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Lecture schedule and meeting hours

• The course will consist of about 43 lectures, including about 8–10 tutorial sessions. However, note
that there will be no separate tutorial sessions, and they will be integrated with the lectures.

• The duration of each lecture will be 50 minutes. We will be meeting in HSB 210.

• The first lecture will be on Monday, January 21, and the last lecture will be on Monday, April 29.

• We will meet thrice a week. The lectures are scheduled for 1:00–1:50 PM on Mondays, 10:00–
10:50 AM on Thursdays, and 9:00–9:50 AM on Fridays.

• We may also meet during 4:45–5:35 PM on Mondays for either the quizzes or to make up for any
lecture that I may have to miss due to, say, travel. Changes in schedule, if any, will be notified
sufficiently in advance.

• If you would like to discuss with me about the course outside the lecture hours, you are welcome
to meet me at my office (HSB 202A) during 2:00–2:30 PM on Mondays, and during 1:30–2:00 PM
on Fridays. In case you are unable to find me in my office on more than occasion, please send me
an e-mail at sriram@physics.iitm.ac.in.

Information about the course

• I will be distributing hard copies containing information such as the schedule of the lectures, the
structure and the syllabus of the course, suitable textbooks and additional references, as well as
exercise sheets.

• A PDF file containing these information as well as completed quizzes will also made be available
at the link on this course at the following URL:

http://www.physics.iitm.ac.in/~sriram/professional/teaching/teaching.html

I will keep updating the file as we make progress.

Quizzes, end-of-semester exam and grading

• The grading will be based on three scheduled quizzes and an end-of-semester exam.

• I will consider the best two quizzes for grading, and the two will carry 25% weight each.

• The three quizzes will be on February 18, March 18 and April 15. All these three dates are Mondays,
and the quizzes will be held during 4:45–5:35 PM. Note that, we will not be meeting during 1:00–
1:50 PM on these three Mondays.

• The end-of-semester exam will be held during 9:00 AM–12:00 NOON on Friday, May 10, and the
exam will carry 50% weight.
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Syllabus and structure

Quantum physics

1. Origins of quantum theory and the wave aspects of matter [∼ 4 lectures]

(a) Black body radiation – Planck’s law

(b) Photoelectric effect

(c) Bohr atom model – Frank and Hertz experiment

(d) de Broglie hypothesis – The Davisson-Germer experiment

(e) Concept of the wavefunction – The statistical interpretation

(f) Two-slit experiment – The Heisenberg uncertainty principle

Exercise sheet 1

2. The postulates of quantum mechanics and the Schrodinger equation [∼ 4 lectures]

(a) Observables and operators

(b) Expectation values and fluctuations

(c) Measurement and the collapse of the wavefunction

(d) The time-dependent Schrodinger equation

Exercise sheet 2

3. The time independent Schrodinger equation in one dimension [∼ 4 lectures]

(a) Stationary states – The time-independent Schrodinger equation

(b) The infinite square well

(c) Reflection and transmission in potential barriers

(d) The delta function potential

(e) The free particle

(f) Linear harmonic oscillator

(g) Kronig-Penney model – Energy bands

Exercise sheet 3

Quiz I

4. Essential mathematical formalism [∼ 4 lectures]

(a) Hilbert space

(b) Observables – Hermitian operators – Eigen functions and eigen values of hermitian operators

(c) Generalized statistical interpretation

(d) The generalized uncertainty principle

Exercise sheets 4 and 5

5. Particle in a central potential [∼ 4 lectures]

(a) Motion in a central potential – Orbital angular momentum

(b) Hydrogen atom – Energy levels

(c) Degeneracy
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Exercise sheet 6

