnlm(r, θ, φ) =

[(
2

na0

)3 (n− l − 1)!

2n [(n+ l)!]3

]1/2

e−r/(na0)

(
2 r

n a0

)l
L2 l+1
n−l−1(2 r/n a0) Y m

l (θ, φ),

where Lqp(x) and Y m
l represent the associated Laguerre polynomials and the spherical harmonics,

respectively, while a0 denotes the Bohr radius.

(a) Evaluate 〈r̂〉 and 〈r̂2〉 for the electron in the ground state of the hydrogen atom, and express
it in terms of the Bohr radius.

(b) Find 〈x̂〉 and 〈x̂2〉 for the electron in the ground state of hydrogen.

Hint: Express r2 as x2 + y2 + z2 and exploit the symmetry of the ground state.

(c) Calculate 〈x̂2〉 in the state n = 2, l = 1 and m = 1.

Note: This state is not symmetrical in x, y and z. Use x = r sin θ cosφ.
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Exercise sheet 10

Angular momentum and spin

1. The raising and lowering angular momentum operators: As we have discussed, the raising and low-
ering angular momentum operators L+ and L− change the value of the z-component of angular
momentum, viz. the eigen value m (corresponding to the operator Lz) by one unit, i.e.

L± f
m
l = Aml f

m±1
l ,

where Aml are constants, while fml are simultaneous eigen functions of the operators L2 and Lz.
What are Aml , if fml are normalized eigen functions?

2. Velocity on the surface of a spinning electron: Consider the electron to be a classical solid sphere.
Assume that the radius of the electron is given by the classical electron radius, viz.

rc =
e2

4π ε0me c2

where e and me denote the charge and the mass of the electron, while c represents the speed of
light. Also, assume that the angular momentum of the electron is ~/2. Evaluate the speed on the
surface of the electron under these conditions.

3. Probabilities for a spin state: Suppose a spin 1/2 particle is in the state

χ =
1√
6

(
1 + i

2

)
.

What are the probabilities of getting ~/2 and −~/2, if you measure Sz and Sx?

4. Mean values and uncertainties associated with spin operators: An electron is in the spin state

χ = A

(
3 i
4

)
.

(a) Determine the normalization constant A.

(b) Find the expectation values of the operators Ŝx, Ŝy and Ŝz in the above state.

(c) Evaluate the corresponding uncertainties, i.e. ∆Sx, ∆Sy and ∆Sz.

(d) Examine if the products of any two of these quantities are consistent with the corresponding
uncertainty principles.

5. Larmor precession: Consider a charged, spin 1/2 particle that is at rest in an external and uniform

magnetic field, say, B, that is oriented along the z-direction, i.e. B = B k̂, where B is a constant.
The Hamiltonian of the particle is then given by

Ĥ = −γ B Ŝz,

where γ is known as the gyromagnetic ratio of the particle.

(a) Determine the most general, time dependent, solution that describes the state of the particle.

(b) Evaluate the expectation values of the operators Ŝx, Ŝy and Ŝz in the state.

(c) Show that the expectation value of the operator Ŝ = Ŝx î+ Ŝy ĵ + Ŝz k̂ is tilted at a constant
angle with respect to the direction of the magnetic field and precesses about the field at the
so-called Larmor frequency ω = γ B.
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Additional exercises III

From essential mathematical formalism to angular momentum and spin

1. Sequential measurements: An operator Â, representing the observable A, has two normalized eigen

states ψ1 and ψ2, with eigen values a1 and a2. Operator B̂, representing another observable B, has
two normalized eigen states φ1 and φ2, with eigen values b1 and b2. These eigen states are related
as follows:

ψ1 =
3

5
φ1 +

4

5
φ2 and ψ2 =

4

5
φ1 −

3

5
φ2.

(a) Observable A is measured and the value a1 is obtained. What is the state of the system
immediately after this measurement?

(b) If B is now measured, what are the possible results, and what are their probabilities?

(c) Immediately after the measurement of B, A is measured again. What is the probability of
getting a1?

