
Chapter 5

Numerical Integration

Abstract In this chapter we discuss some of the classical methods for integrating a func-

tion. The methods we discuss are the trapezoidal, rectangular and Simpson’s rule for equally

spaced abscissas and integration approaches based on Gaussian quadrature. The latter are

more suitable for the case where the abscissas are not equally spaced. The emphasis is on

methods for evaluating few-dimensional (typically up to four dimensions) integrals. In chapter

11 we show how Monte Carlo methods can be used to compute multi-dimensional integrals.

We discuss also how to compute singular integrals. We end this chapter with an extensive dis-

cussion on MPI and parallel computing. The examples focus on parallelization of algorithms

for computing integrals.

5.1 Newton-Cotes Quadrature

The integral

I =
∫ b

a
f (x)dx (5.1)

has a very simple meaning. If we consider Fig. 5.1 the integral I simply represents the area

enscribed by the function f (x) starting from x = a and ending at x = b. Two main methods will

be discussed below, the first one being based on equal (or allowing for slight modifications)

steps and the other on more adaptive steps, namely so-called Gaussian quadrature methods.

Both main methods encompass a plethora of approximations and only some of them will be

discussed here.

In considering equal step methods, our basic approach is that of approximating a function

f (x) with a polynomial of at most degree N− 1, given N integration points. If our polynomial

is of degree 1, the function will be approximated with f (x)≈ a0 +a1x. The algorithm for these

integration methods is rather simple, and the number of approximations perhaps unlimited!

• Choose a step size

h =
b− a

N

where N is the number of steps and a and b the lower and upper limits of integration.

• With a given step length we rewrite the integral as

∫ b

a
f (x)dx =

∫ a+h

a
f (x)dx+

∫ a+2h

a+h
f (x)dx+ . . .

∫ b

b−h
f (x)dx.

113

114 5 Numerical Integration

✲

f (x)

x

✻

a a+h a+2h a+3h b

Fig. 5.1 The area enscribed by the function f (x) starting from x = a to x = b. It is subdivided in several smaller

areas whose evaluation is to be approximated by the techniques discussed in the text. The areas under the

curve can for example be approximated by rectangular boxes or trapezoids.

• The strategy then is to find a reliable polynomial approximation for f (x) in the various

intervals. Choosing a given approximation for f (x), we obtain a specific approximation to

the integral.

• With this approximation to f (x) we perform the integration by computing the integrals over

all subintervals.

Such a small measure may seemingly allow for the derivation of various integrals. To see this,

we rewrite the integral as

∫ b

a
f (x)dx =

∫ a+2h

a
f (x)dx+

∫ a+4h

a+2h
f (x)dx+ . . .

∫ b

b−2h
f (x)dx.

One possible strategy then is to find a reliable polynomial expansion for f (x) in the smaller

subintervals. Consider for example evaluating

∫ a+2h

a
f (x)dx,

which we rewrite as
∫ a+2h

a
f (x)dx =

∫ x0+h

x0−h
f (x)dx. (5.2)

We have chosen a midpoint x0 and have defined x0 = a+ h. Using Lagrange’s interpolation

formula from Eq. (3.9), an equation we restate here,

5.1 Newton-Cotes Quadrature 115

PN(x) =
N

∑
i=0

∏
k 6=i

x− xk

xi− xk
yi,

we could attempt to approximate the function f (x) with a first-order polynomial in x in the

two sub-intervals x ∈ [x0− h,x0] and x ∈ [x0,x0 + h]. A first order polynomial means simply that

we have for say the interval x ∈ [x0,x0 + h]

f (x) ≈ P1(x) =
x− x0

(x0 + h)− x0
f (x0 + h)+

x− (x0 + h)
x0− (x0 + h)

f (x0),

and for the interval x ∈ [x0− h,x0]

f (x) ≈ P1(x) =
x− (x0− h)
x0− (x0− h)

f (x0)+
x− x0

(x0− h)− x0
f (x0− h).

Having performed this subdivision and polynomial approximation, one from x0− h to x0 and

the other from x0 to x0 + h,

∫ a+2h

a
f (x)dx =

∫ x0

x0−h
f (x)dx+

∫ x0+h

x0

f (x)dx,

we can easily calculate for example the second integral as

∫ x0+h

x0

f (x)dx ≈
∫ x0+h

x0

(

x− x0

(x0 + h)− x0
f (x0 + h)+

x− (x0 + h)
x0− (x0 + h)

f (x0)

)

dx,

which can be simplified to

∫ x0+h

x0

f (x)dx≈
∫ x0+h

x0

(

x− x0

h
f (x0 + h)− x− (x0 + h)

h
f (x0)

)

dx,

resulting in
∫ x0+h

x0

f (x)dx =
h
2
(f (x0 + h)+ f (x0))+O(h3).