6. Spin [∼ 3 lectures]

(a) Electron spin – Pauli matrices

(b) Application to magnetic resonance

Exercise sheet 7

7. Charged particle in uniform constant magnetic field [∼ 3 lectures]

(a) Landau levels – Wavefunctions

(b) Elements of the quantum Hall effect

Exercise sheet 8

Quiz II

8. Time-independent perturbation theory [∼ 4 lectures]

(a) Non-degenerate and degenerate cases

(b) Application to Zeeman and Stark effects

Exercise sheet 9

9. Time-dependent perturbation theory [∼ 4 lectures]

(a) Transition probabilities

(b) Fermi’s Golden Rule

(c) Decay of excited states of atoms in the dipole approximation

Exercise sheet 10

10. Identical particles and spin [∼ 3 lectures]

(a) Fermions and bosons

(b) Free electron gas

(c) Blackbody radiation

Exercise sheet 11

Quiz III

11. Semi-classical theory of radiation [∼ 3 lectures]

(a) Spontaneous and stimulated emission

(b) Einstein’s A and B coefficients

(c) Population inversion

(d) Maxwell-Bloch equations

(e) Laser action

End-of-semester exam
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Basic textbooks

1. S. Gasiorowicz, Quantum Physics, Third edition (John Wiley and Sons, New York, 2003).

2. R. L. Liboff, Introductory Quantum Mechanics, Fourth Edition (Pearson Education, Delhi, 2003).

3. W. Greiner, Quantum Mechanics, Fourth edition (Springer, Delhi, 2004).

4. D. J. Griffiths, Introduction to Quantum Mechanics, Second edition (Pearson Education, Delhi,
2005).

5. R. Shankar, Principles of Quantum Mechanics, Second edition (Springer, Delhi, 2008).

Advanced textbooks

1. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Course of Theoretical Physics, Volume 3),
Third Edition (Pergamon Press, New York, 1977).

2. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Singapore, 1994).

Other references

1. D. Danin, Probabilities of the Quantum World (Mir Publishers, Moscow, 1983).

2. G. Gamow, Thirty Years that Shook Physics: The Story of Quantum Theory (Dover Publications,
New York, 1985).

3. R. P. Crease and C. C. Mann, The Second Creation: Makers of the Revolution in Twentieth-Century

Physics (Rutgers University Press, New Jersey, U.S.A., 1996), Chapters 1–4.

4. M. S. Longair, Theoretical Concepts in Physics, Second Edition (Cambridge University Press, Cam-
bridge, England, 2003), Chapters 11–15.
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Exercise sheet 1

Origins of quantum theory and the wave aspects of matter

1. Black body radiation and Planck’s law: Consider a black body maintained at the temperature T .
According to Planck’s radiation law, the energy per unit volume within the frequency range ν and
ν + dν associated with the electromagnetic radiation emitted by the black body is given by

uν dν =
8π h

c3
ν3 dν

exp (h ν/k
B
T )− 1

,

where h and k
B
denote the Planck and the Boltzmann constants, respectively, while c represents

the speed of light.

(a) Arrive at the Wien’s law, viz. that λmax T = b = constant, from the above Planck’s radiation
law. Note that λmax denotes the wavelength at which the energy density of radiation from the
black body is the maximum.

(b) The total energy emitted by the black body is described by the integral

u =

∞
∫

0

dν uν .

Using the above expression for uν , evaluate the integral and show that

u =
4σ

c
T 4,

where σ denotes the Stefan constant given by

σ =
π2 k4

B

60~3 c2
,

with ~ = h/(2π).

(c) The experimentally determined values of the Stefan’s constant σ and the Wien’s constant b
are found to be

σ = 5.67 × 10−8 Jm−2 s−1K−4 and b = 2.9× 10−3 mK.

Given that the value of the speed of light is c = 2.998× 108 m s−1, determine the values of the
Planck’s constant h and the Boltzmann’s constant k

B
from these values.

2. Photoelectrons from a zinc plate: Consider the emission of electrons due to photoelectric effect from
a zinc plate. The work function of zinc is known to be 3.6 eV. What is the maximum energy of the
electrons ejected when ultra-violet light of wavelength 3000 Å is incident on the zinc plate?