2. Operators describing spin: A two level system is described by two orthonormal states, say, |+〉
and |−〉. There exist three operators, Ŝx, Ŝy and Ŝz, called the spin operators along the three axes,
which are defined as

Ŝx =
~
2

(|+〉〈−|+ |−〉〈+|) ,

Ŝy =
i ~
2

(−|+〉〈−|+ |−〉〈+|) ,

Ŝz =
~
2

(|+〉〈+| − |−〉〈−|) .

(a) Construct the matrices corresponding to the three operators Ŝx, Ŝy and Ŝz in the basis |+〉
and |−〉.

(b) Evaluate the commutators [Ŝx, Ŝy], [Ŝy, Ŝz] and [Ŝz, Ŝx].

(c) Can you express the results in terms of the operators Ŝx, Ŝy or Ŝz?

3. Momentum space wave functions: Consider a particle that is confined to an infinite square well with
its walls located at x = 0 and x = a.

(a) Determine the momentum space wave functions, say, φn(p, t), for the particle in the nth energy
eigen state described by the position wave functions ψn(x, t).

(b) Evaluate |φ1(p, t)|2 and |φ2(p, t)|2.

4. More about oscillators: Let |0〉 represent the ground state of a one dimensional quantum oscillator.
Show that

〈0|ei k x̂|0〉 = exp−
(
k2 〈0|x̂2|0〉/2

)
,

where x̂ is the position operator.

5. Commutator identities: Establish the following identities involving the commutators of operators:

(a) [Â B̂, Ĉ] = Â [B̂, Ĉ] + [Â, Ĉ] B̂,

(b) [x̂n, p̂x] = i ~n x̂n−1,

(c) [f(x̂), p̂x] = i ~ (df(x̂)/dx̂),

where f(x) is a function that can be expanded in a power series.

6. Properties of unitary operators: An operator say, Û , is said to be unitary if its hermitian conjugate

is the same as its inverse, i.e. Û † = Û−1 so that Û−1 Û = Û † Û = 1.
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(a) Show that unitary transformations preserve inner products in the sense that 〈Û β|Û α〉 = 〈β|α〉,
for all |α〉 and |β〉.

(b) Show that the eigen values of a unitary operator have unit modulus.

(c) Show that the eigen vectors of a unitary operator belonging to distinct eigen values are or-
thogonal.

7. Superposition of states of the hydrogen atom: An electron in the Coulomb field of a proton is in the
state described by the wave function

ψ(r) =
1

6

[
4ψ100(r) + 3ψ211(r)− ψ210(r) +

√
10 ψ21−1(r)

]
.

(a) What is the expectation value of the energy of the electron in the state?

(b) What is the expectation value of L̂2?

(c) What is the expectation value of L̂z?

8. A model of angular momentum: Let

L̂± =
(
â†± â∓

)
~, L̂z =

(
â†+ â+ − â†− â−

)
~/2 and N̂ = â†+ â+ + â†− â−,

where â± and â†± are the annihilation and the creation operators of two independent simple harmonic
oscillators satisfying the usual commutation relations. Show that

(a) [L̂z, L̂±] = ± ~ L̂±,

(b) L̂2 = N̂
[(
N̂/2

)
+ 1
] (

~2/2
)
,

(c) [L̂2, L̂z] = 0.

Note: This representation of the angular momentum operators in terms of creation and the annihi-
lation operators of oscillators is known as the Schwinger model.

9. Operators and eigen functions for a spin 1 particle: Consider a particle with spin 1.

(a) Construct the operators Ŝx, Ŝy and Ŝz corresponding to the particle.

(b) Determine the eigen values of the operator Ŝx and express the corresponding eigen functions
in terms of the eigen functions of the Ŝz operator.

10. Hamiltonian involving angular momentum: The Hamiltonian of a system is described in terms of
the angular momentum operators as follows:

H =
L2
x

2 I1
+

L2
y

2 I2
+

L2
z

2 I3
.

(a) What are the eigen values of the Hamiltonian when I1 = I2?

(b) What are the eigen values of the Hamiltonian if the angular momentum of the system is unity
and I1 6= I2?
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Quiz III

From essential mathematical formalism

to Schrodinger equation in three dimensions and particle in a central potential

1. The wave functions of the harmonic oscillator in momentum space: Let the ground and the first
excited states of the harmonic oscillator be denoted as |0〉 and |1〉, respectively.

