
1

I. EXERCISES - SESSION 2

A. Comments on Sessions:

The goals of this session are the following:

1. Learn how to use command line inputs for the main code

2. Read and write from FILES

3. Use makefiles

4. Wrap up with the initial error analysis

NOTE: Beginners attempt the Warm-up section entirely (qs 1 through 5) and Advanced attempt the warm-up

section from qs 1 to qs 4 and do qs 6 from the problem section. As always the entire sheet is open to all and the

above states the minimum that is needed for this lab.

B. Preparations:

1. Preparations: Download the session02.tar.gz file from

www. phys i c s . i i tm . ac . in /˜ suna/nummethods . html

under the section DCF sessions. The file usually downloads into the Desktop directory or the Downloads

directory. Open the terminal (click on Applications → System tools → Konsole for Ubuntu running GNOME or

search for Terminal on Ubuntu running Unity). Move the .tar.gz file to the home directory using the following

command (remember to hit enter after each of the following commands):

mv Desktop / s e s s i o n0 2 . ta r . gz . /

Untar the files using the following commands:

ta r x fvz s e s s i o n0 2 . ta r . gz

This will automatically open a directory called session02. Move into that directory by typing the following

command on the terminal:

cd s e s s i o n0 2 /

You can check the files in that directory by typing: (lists)

l s

C. Warm-up

1. Basic Programing: Launch the editor gedit as you did in the previous session. Open the code area new.c. This

code illustrates how to use command-line arguments in the main code. We will compile this code using the

makefile, which you need to create as follows: Copy the file make area to make area new using the following

command:

cp make area make area new

Replace area with area new. Compile using the the following command:

make −f make area new

2

An interesting fact about makefiles: If you had saved this file as simply makefile, then you could compile it using

the command make. But it is a good practise to have the names of files built in, so that we know the code for

which a particular makefile is intended. Hence we will use the command given above. Now run the executable

using the following command:

. / area new 1 .0

Note in this case the first entry is the name of the executable, while the second (separated by a space) is the

numerical value of the radius. Next try running the code for r = 4.0.

Go through the code area new.c The main difference between this code and the area.c from the previous session

is that this code takes arguments from the user from the command line (i.e. what you type at the prompt on the

terminal). These arguments are stored as strings in the array argv[]. The first entry, i.e. argv[0] = ./area new

while the second argument is the numerical value of the radius, but this is a string. Hence we need to convert it

to a real number which is done through the function atof, where we pass the second element of the array argv.

argc keeps track of the number of command line variables.

2. You can also pass files through command line. Open the code area input.c Note that this code can take inputs

from command line, but it accesses a file that has been passed to the code through the argv array. Open the file

area input.inp This is the input file, although trivial in this example, this file could contain all the parameters

that your code needs. Hence if you need to run your code for another radius, you do not have to compile

it, you just need to change your input file! Create a makefile for area input.c by copying make area new to

make area input and replace area new by area input. Now compile using the make command (as you did in the

previous part). Run the executable using the following command:

. / a r ea input a r ea input . inp

Change the radius to 4.0 in the input file and run again using the command above.

3. Makefiles: Open the code precision.c and compile it using the gcc command

gcc −o p r e c i s i o n p r e c i s i o n . c

and run the executable. What do you expect to see and what happens?

Compile using the makefile make precision using the following command:

make −f make prec i s ion

Does your code compile? If not what are your errors?

4. Debugging: Open the code series.c. This code evaluates exp(−x) in three different ways: 1. using the brute

force power series, 2. using a recursion relation and 3. by evaluating exp(x) and finding its inverse. Find the

error in the code series.c. Compile using both the gcc command and using the makefile. (Hint: it is not due

to the variable rel err being declared and not used that you will get from the makefile. Remember in order to

compile fresh with makefile after you have compiled with the gcc command, you will need to first remove the

3

.o files, which you can do by the command: make -f make series clean, otherwise the makefile will tell you that

the executable is up to date.)

5. (Beginners) Reading and Writing to files: Let us modify the code area input.c to do the following: We would

like to loop over r values starting from from minimum to some maximum and store the calculated area in an

output file. Use makefiles to compile your code. Your task will be:

(a) Pass rmin and rmax through the input file (therefore you need to read these in the code).

(b) Loop between rmin and rmax, calculate the area and dump the result to an output file. Remember that

you need to open the output file in the “w” mode, which will create the file in the first place.

(c) With the help of the tutorial from the class website, try to plot the area as a function of radius using

gnuplot.

D. Problems

6. (Advanced) Summing Series: Write a code to sum the following series in two ways:

Sup =
N
∑

n=1

1

n

and

Sdown =
n=1
∑

n=N

1

n

(a) Calculate the relative error between the two ways of summing, defining the error as a function of N , which

is the number of terms retained.

ǫrel = 2

∣

∣

∣

∣

Sup − Sdown

Sup + Sdown

∣

∣

∣

∣

You will need to work with single precision and go as large as N = 1010 in order to see the results. This

means you could increment the number of terms retained in powers of 10, starting from some minimum

value and going all the way until the maximum value of 1010. Store the relative erros as a function of N

into a file.

(b) Which way of summing will work well and why?

(c) Plot the logarithm of the data using gnuplot (tutorial available on the class website) and exlain your plot.