Here we added the error made in approximating our integral with a polynomial of degree 1.
The other integral gives

∫ x0

x0−h
f (x)dx =

h
2
(f (x0)+ f (x0− h))+O(h3),

and adding up we obtain

∫ x0+h

x0−h
f (x)dx =

h
2
(f (x0 + h)+ 2 f (x0)+ f (x0− h))+O(h3), (5.3)

which is the well-known trapezoidal rule. Concerning the error in the approximation made,

O(h3) = O((b− a)3/N3), you should note the following. This is the local error! Since we are

splitting the integral from a to b in N pieces, we will have to perform approximately N such

operations. This means that the global error goes like ≈ O(h2). To see that, we use the trape-

zoidal rule to compute the integral of Eq. (5.1),

I =
∫ b

a
f (x)dx = h(f (a)/2+ f (a+ h)+ f (a+ 2h)+ · · ·+ f (b− h)+ fb/2) , (5.4)

with a global error which goes like O(h2).

116 5 Numerical Integration

Hereafter we use the shorthand notations f−h = f (x0− h), f0 = f (x0) and fh = f (x0 + h). The
correct mathematical expression for the local error for the trapezoidal rule is

∫ b

a
f (x)dx− b− a

2
[f (a)+ f (b)] =− h3

12
f (2)(ξ),

and the global error reads

∫ b

a
f (x)dx−Th(f) =−b− a

12
h2 f (2)(ξ),

where Th is the trapezoidal result and ξ ∈ [a,b].
The trapezoidal rule is easy to implement numerically through the following simple algo-

rithm

• Choose the number of mesh points and fix the step.

• calculate f (a) and f (b) and multiply with h/2
• Perform a loop over n = 1 to n− 1 (f (a) and f (b) are known) and sum up the terms

f (a+ h)+ f (a+ 2h)+ f (a+ 3h)+ · · ·+ f (b− h). Each step in the loop corresponds to a

given value a+ nh.
• Multiply the final result by h and add h f (a)/2 and h f (b)/2.

A simple function which implements this algorithm is as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/trapezoidal.cpp

double trapezoidal_rule(double a, double b, int n, double (*func)(double))

{

double trapez_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

fa=(*func)(a)/2. ;

fb=(*func)(b)/2. ;

TrapezSum=0.;

for (j=1; j <= n-1; j++){

x=j*step+a;

trapez_sum+=(*func)(x);

}

trapez_sum=(trapez_um+fb+fa)*step;

return trapez_sum;

} // end trapezoidal_rule

The function returns a new value for the specific integral through the variable trapez_sum.

There is one new feature to note here, namely the transfer of a user defined function called

func in the definition

void trapezoidal_rule(double a, double b, int n, double *trapez_sum,

double (*func)(double))

What happens here is that we are transferring a pointer to the name of a user defined func-

tion, which has as input a double precision variable and returns a double precision number.

The function trapezoidal_rule is called as

trapezoidal_rule(a, b, n, &MyFunction)

5.1 Newton-Cotes Quadrature 117

in the calling function. We note that a, b and n are called by value, while trapez_sum and

the user defined function MyFunction are called by reference.

The name trapezoidal rule follows from the simple fact that it has a simple geometrical

interpretation, it corresponds namely to summing up a series of trapezoids, which are the

approximations to the area below the curve f (x).
Another very simple approach is the so-called midpoint or rectangle method. In this case

the integration area is split in a given number of rectangles with length h and height given

by the mid-point value of the function. This gives the following simple rule for approximating

an integral

I =
∫ b

a
f (x)dx ≈ h

N

∑
i=1

f (xi−1/2), (5.5)

where f (xi−1/2) is the midpoint value of f for a given rectangle. We will discuss its truncation

error below. It is easy to implement this algorithm, as shown here

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/rectangle.cpp

double rectangle_rule(double a, double b, int n, double (*func)(double))

{

double rectangle_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

rectangle_sum=0.;

for (j = 0; j <= n; j++){

x = (j+0.5)*step+; // midpoint of a given rectangle

rectangle_sum+=(*func)(x); // add value of function.