(a) How are the position and momentum operators x̂ and p̂ represented in momentum

space? 1 mark

(b) Recall that the ground state is defined as â|0〉 = 0, where â is the lowering operator. Using the
above-mentioned representations of the position and momentum operators in momentum space
and the above definition of the ground state |0〉, obtain the differential equation governing the

momentum space wave function, say, φ0(p), describing the ground state. 2 marks

(c) Solve the resulting differential equation to obtain φ0(p). 3 marks

(d) Note that the first excited state is defined as |1〉 = â†|0〉, where â† is the raising operator.
Using the representations of the operators in momentum space and the above definition of the
first excited state |1〉, obtain the momentum space wave function, say, φ1(p), describing the

first excited state. 4 marks

2. Particle in a three-dimensional potential: Consider a particle of mass m that is moving in the three-
dimensional potential

V (x, y, z) =

{
1
2 mω2 z2, for 0 < x < a, 0 < y < a,
∞, elsewhere.

(a) Write down the energy eigen values of the system. 4 marks

(b) What are the corresponding energy functions? 3 marks

(c) If ~ω > 5π2 ~2/(ma2), what are the energies and the degeneracies of the ground and the first

excited states? 3 marks

3. Particle confined between two spherical shells: Consider a particle that is confined between two con-
centric spherical shells located at radii a and b, with b > a. The potential between the shells is zero
and is infinite everywhere else, including the walls of the shells.

(a) Assuming l = 0, determine energy eigen functions describing the particle. 5 marks

(b) What are the energy eigen values of the particle when l = 0? 2 marks

(c) For the l = 0 case, normalize the eigen functions describing the particle. 3 marks

4. Superposition of states of the hydrogen atom: An electron in the Coulomb field of a proton is in
the state described by the following wave function, which is, evidently, a sum of the energy eigen
functions:

ψ(r) =

√
1

6
ψ200(r) +

√
1

3
ψ211(r) +

√
1

6
ψ210(r) +

√
1

3
ψ21−1(r),

where the subscripts denote the quantum numbers n, l and m in that order.

(a) What is the expectation value of the energy of the electron in the state? 2 marks

(b) What is the expectation value of the operator L̂2? 4 marks

(c) What is the expectation value of the operator L̂z? 4 marks
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Exercise sheet 11

Time-independent perturbation theory

1. The perturbed wavefunction: Using time-independent perturbation theory, show that the wave func-
tion of the n-th eigen state of system at the first order in the perturbation is given by

ψ1
n =

∑
m 6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
E0
n − E0

m

ψ0
m,

where Ĥ ′ is the Hamiltonian describing the perturbation, while ψ0
n and E0

n denote the eigen functions
and the eigen values of the unperturbed Hamiltonian Ĥ0.

2. A delta function perturbation: Suppose we introduce the following perturbation:

Ĥ ′ = α δ(1)(x− a/2),

where α is a constant, at the centre of an infinite potential well with its walls located at x = 0 and
x = a. Determine the change in the energy eigen values at the first order in the perturbation. Also,
explain why the original energy eigen values with even n are not affected by the perturbation.

3. Expectation values of inverse powers of radii: Show that, for an electron in the hydrogen atom,〈
1

r

〉
=

1

n2 a0
,〈

1

r2

〉
=

1

[l + (1/2)] n3 a2
0

,〈
1

r3

〉
=

1

l [l + (1/2)] (l + 1)n3 a3
0

,

where n and l are the principal and the azimuthal quantum numbers, and a0 = 4π ε0 ~2/
(
me e

2
)

is the Bohr radius, with me denoting the mass of the electron, e the electronic charge, and ε0 the
permitivity of free space.

4. Nature of l = 0 states: Let a and b be two constant vectors. Show that

π∫
0

dθ

2π∫
0

dφ sin θ (a · r̂) (b · r̂) =
4π

3
(a · b) .

Given that Ŝp and Ŝe denote the spin of the proton and the electron, use the above result to
demonstrate that 〈

3 (Ŝp · r̂) (Ŝe · r̂)− Ŝp · Ŝe

r3

〉
= 0,

in states wherein l = 0.