3. Radiation emitted in the Frank and Hertz experiment: Recall that, in the Frank and Hertz exper-

iment, the emission line from the mercury vapor was at the wavelength of 2536 Å. The spectrum
of mercury has a strong second line at the wavelength of 1849 Å. What will be the voltage corre-
sponding to this line at which we can expect the current in the Frank and Hertz experiment to
drop?

4. Value of the Rydberg’s constant: Evaluate the numerical value of the Rydberg’s constant R
H
and

compare with its experimental value of 109677.58 cm−1. How does the numerical value change if
the finite mass of the nucleus is taken into account?
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5. Mean values and fluctuations: The expectation values 〈Â〉 and 〈Â2〉 associated with the operator

Â and the wavefunction Ψ are defined as

〈Â〉 =
∫

dx Ψ∗ÂΨ and 〈Â2〉 =
∫

dx Ψ∗Â2 Ψ,

where the integrals are to be carried out over the domain of interest. Recall that the momentum
operator is given by

p̂x = −i~ ∂

∂x
.

Given the wavefunction

Ψ(x) =
(π

α

)

−1/4
e−αx2/2,

calculate the following quantities: (i) 〈x̂〉, (ii) 〈x̂2〉, (iii) ∆x =
[

〈x̂2〉 − 〈x̂〉2
]1/2

, (iv) 〈p̂x〉, (v) 〈p̂2x〉,
(vi) ∆px =

[

〈p̂2x〉 − 〈p̂x〉2
]1/2

, and (vii) ∆x ∆px.
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Exercise sheet 2

The postulates of quantum mechanics and the Schrodinger equation

1. Hermitian operators: Recall that the expectation value of an operator Â is defined as

〈Â〉 =
∫

dx Ψ∗ÂΨ.

An operator Â is said to be hermitian if

〈Â〉 = 〈Â〉∗.

Show that the position, the momentum and the Hamiltonian operators are hermitian.

2. Motivating the momentum operator: Using the time-dependent Schrodinger equation, show that

d〈x〉
dt

= − i~
m

∫

dx Ψ∗
∂Ψ

∂x
= 〈p̂x〉,

a relation which can be said to motivate the expression for the momentum operator, viz. that
p̂x = −i~ ∂/∂x.

3. The conserved current: Consider a quantum mechanical particle propagating in a given potential
and described by the wave function Ψ(x, t). The probability P (x, t) of finding the particle at the
position x and the time t is given by

P (x, t) = |Ψ(x, t)|2.

Using the one-dimensional Schrodinger equation, show that the probability P (x, t) satisfies the
conservation law

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0,

where the quantity j(x, t) represents the conserved current given by

j(x, t) =
~

2 im

[

Ψ∗(x, t)

(

∂Ψ(x, t)

∂x

)

−Ψ(x, t)

(

∂Ψ∗(x, t)

∂x

)]

.

4. Ehrenfest’s theorem: Show that

d〈p̂x〉
dt

= −
〈

∂V

∂x

〉

,

a relation that is often referred to as the Ehrenfest’s theorem.

5. Conservation of the scalar product: The scalar product between two normalizable wavefunctions,
say, Ψ1 and Ψ2, which describe a one-dimensional system is defined as

〈Ψ2|Ψ1〉 ≡
∫

dx Ψ∗

2(x, t)Ψ1(x, t),

where the integral is to be carried out over the domain of interest. Show that

d〈Ψ2|Ψ1〉
dt

= 0.
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Exercise sheet 3

The time-independent Schrodinger equation in one dimension I

1. Superposition of energy eigen states: Consider a particle in the infinite square well. Let the initial
wave function of the particle be given by

Ψ(x, 0) = A [ψ1(x) + ψ2(x)] ,

where ψ1(x) and ψ2(x) denote the ground and the first excited states of the particle.

(a) Normalize the wave function Ψ(x, 0).