}

rectangle_sum *= step; // multiply with step length.

return rectangle_sum;

} // end rectangle_rule

The correct mathematical expression for the local error for the rectangular rule Ri(h) for

element i is
∫ h

−h
f (x)dx−Ri(h) =−

h3

24
f (2)(ξ),

and the global error reads

∫ b

a
f (x)dx−Rh(f) =−b− a

24
h2 f (2)(ξ),

where Rh is the result obtained with rectangular rule and ξ ∈ [a,b].
Instead of using the above first-order polynomials approximations for f , we attempt at

using a second-order polynomials. In this case we need three points in order to define a

second-order polynomial approximation

f (x) ≈ P2(x) = a0 + a1x+ a2x2.

Using again Lagrange’s interpolation formula we have

P2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2 +

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1 +

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0.

Inserting this formula in the integral of Eq. (5.2) we obtain

∫ +h

−h
f (x)dx =

h
3
(fh + 4 f0 + f−h)+O(h5),

118 5 Numerical Integration

which is Simpson’s rule. Note that the improved accuracy in the evaluation of the deriva-

tives gives a better error approximation, O(h5) vs. O(h3) . But this is again the local error

approximation. Using Simpson’s rule we can easily compute the integral of Eq. (5.1) to be

I =
∫ b

a
f (x)dx =

h
3
(f (a)+ 4 f (a+ h)+ 2 f (a+ 2h)+ · · ·+ 4 f (b− h)+ fb) , (5.6)

with a global error which goes like O(h4). More formal expressions for the local and global

errors are for the local error

∫ b

a
f (x)dx− b− a

6
[f (a)+ 4 f ((a+ b)/2)+ f (b)] =− h5

90
f (4)(ξ),

and for the global error
∫ b

a
f (x)dx− Sh(f) =−b− a

180
h4 f (4)(ξ).

with ξ ∈ [a,b] and Sh the results obtained with Simpson’s method. The method can easily be

implemented numerically through the following simple algorithm

• Choose the number of mesh points and fix the step.

• calculate f (a) and f (b)
• Perform a loop over n = 1 to n− 1 (f (a) and f (b) are known) and sum up the terms

4 f (a+ h)+ 2 f (a+ 2h)+ 4 f (a+ 3h)+ · · ·+ 4 f (b− h). Each step in the loop corresponds

to a given value a+ nh. Odd values of n give 4 as factor while even values yield 2 as

factor.

• Multiply the final result by h
3 .

In more general terms, what we have done here is to approximate a given function f (x) with
a polynomial of a certain degree. One can show that given n+1 distinct points x0, . . . ,xn ∈ [a,b]
and n+ 1 values y0, . . . ,yn there exists a unique polynomial Pn(x) with the property

Pn(x j) = y j j = 0, . . . ,n

In the Lagrange representation discussed in chapter 3, this interpolating polynomial is given

by

Pn =
n

∑
k=0

lkyk,

with the Lagrange factors

lk(x) =
n

∏
i = 0
i 6= k

x− xi

xk− xi
k = 0, . . . ,n,

see for example the text of Kress [24] or Burlich and Stoer [25] for details. If we for example

set n = 1, we obtain

P1(x) = y0
x− x1

x0− x1
+ y1

x− x0

x1− x0
=

y1− y0

x1− x0
x− y1x0 + y0x1

x1− x0
,

which we recognize as the equation for a straight line.

5.2 Adaptive Integration 119

The polynomial interpolatory quadrature of order n with equidistant quadrature points

xk = a+ kh and step h = (b− a)/n is called the Newton-Cotes quadrature formula of order n.
General expressions can be found in for example Refs. [24,25].

5.2 Adaptive Integration

Before we proceed with more advanced methods like Gaussian quadrature, we mention

breefly how an adaptive integration method can be implemented.

The above methods are all based on a defined step length, normally provided by the user,

dividing the integration domain with a fixed number of subintervals. This is rather simple

to implement may be inefficient, in particular if the integrand varies considerably in certain

areas of the integration domain. In these areas the number of fixed integration points may

not be adequate. In other regions, the integrand may vary slowly and fewer integration points

may be needed.

In order to account for such features, it may be convenient to first study the properties

of integrand, via for example a plot of the function to integrate. If this function oscillates

largely in some specific domain we may then opt for adding more integration points to that

particular domain. However, this procedure needs to be repeated for every new integrand

and lacks obviously the advantages of a more generic code.