5. The 21-cm transition: Recall that the hyperfine structure of hydrogen is given by

E1
hf =

µ0 gp e
2

8πmpme

〈
3 (Ŝp · r̂) (Ŝe · r̂)− (Ŝp · Ŝe)

r3

〉
+
µ0 gp e

2

3mpme
〈Ŝp · Ŝe〉 |ψ(0)|2,

where mp denotes the mass of the proton, gp = 5.59 its gyromagnetic ratio, and µ0 is the magnetic
permeability of free space.
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(a) As we discussed, when l = 0, the first term always vanishes. Establish that, the ground state
of hydrogen splits into a singlet and triplet state with the following energies:

E1
hf =

4 gp ~4

3mpme c2 a4
0

{
+(1/4),
−(3/4).

(b) Also show that the gap between these two energy levels is

∆E =
4 gp ~4

3mpme c2 a4
0

= 5.88× 10−6 eV.

(c) Further, establish that this energy gap corresponds to the wavelength of 21 cm and the fre-
quency of 1420 MHz.

Note: Due to the abundance of hydrogen, this 21-cm transition is one of the most ubiquitous
forms of radiation in the universe.
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End-of-semester exam

From the origins of quantum theory and the wave aspects of matter
to time-independent perturbation theory

1. Effects of a wall on a bound state: A particle is originally moving under the influence of the Dirac

delta function potential V (x) = −α δ(1)(x), where α > 0. A wall is introduced at x = −d so that
the particle is subject to the complete potential

V (x) =

{
−α δ(1)(x), for x > −d,
∞, for x < −d.

(a) Determine the energy eigen functions in the two domains −d < x < 0 and x > 0 for bound

states associated with the system. 3 marks

(b) Arrive at the conditions to be imposed relating the energy eigen functions in the two do-

mains. 3 marks

(c) How does the presence of the wall modify the bound state energy associated with the original

delta function potential? 3 marks

(d) What is the condition for the effect of the wall on the energy eigen value of the bound state

to be small? 1 mark

2. Establishing an identity: Consider a system described by the Hamiltonian H = p2/(2m) + V (x).
Let V (x) be such that the system is bounded and let |n〉 denote the discrete energy eigen states of
the system with corresponding energy eigen values En.

(a) Evaluate the commutator [Ĥ, x̂]. 1 mark

(b) Also, calculate the commutator [[Ĥ, x̂], x]. 2 marks

(c) Evaluate 〈n|[[Ĥ, x̂], x]|n〉. 3 marks

(d) Using this result establish that 3 marks

∑
n

(En − E0) |〈n|x̂|0〉|2 =
~2

2m
.

(e) Show that this relation holds in the case of the harmonic oscillator. 1 mark

3. Properties of operators:

(a) Consider an operator, say, Â, that has N eigen values. Show that the operator satisfies an

Nth order equation of the form: 5 marks

N∑
i=0

ci Â
i = 0,

where ci are constant coefficients.

Hint: If |ψi〉 are the eigen states of the operator Â with eigen values ai, then consider the effect
of the operator

∏N
i=1(Â − ai) on a generic quantum state that can always be expressed as a

superposition of |ψi〉.
(b) A real operator Â satisfies the relation

Â2 − 3 Â+ 2 = 0.

This is the lowest order equation that the operator Â obeys.
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i. What are the eigen values of the operator Â? 2 marks

ii. What are the corresponding eigen states? 2 marks

iii. Does the operator Â represent an observable quantity? 1 mark

4. Particle in a spherical potential: Consider a particle in a spherical potential which is described by
the following wave function:

ψ(r) = A (x+ y + 2 z) e−α r,

where r =
√
x2 + y2 + z2 is the radial coordinate and A and α are constants.

(a) What is 〈L̂2〉 in the above state? 2 marks

(b) What is 〈L̂z〉 in the above state? 3 marks

(c) If Lz is measured, what is the probability that the measurement yields ~? 2 marks

(d) What is the probability of finding the particle at given angular coordinates θ and φ? 3 marks

Note: It should be mentioned that

Y 0
0 =

√
1

4π
, Y 0

1 =

√
3

4π
cos θ, Y ±1

1 = ∓
√

3

8π
sin θ e±i φ.