(b) Obtain the wave function at a later time t, viz. Ψ(x, t), and show that the probability |Ψ(x, t)|2
is an oscillating function of time.

(c) Evaluate the expectation value of the position in the state Ψ(x, t) and show that it oscillates.
What are the angular frequency and the amplitude of the oscillation?

(d) What will be the values that you will obtain if you measure the energy of the particle? What
are the probabilities for obtaining these values?

(e) Evaluate the expectation value of the Hamiltonian operator corresponding to the particle in
the state Ψ(x, t). How does it compare with the energy eigen values of the ground and the first
excited states?

2. Spreading of wave packets: A free particle has the initial wave function

Ψ(x, 0) = A e−a x2

,

where A and a are constants, with a being real and positive.

(a) Normalize Ψ(x, 0).

(b) Find Ψ(x, t).

(c) Plot Ψ(x, t) at t = 0 and for large t. Determine qualitatively what happens as time goes on?

(d) Find 〈x̂〉, 〈x̂2〉, 〈p̂〉, 〈p̂2〉, ∆x and ∆p.

(e) Does the uncertainty principle hold? At what time does the system have the minimum uncer-
tainty?

3. Properties of Hermite polynomials: In this problem, we shall explore a few useful relations involving
the Hermite polynomials.

(a) According to the so-called Rodrigues’s formula

Hn(x) = (−1)n ex
2

(

d

dx

)n
(

e−x2
)

.

Use this relation to obtain H3(x) and H4(x).

(b) Utilize the following recursion relation:

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x),

and the results of the above problem to arrive at H5(x) and H6(x).

(c) Using the expressions for H5(x) and H6(x) that you have obtained, check that the following
relation is satisfied:

dHn

dx
= 2nHn−1(x).
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(d) Obtain H0(x), H1(x) and H2(x) from the following generating function for the Hermite poly-
nomials:

e−(z
2
−2 z x) =

∞
∑

n=0

zn

n!
Hn(x).

4. Wagging the dog: Recall that the time-independent Schrodinger equation satisfied by a simple har-
monic oscillator of mass m and frequency ω is given by

− ~
2

2m

d2ψ
E

dx2
+

1

2
mω2 x2 ψ

E
= E ψ

E
.

In terms of the dimensionless variable

ξ =

√

mω

~
x,

the above time-independent Schrodinger equation reduces to

d2ψ
E

dξ2
+

(

E − ξ2
)

ψ
E
= 0,

where E is the energy expressed in units of (~ω/2), and is given by

E =
2E

~ω
.

According to the ‘wag-the-dog’ method, one solves the above differential equation numerically, say,
using Mathematica, varying E until a wave function that goes to zero at large ξ is obtained.

Find the ground state energy and the energies of the first two excited states of the harmonic
oscillator to five significant digits by the ‘wag-the-dog’ method.

5. The case of the particle in an infinite square well: Find the first three allowed energies to, say, five
significant digits, of a particle in the infinite square well, by ‘wagging the dog’.
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Quiz I

From the origins of quantum theory and the wave aspects of matter

to the time independent Schrodinger equation in one dimension

1. Semi-classical quantization precedure: Consider a particle moving in one-dimension. Let the particle
be described by the generalized coordinate q, and let the corresponding conjugate momentum
be p. According to the semi-classical quantization rule, the so-called action I satisfies the following
relation:

I ≡
∫

dq p = nh,

where n is an integer, while h is the Planck constant. Using the above quantization procedure,
determine the energy levels of the following systems:

(a) A particle in an infinite square well. 4 marks

(b) A rigid rotator. 6 marks

Note: A rigid rotator is a particle which rotates about an axis and is located at a fixed length
from the axis. Also, the particle moves only along the azimuthal direction.