The algorithm we present here is based on a recursive procedure and allows us to automate

an adaptive domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say the trapezoidal rule. We limit our-

selves to a one-dimensional integral. Our integration domain is defined by x ∈ [a,b]. The algo-

rithm goes as follows

• We compute our first approximation by computing the integral for the full domain. We label

this as I(0). It is obtained by calling our previously discussed function trapezoidal_rule as

I0 = trapezoidal_rule(a, b, n, function);

• In the next step we split the integration in two, with c = (a+b)/2. We compute then the two

integrals I(1L) and I(1R)

I1L = trapezoidal_rule(a, c, n, function);

and

I1R = trapezoidal_rule(c, b, n, function);

With a given defined tolerance, being a small number provided by us, we estimate the

difference |I(1L) + I(1R)− I(0)| < tolerance. If this test is satisfied, our first approximation is

satisfactory.

• If not, we can set up a recursive procedure where the integral is split into subsequent

subintervals until our tolerance is satisfied.

This recursive procedure can be easily implemented via the following function

// Simple recursive function that implements the

// adaptive integration using the trapezoidal rule

// It is convenient to define as global variables

// the tolerance and the number of recursive steps

const int maxrecursions = 50;

const double tolerance = 1.0E-10;

// Takes as input the integration limits, number of points, function to integrate

// and the number of steps

120 5 Numerical Integration

void adaptive_integration(double a, double b, double *Integral, int n, int steps, double

(*func)(double))

if (steps > maxrecursions){

cout << 'Too many recursive steps, the function varies too much' << endl;

break;

}

double c = (a+b)*0.5;

// the whole integral

double I0 = trapezoidal_rule(a, b,n, func);

// the left half

double I1L = trapezoidal_rule(a, c,n, func);

// the right half

double I1R = trapezoidal_rule(c, b,n, func);

if (fabs(I1L+I1R-I0) < tolerance) integral = I0;

else

{

adaptive_integration(a, c, integral, int n, ++steps, func)

adaptive_integration(c, b, integral, int n, ++steps, func)

}

}

// end function adaptive_integration

The variables integral and steps should be initialized to zero by the function that calls the

adaptive procedure.

5.3 Gaussian Quadrature

The methods we have presented hitherto are taylored to problems where the mesh points xi

are equidistantly spaced, xi differing from xi+1 by the step h. These methods are well suited

to cases where the integrand may vary strongly over a certain region or if we integrate over

the solution of a differential equation.

If however our integrand varies only slowly over a large interval, then the methods we

have discussed may only slowly converge towards a chosen precision1. As an example,

I =
∫ b

1
x−2 f (x)dx,

may converge very slowly to a given precision if b is large and/or f (x) varies slowly as function
of x at large values. One can obviously rewrite such an integral by changing variables to t = 1/x
resulting in

I =
∫ 1

b−1
f (t−1)dt,

which has a small integration range and hopefully the number of mesh points needed is not

that large.

However, there are cases where no trick may help and where the time expenditure in

evaluating an integral is of importance. For such cases we would like to recommend methods

based on Gaussian quadrature. Here one can catch at least two birds with a stone, namely,

increased precision and fewer integration points. But it is important that the integrand varies

smoothly over the interval, else we have to revert to splitting the interval into many small

subintervals and the gain achieved may be lost.

The basic idea behind all integration methods is to approximate the integral

1 You could e.g., impose that the integral should not change as function of increasing mesh points beyond the

sixth digit.

5.3 Gaussian Quadrature 121

I =
∫ b

a
f (x)dx≈

N

∑
i=1

ωi f (xi),

where ω and x are the weights and the chosen mesh points, respectively. In our previous

discussion, these mesh points were fixed at the beginning, by choosing a given number of

points N. The weigths ω resulted then from the integration method we applied. Simpson’s

rule, see Eq. (5.6) would give

ω : {h/3,4h/3,2h/3,4h/3, . . .,4h/3,h/3},

for the weights, while the trapezoidal rule resulted in

ω : {h/2,h,h, . . . ,h,h/2} .