5. Particle in a logarithmic potential: A particle of mass m is moving in the following logarithmic
central potential:

V (r) = V0 ln

(
r

r0

)
,

where V0 and r0 are constants.

(a) Establish the following virial theorem in three dimensions: 3 marks

〈p̂2〉
2m

=
1

2
〈r̂ ·∇V 〉,

where the expectation values are evaluated in a stationary state.

(b) Using the virial theorem, show that, for a particle in the above logarithmic central po-
tential, the energy eigen states have the same value for the mean-squared velocity, i.e.
〈p̂2〉/m2. 2 marks

(c) Let the Hamiltonian Ĥ of a system depend on additional parameter α. If En are the energy

eigen values of the system, show that 3 marks

∂En
∂α

=

〈
∂Ĥ

∂α

〉
.

Note: This is known as the Feynman-Hellmann theorem.

(d) Using the above Feynman-Hellmann theorem, show that, for a particle in the above logarithmic
central potential, the spacing between the energy levels is independent of the mass m of the
particle. 2 marks

6. Evolution of a spin-1
2 system in a magnetic field: Consider a spin–1

2 system in a magnetic field di-

rected along the positive y-axis. Let |+〉 and |+〉 denote the eigen kets of the Ŝz operator with
eigen values ~/2 and −~/2, respectively. Let |χ(t)〉 denote the state of the system at any time. At
an initial time, say, t = 0, the system is in the state |χ(t = 0)〉 = |+〉.

(a) Determine the state of the system |χ(t)〉 at any later time, i.e. for t > 0. 2 marks
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(b) Evaluate 〈χ(t)|Ŝz|χ(t)〉. 2 marks

(c) Also, calculate 〈χ(t)|Ŝx|χ(t)〉 and 〈χ(t)|Ŝy|χ(t)〉. 3+3 marks

7. Spin-3
2 particle: Consider a particle with spin 3

2 .

(a) What are the eigen values and eigen states of the Ŝz operator for the system? 2 marks

(b) Determine the effects of the operators Ŝ+ and Ŝ− on these eigen states. 3 marks

(c) Construct the matrices describing the operators Ŝ+ and Ŝ−. 3 marks

(d) Obtain the matrix describing the operator Ŝx. 2 marks

8. Perturbed energy at the second order: Consider a charged particle evolving in the simple harmonic
oscillator potential V (x) = (m/2)ω2 x2. The system is placed in an electric field of strength, say, E ,
which is directed along positive x-axis.

(a) What are the energy eigen values of the oscillator in the external electric field? 2 marks

(b) If we treat the external electric field as a perturbation, what is the shift in the energy levels

at the first order in perturbation theory? 1 mark

(c) Carry out perturbation theory up to the second order to determine the shift in the energy

levels at the second order. 5 marks

(d) Determine the shifts in the energy levels of the oscillator in the electric field at the second

order in perturbation theory. What do you find? 2 marks
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Advanced problems

From the origins of quantum theory and the wave aspects of matter
to time-independent perturbation theory

1. Particle in a uniform gravitational field: The potential describing a particle in a uniform gravita-
tional field is given by V (x) = −mg x, where g denotes acceleration due to gravity and we have
assumed that g is directed towards the negative x-direction. Earlier, we had solved the Schrodinger
equation in momentum space to arrive at the corresponding wave function.

(a) Solve the Schrodinger equation in position space for vanishing energy eigen value in the do-
mains of large positive and negative x.

(b) Show that the solution to the Schrodinger equation in position space can be expressed in terms
of the Airy functions.

(c) Plot the energy eigen functions for a few different eigen values.

2. Simple harmonic oscillator in momentum space: Earlier, we had arrived at the Schrodinger equa-
tion governing the wave function of a system in momentum space. Solve the time-independent
Schrodinger equation governing the harmonic oscillator in momentum space to arrive at the corre-
sponding energy eigen functions. Can you recognize the form of the eigen functions?

3. Classical and quantum probability distributions for the harmonic oscillator: Consider a particle
moving in the time independent potential V (x) with energy E. The classical probability of finding
the particle in the region between x and x+ dx is simply the ratio of the time spent in the domain,
say, dt, to the total time taken for one traversal, i.e.