2. The Klein-Gordon equation: Consider the following Klein-Gordon equation governing a wavefunc-
tion Ψ(x, t):

1

c2
∂2Ψ(x, t)

∂t2
− ∂2Ψ(x, t)

∂x2
+

(µ c

~

)2

Ψ(x, t) = 0,

where c and µ are constants. Show that there exists a corresponding ‘probability’ conservation law
of the form

∂P (x, t)

∂t
+
∂j(x, t)

∂x
= 0,

where the quantity j(x, t) represents the conserved current given by

j(x, t) =
~

2 i µ

[

Ψ∗(x, t)

(

∂Ψ(x, t)

∂x

)

−Ψ(x, t)

(

∂Ψ∗(x, t)

∂x

)]

.

(a) Express the ‘probability’ P (x, t) in terms of the wavefunction Ψ(x, t). 6 marks

(b) Can you identify any issue with interpreting P (x, t) as the probability? 4 marks

3. Particle in an infinite square well: A particle in an infinite square well, with its walls located at
x = 0 and x = a, is described by the following initial wave function at the time, say, t = 0:

Ψ(x, 0) = A sin3(π x/a).

(a) Determine A. 2 marks

(b) Find the wavefunction Ψ(x, t) at a time t > 0. 4 marks

(c) Calculate 〈x̂〉 as a function of time in the state Ψ(x, t). 4 marks

4. Particle in an attractive delta function potential: Consider a particle moving in one-dimension in
the following delta function potential:

V (x) = −a δ(x),

where a > 0.

(a) Determine the bound state energy eigen functions. 4 marks

(b) Plot the energy eigen functions. 2 marks
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(c) How many bound states exist? What are the corresponding energy eigen values? 4 marks

5. Relations involving operators: Consider a one-dimensional particle described by the wavefunc-

tion ψ(x). Establish the following operator relations: 2+4+4 marks

[x̂, p̂x] ψ(x) ≡ (x̂ p̂x − p̂x x̂) ψ = i~ ψ(x),

exp (i p̂x a/~) ψ(x) = ψ(x+ a),

exp (i p̂x a/~) x̂ exp − (i p̂x a/~) = x̂+ a,

where a is a constant, while, recall that, p̂ = −i~d/dx.
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Exercise sheet 4

Essential mathematical formalism I

1. Eigen values and eigen functions of the momentum operator: Determine the eigen values and the
eigen functions of the momentum operator. Establish the completeness of the momentum eigen
functions.

2. The angular momentum operator: Consider the operator

Lφ = −i~ d

dφ
,

where φ is an angular variable. Is the operator hermitian? Determine its eigenfunctions and eigen-
values.

Note: The operator Lφ, for instance, could describe the conjugate momentum of a bead that is
constrained to move on a circle of a fixed radius.

3. Probabilities in momentum space: A particle of mass m is bound in the delta function well V (x) =
−a δ(x), where a > 0. What is the probability that a measurement of the particle’s momentum
would yield a value greater than p0 = ma/~?

4. The energy-time uncertainty principle: Consider a system that is described by the Hamiltonian

operator Ĥ.

(a) Given an operator, say, Q̂, establish the following relation:

d〈Q̂〉
dt

=
i

~
〈[Ĥ, Q̂]〉+

〈

∂Q̂

∂t

〉

,

where the expectation values are evaluated in a specific state.

(b) When Q̂ does not explicitly depend on time, using the generalized uncertainty principle, show
that

∆H∆Q ≥ ~

2

∣

∣

∣

∣

∣

d〈Q̂〉
dt

∣

∣

∣

∣

∣

.

(c) Defining

∆t ≡ ∆Q

|d〈Q̂〉/dt|
,

establish that

∆E∆t ≥ ~

2
,

and interpret this result.

5. Two-dimensional Hilbert space: Imagine a system in which there are only two linearly independent
states, viz.

|1〉 =
(

1
0

)

and |2〉 =
(

0
1

)

.