In general, an integration formula which is based on a Taylor series using N points, will

integrate exactly a polynomial P of degree N− 1. That is, the N weights ωn can be chosen to

satisfy N linear equations, see chapter 3 of Ref. [3]. A greater precision for a given amount

of numerical work can be achieved if we are willing to give up the requirement of equally

spaced integration points. In Gaussian quadrature (hereafter GQ), both the mesh points and

the weights are to be determined. The points will not be equally spaced2. The theory behind

GQ is to obtain an arbitrary weight ω through the use of so-called orthogonal polynomials.

These polynomials are orthogonal in some interval say e.g., [-1,1]. Our points xi are chosen in

some optimal sense subject only to the constraint that they should lie in this interval. Together

with the weights we have then 2N (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render it smooth by extracting from it

the weight function of an orthogonal polynomial, i.e., we are rewriting

I =
∫ b

a
f (x)dx =

∫ b

a
W (x)g(x)dx≈

N

∑
i=1

ωig(xi), (5.7)

where g is smooth and W is the weight function, which is to be associated with a given

orthogonal polynomial. Note that with a given weight function we end up evaluating the

integrand for the function g(xi).

The weight function W is non-negative in the integration interval x ∈ [a,b] such that for any

n ≥ 0
∫ b

a |x|nW (x)dx is integrable. The naming weight function arises from the fact that it may

be used to give more emphasis to one part of the interval than another. A quadrature formula

∫ b

a
W (x) f (x)dx ≈

N

∑
i=1

ωi f (xi), (5.8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature formula if

it integrates all polynomials p ∈ P2N−1 exactly, that is

∫ b

a
W (x)p(x)dx =

N

∑
i=1

ωi p(xi), (5.9)

It is assumed that W (x) is continuous and positive and that the integral

∫ b

a
W (x)dx

2 Typically, most points will be located near the origin, while few points are needed for large x values since

the integrand is supposed to vary smoothly there. See below for an example.

122 5 Numerical Integration

exists. Note that the replacement of f →Wg is normally a better approximation due to the

fact that we may isolate possible singularities of W and its derivatives at the endpoints of the

interval.

The quadrature weights or just weights (not to be confused with the weight function) are

positive and the sequence of Gaussian quadrature formulae is convergent if the sequence QN

of quadrature formulae

QN(f)→Q(f) =
∫ b

a
f (x)dx,

in the limit N → ∞. Then we say that the sequence

QN(f) =
N

∑
i=1

ω(N)
i f (x(N)

i),

is convergent for all polynomials p, that is

QN(p) = Q(p)

if there exits a constant C such that
N

∑
i=1
|ω(N)

i | ≤C,

for all N which are natural numbers.

The error for the Gaussian quadrature formulae of order N is given by

∫ b

a
W (x) f (x)dx−

N

∑
k=1

wk f (xk) =
f 2N(ξ)
(2N)!

∫ b

a
W (x)[qN(x)]

2dx

where qN is the chosen orthogonal polynomial and ξ is a number in the interval [a,b]. We

have assumed that f ∈ C2N [a,b], viz. the space of all real or complex 2N times continuously

differentiable functions.

In science there are several important orthogonal polynomials which arise from the solu-

tion of differential equations. Well-known examples are the Legendre, Hermite, Laguerre and

Chebyshev polynomials. They have the following weight functions

Weight function Interval Polynomial

W (x) = 1 x ∈ [−1,1] Legendre

W (x) = e−x2 −∞≤ x≤ ∞ Hermite

W (x) = xα e−x 0≤ x≤ ∞ Laguerre

W (x) = 1/(
√

1− x2) −1≤ x≤ 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be

summarized as follows.

• As stated above, methods based on Taylor series using N points will integrate exactly a

polynomial P of degree N− 1. If a function f (x) can be approximated with a polynomial of

degree N− 1
f (x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.

• Gaussian quadrature methods promise more than this. We can get a better polynomial

approximation with order greater than N to f (x) and still get away with only N mesh points.

More precisely, we approximate

f (x)≈ P2N−1(x),

and with only N mesh points these methods promise that

5.3 Gaussian Quadrature 123

∫

f (x)dx ≈
∫

P2N−1(x)dx =
N−1

∑
i=0

P2N−1(xi)ωi,

The reason why we can represent a function f (x) with a polynomial of degree 2N−1 is due

to the fact that we have 2N equations, N for the mesh points and N for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of order N, and the

weights are determined from the inverse of a matrix. An orthogonal polynomials of degree N
defined in an interval [a,b] has precisely N distinct zeros on the open interval (a,b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let

us revisit some features of orthogonal polynomials by specializing to Legendre polynomials.