PC(x) dx =
dt

T/2
=

2

T

dx

v(x)
,

where, evidently, v(x) is the velocity at the location x, while T is the time period of the system.
We can rewrite the above expression for PC(x) as

PC(x) =
2

T

√
m/2√

E − V (x)
.

(a) Plot the classical probability for the case of a harmonic oscillator for a given energy E and
specific sets of values for the parameters m and ω.

(b) We had earlier discussed the energy eigen functions ψn(x) for the case of the harmonic oscil-
lator, with n denoting the different states. Plot the probability density |ψn(x)|2 for an integer
n which corresponds to an energy eigen value that is closest to the energy E chosen in the
classical case.

(c) How do the two plots compare as you keep increasing the energy E?

4. Baker-Campbell-Hausdorff formulae: Consider two operators Â and B̂.

(a) Show that, when [Â, B̂] = c, where c is, in general, a complex number,

eÂ eB̂ = eÂ+B̂+
1
2 [Â,B̂].

(b) Establish that, in general,

eÂ eB̂ = eÂ+B̂+
1
2 [Â,B̂]+

1
12 ([Â,[Â,B̂]]+[B̂,[B̂,Â]])+···.

(c) Further, show that, for a complex number α,

e−α Â B̂ eα Â = B̂ − α [Â, B̂] +
α2

2
[Â, [Â, B̂]] +

α3

3!
[Â, [Â, [Â, B̂]]] + · · · .
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Note: Such relations are known as Baker-Campbell-Hausdorff formulae.

5. Non-trivial commutation relations: If â and â† denote the raising and lowering operators, show that

(a) [â, e−α â
† â] = (e−α − 1) e−α â

† â â,

(b) [â†, e−α â
† â] = (eα − 1) e−α â

† â â†.

6. The number-phase uncertainty relation: The lowering and raising operators â and â† can be repre-
sented in the following polar form:

â =

√
N̂ + 1 ei φ̂, â† = e−i φ̂

√
N̂ + 1,

where the operators N̂ and φ̂ are hermitian.

(a) Using the commutation relation between the operators â and â†, evaluate the following com-
mutators:

i. [ei φ̂, N̂ ],

ii. [e−i φ̂, N̂ ],

iii. [cos φ̂, N̂ ],

iv. [sin φ̂, N̂ ].

(b) What is (∆N)2 (∆ sinφ)2 in a general state?

7. Interpreting Wigner function as a probability distribution: Consider two distinct states Ψ(x, t) and
χ(x, t) describing a system. Let the Wigner functions corresponding to the two states be represented
as WΨ(x, p, t) and Wχ(x, p, t).

(a) Show that ∫ ∞
−∞

dx

∫ ∞
−∞

dp WΨ(x, p, t)Wχ(x, p, t) =
2

π ~

∣∣∣∣∫ ∞
−∞

dxΨ∗(x, t)χ(x, t)

∣∣∣∣2.
(b) Using this result, argue that, if Ψ(x, t) and χ(x, t) are orthogonal states, then the Wigner

functions cannot be positive definite.

(c) As an explicit example, evaluate the Wigner function for the excited energy eigen states of the
harmonic oscillator and show that it is indeed not positive definite.

Note: It is for this reason that the Wigner function is often referred to as a quasi -probability
distribution.

8. Orthogonality and completeness of coherent states:

(a) Let |α〉 and |β〉 describe two normalized coherent states. If α 6= β, are |α〉 and |β〉 orthogonal?

(b) Do the coherent states |α〉 form a complete basis?

Hints: To begin with, note that α is a complex quantity. Therefore, if we write α = αR + i αI ,
then the completeness relation can be expressed as

1

π

∫ ∞
−∞

dαR

∫ ∞
−∞

dαI |α〉〈α| = Î,

where Î is the identity operator. The integral can be carried out easily if you convert the
integral over the αR-αI plane into a radial and angular integral. Also, note that∫ ∞

0
dx e−x xn = n!.
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9. Wigner function for a coherent state: Earlier, we had determined the wave function describing a
coherent state in the position representation.

(a) Assuming the wave function to be the wave function at time, say, t = 0, determine the
wavefunction at later times.

(b) Evaluate the Wigner function corresponding to the wave function.