The most general state would then be a normalized linear combination, i.e.

|ψ〉 = α |1〉 + β |2〉 =
(

α
β

)

,
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with |α|2+ |β|2 = 1. The Hamiltonian of the system can, evidently, be expressed as a 2×2 hermitian
matrix. Suppose it has the following form:

H =

(

a b
b a

)

,

where a and b are real constants. If the system starts in the state |1〉 at an initial time, say, t = 0,
determine the state of the system at a later time t.
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Exercise sheet 5

Essential mathematical formalism II

1. A three-dimensional vector space: Consider a three-dimensional vector space spanned by the or-
thonormal basis |1〉, |2〉 and |3〉. Let two kets, say, |α〉 and |β〉 be given by

|α〉 = i |1〉 − 2 |2〉 − i |3〉 and |β〉 = i |1〉 + 2 |3〉.

(a) Construct 〈α| and 〈β| in terms of the dual basis, i.e. 〈1|, 〈2| and 〈3|.
(b) Find 〈α|β〉 and 〈β|α〉 and show that 〈β|α〉 = 〈α|β〉∗.
(c) Determine all the matrix elements of the operator Â = |α〉〈β| in this basis and construct the

corresponding matrix. Is the matrix hermitian?

2. A two level system: The Hamiltonian operator of a certain two level system is given by

Ĥ = E

(

|1〉〈1| − |2〉〈2| + |1〉〈2| + |2〉〈1|
)

,

where |1〉 and |2〉 form an orthonormal basis, while E is a number with the dimensions of energy.

(a) Find the eigen values and the normalized eigen vectors, i.e. as a linear combination of the basis
vectors |1〉 and |2〉, of the above Hamiltonian operator.

(b) What is the matrix that represents the operator Ĥ in this basis?

3. Matrix elements for the harmonic oscillator: Let |n〉 denote the orthonormal basis of energy eigen
states of the harmonic oscillator. Determine the matrix elements 〈n|x̂|m〉 and 〈n|p̂x|m〉 in this basis.

4. Coherent states of the harmonic oscillator: Consider states, say, |α〉, which are eigen states of the
annihilation (or, more precisely, the lowering) operator, i.e.

â|α〉 = α |α〉,

where α is a complex number.

Note: The state |α〉 is called the coherent state.

(a) Calculate the quantities 〈x̂〉, 〈x̂2〉, 〈p̂x〉 and 〈p̂2x〉 in the coherent state.

(b) Also, evaluate the quantities ∆x and ∆px in the state, and show that ∆x ∆px = ~/2.

(c) Like any other general state, the coherent state can be expanded in terms of the energy eigen
states |n〉 of the harmonic oscillator as follows:

|α〉 =
∞
∑

n=0

cn |n〉.

Show that the quantities cn are given by

cn =
αn

√
n!
c0.

(d) Determine c0 by normalizing |α〉.
(e) Upon including the time dependence, show that the coherent state continues to be an eigen

state of the lowering operator â with the eigen value evolving in time as

α(t) = e−i ω t α.

Note: Therefore, a coherent state remains coherent, and continues to minimize the uncertainty.
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(f) Is the ground state |0〉 itself a coherent state? If so, what is the eigen value?

5. A three level system: The Hamiltonian for a three level system is represented by the matrix

H = ~ω





1 0 0
0 2 0
0 0 2



 .

Two other observables, say, A and B, are represented by the matrices

A = λ





0 1 0
1 0 0
0 0 2



 and B = µ





2 0 0
0 0 1
0 1 0



 ,

where ω, λ and µ are positive real numbers.

(a) Find the eigen values and normalized eigen vectors of H, A, and B.

(b) Suppose the system starts in the generic state

|ψ(t = 0)〉 =





c1
c2
c3



 ,

with |c1|2 + |c2|2 + |c3|2 = 1. Find the expectation values of H, A and B in the state at t = 0.

(c) What is |ψ(t)〉 for t > 0? If you measure the energy of the state at a time t, what are the
values of energies that you will get and what would be the probability for obtaining each of
the values?

(d) Also, arrive at the corresponding answers for the quantities A and B.
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