(c) Choose a large amplitude for the parameter α describing the coherent state and plot the
behavior of the corresponding Wigner function as a function of time. Compare the evolution
of the peak of the Wigner function with the classical trajectory in phase space.

10. Quantum mechanical kernels: Recall that, the probability amplitude for finding the particle at the
location x2 at a later time t2, given that it was located at x1 at time t1, can be expressed as

K(x2, t2|x1, t1) = 〈x2, t2|x1, t1〉 =
∑
all n

ψ∗n(x2)ψn(x1) e−i En (t2−t1)/~,

where ψn(x) denote the energy eigen states corresponding to the energy eigen values En and the
sum over n represents either the sum or a suitable integral (in the case of a continuum of states)
over all the energy eigen values.

(a) We had earlier evaluated the kernel for the case of a free particle. Show that the kernel can
be expressed as follows:

K(x2, t2|x1, t1) =

√
m

2π i ~T
exp

(
i SFP [x(t)]

~

)
,

where T = t2 − t1 and SFP [x(t)] is the classical action governing the free particle, given that
the particle is at locations x1 and x2 at times t1 and t2.

(b) Evaluate the above sum describing the kernel for the case of a harmonic oscillator and show
that it is given by

K(x2, t2|x1, t1) =

√
mω

2π i ~ sin (ω T )
exp

{
imω

2 ~ sin (ω T )

[
(x2

1 + x2
2) cos (ω T )− 2x1 x2

]}
.

(c) Show that this kernel reduces to the kernel of a free particle in the limit ω → 0, as required.

(d) Show that the kernel for the oscillator can also be expressed as

K(x2, t2|x1, t1) =

√
mω

2π i ~ sin (ω T )
exp

(
i SHO [x(t)]

~

)
,

where SHO [x(t)] is the classical action governing the oscillator.

(e) Can you evaluate the kernel for a particle in a uniform gravitational field and also express it
in terms of the action governing the system?

11. Equation governing the kernel: Recall that the quantum mechanical kernel K(x2, t2|x1, t1) is defined
through the relation

Ψ(x2, t2) =

∫
dx2K(x2, t2|x1, t1) Ψ(x1, t1).

Note: As it propagates the wave function, the kernel K(x2, t2|x1, t1) is also referred to as the
quantum mechanical propagator.

(a) Using the time-dependent Schrodinger equation, arrive at the equation of motion governing
the kernel K(x2, t2|x1, t1).

Note: It is important to appreciate that t2 > t1. In other words, to ensure causality, the kernel
should actually be multiplied by the step function Θ(t2 − t1).
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(b) Solve the equation to arrive at the kernel for the free particle, the harmonic oscillator and a
particle in a uniform gravitational field.

12. An important property of the propogator: An important property of the kernel K(x′, t′|x, t) is the
following:

K(x3, t3|x1, t1) =

∫
dx3K(x3, t3|x2, t2)K(x2, t2|x1, t1),

where t3 > t2 > t1.

Note: It is this property which permits one to provide a path integral interpretation for the quantum
mechanical propagator.

(a) Establish this result for a generic system using the Feynman-Kac formula we had discussed
earlier.

(b) Establish this result explicitly for the cases of the free particle and the simple harmonic oscil-
lator using the kernels we have obtained above.

13. Time derivatives of expectation values:

(a) If Â and B̂ are arbitrary, time-dependent operators, show that

d〈Â B̂〉
dt

=

〈
∂Â

∂t
B̂

〉
+

〈
Â
∂B̂

∂t

〉
+
i

~
〈[Ĥ, Â] B̂〉+

i

~
〈Â [Ĥ, B̂]〉.

(b) Show that, in the case of an operator, say, Â, that is not explicitly dependent on time,

d2〈Â〉
dt2

= − 1

~2
〈[Ĥ, [Ĥ, Â]]〉.

14. The isotropic oscillator in spherical polar coordinates: We had earlier discussed the case of the
isotropic harmonic oscillator in three dimensions that is described by the potential

V (x, y, z) =
mω2

2

(
x2 + y2 + z2

)
.

In the cartesian coordinates, it had proved to be easy to determine the energy eigen functions and
the corresponding energy eigen values. Evidently, the above potential can also be written in the
following spherically symmetric fashion:

V (r) =
mω2

2
r2,

which suggests that the system can also be studied in the spherical polar coordinates.

(a) Working in the spherical polar coordinates, determine the energy eigen functions of the
isotropic oscillator.

(b) What are the energy eigen values? How are they related to the eigen values obtained in the
cartesian coordinates?

15. The quantum Runge-Lenz vector: Consider the Kepler problem of a particle moving in the following
spherically symmetric potential:

V (r) = −α
r
,

where α is a positive quantity. In such a case, it is well known that the energy and angular
momentum of the particle are conserved quantities. The energy is conserved due to the fact that
the potential is time-independent, while angular momentum is conserved because of the spherical
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symmetry. Apart from these quantities, it is also found that the following quantity, often referred
to as the Runge-Lenz vector, is conserved as well:

R =
r

r
− 1

mα
(p×L) ,

where r is the position vector, while p and L are the momentum and the angular momentum of
the particle. Construct the quantum operator corresponding to the above Runge-Lenz vector and
show that it commutes with the Hamiltonian describing the system, suggesting that it is conserved
quantum mechanically as well.

16. Quantum mechanics of the Earth-Sun system: Consider the Earth-Sun system as the gravitational
analogue of the quantum mechanical hydrogen atom.

(a) Express the Bohr radius associated with the system in terms of the constants involved. De-
termine its value.

(b) What are the energy eigen values of the system?

(c) If the Earth makes a transition from the n-th to the (n − 1)-th state, what is the amount of
energy released and what is the associated frequency?

17. A modified Coulomb potential: Consider the following modified Coulomb potential

V (r) = − Z e2

4π ε0 r

(
1 + b

a0

r

)
,

where b is a dimensionless quantity and a0 = 4π ε0 ~2/(me c
2) is the Bohr radius, with me being

the mass of the electron. Solve the Schrodinger equation for this case and show that the energy
eigen values are given by

Enl = −(Z α2)2 µ c2

2

1[
n+

√(
l + 1

2

)2 − 2 b−
(
l + 1

2

)]2 ,

where µ is the reduced mass of the proton and α = e2/(4π ε0 ~ c) is the fine structure constant.

Note: In contrast to the standard Coulomb case, the energy levels now depend on the quantum
numbers n as well as l.

18. Electron in an oscillating magnetic field: Consider an electron at rest in the following oscillating
magnetic field:

B(t) = B0 cos (ω t) ẑ,

where B0 and ω are constants.

(a) What is the Hamiltonian for the system?

(b) Write down the time-dependent Schrodinger equation for the system.

(c) Let the electron start (at, say, t = 0) in the spin-up state along the x̂ direction. Determine
the state of the system by solving the time-dependent Schrodinger equation.

(d) Determine the probability of obtaining the value of −~/2 if we measure the spin of the electron
along the x̂ direction.

(e) What is the minimum strength B0 of the field that is required to flip the spin of the electron?

19. The classical limit and the Hamilton-Jacobi equation: Consider the time-dependent Schrodinger
equation in three dimensions. Let us write the time-dependent wavefunction Ψ(x, t) as follows:

Ψ(x, t) =
√
ρ(x, t) exp [i S(x, t)/~],

where ρ(x, t) and S(x, t) are real functions of space and time.
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(a) Substituting the above form of Ψ(x, t) in the time-dependent Schrodinger equation, show that,
under certain conditions, the imaginary part of the equation leads to following conservation
equation:

∂ρ

∂t
+ ∇ · (ρv) = 0,

where v = ∇S/m.

(b) Also, show that, under certain conditions, one can arrive at the following so-called Hamilton-
Jacobi equation that governs the action S in classical mechanics:

∂S

∂t
+

1

2m
|∇S|2 + V (x) = 0,

where V (x) denotes the potential energy of the system.

(c) What are the conditions under which the above two equations are arrived at? Can you
physically interpret these conditions?

20. The no-cloning theorem: Consider a quantum photocopying machine which produces an exact
replica of the original state, say, |ψ〉, i.e.

|ψ〉 → |ψ〉 ⊗ |ψ〉.

Argue that, such a machine cannot produce a copy of a superposition of states such as
(α |ψ1〉+ β |ψ2〉).
Note: This statement is known as the no-cloning theorem.
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