In the text below, we reserve hereafter the labelling LN for a Legendre polynomial of order N,
while PN is an arbitrary polynomial of order N. These polynomials form then the basis for the

Gauss-Legendre method.

5.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in Science,

namely

C(1− x2)P−m2
l P+(1− x2)

d
dx

(

(1− x2)
dP
dx

)

= 0.

C is a constant. For ml = 0 we obtain the Legendre polynomials as solutions, whereas ml 6= 0
yields the so-called associated Legendre polynomials. This differential equation arises in for

example the solution of the angular dependence of Schrödinger’s equation with spherically

symmetric potentials such as the Coulomb potential.

The corresponding polynomials P are

Lk(x) =
1

2kk!
dk

dxk (x
2− 1)k k = 0,1,2, . . . ,

which, up to a factor, are the Legendre polynomials Lk. The latter fulfil the orthogonality

relation
∫ 1

−1
Li(x)L j(x)dx =

2
2i+ 1

δi j , (5.10)

and the recursion relation

(j+ 1)L j+1(x)+ jL j−1(x)− (2 j+ 1)xL j(x) = 0. (5.11)

It is common to choose the normalization condition

LN(1) = 1.

With these equations we can determine a Legendre polynomial of arbitrary order with input

polynomials of order N− 1 and N− 2.
As an example, consider the determination of L0, L1 and L2. We have that

L0(x) = c,

with c a constant. Using the normalization equation L0(1) = 1 we get that

L0(x) = 1.

124 5 Numerical Integration

For L1(x) we have the general expression

L1(x) = a+ bx,

and using the orthogonality relation

∫ 1

−1
L0(x)L1(x)dx = 0,

we obtain a = 0 and with the condition L1(1) = 1, we obtain b = 1, yielding

L1(x) = x.

We can proceed in a similar fashion in order to determine the coefficients of L2

L2(x) = a+ bx+ cx2,

using the orthogonality relations

∫ 1

−1
L0(x)L2(x)dx = 0,

and
∫ 1

−1
L1(x)L2(x)dx = 0,

and the condition L2(1) = 1 we would get

L2(x) =
1
2

(

3x2− 1
)

. (5.12)

We note that we have three equations to determine the three coefficients a, b and c.
Alternatively, we could have employed the recursion relation of Eq. (5.11), resulting in

2L2(x) = 3xL1(x)−L0,

which leads to Eq. (5.12).

The orthogonality relation above is important in our discussion on how to obtain the

weights and mesh points. Suppose we have an arbitrary polynomial QN−1 of order N−1 and a

Legendre polynomial LN(x) of order N. We could represent QN−1 by the Legendre polynomials

through

QN−1(x) =
N−1

∑
k=0

αkLk(x), (5.13)

where αk’s are constants.

Using the orthogonality relation of Eq. (5.10) we see that

∫ 1

−1
LN(x)QN−1(x)dx =

N−1

∑
k=0

∫ 1

−1
LN(x)αkLk(x)dx = 0. (5.14)

We will use this result in our construction of mesh points and weights in the next subsection.

In summary, the first few Legendre polynomials are

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2− 1)/2,

5.3 Gaussian Quadrature 125

L3(x) = (5x3− 3x)/2,

and

L4(x) = (35x4− 30x2+ 3)/8.

The following simple function implements the above recursion relation of Eq. (5.11). for com-

puting Legendre polynomials of order N.

// This function computes the Legendre polynomial of degree N

double Legendre(int n, double x)

{

double r, s, t;

int m;

r = 0; s = 1.;

// Use recursion relation to generate p1 and p2

for (m=0; m < n; m++)

{

t = r; r = s;

s = (2*m+1)*x*r - m*t;

s /= (m+1);

} // end of do loop

return s;

} // end of function Legendre

The variable s represents L j+1(x), while r holds L j(x) and t the value L j−1(x).

5.3.2 Integration points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polyno-

mial of degree 2N−1 (since we have 2N variables at hand, the mesh points and weights for N
points). This polynomial can be represented through polynomial division by

P2N−1(x) = LN(x)PN−1(x)+QN−1(x),

where PN−1(x) and QN−1(x) are some polynomials of degree N− 1 or less. The function LN(x)
is a Legendre polynomial of order N.

Recall that we wanted to approximate an arbitrary function f (x) with a polynomial P2N−1 in

order to evaluate
∫ 1

−1
f (x)dx≈

∫ 1

−1
P2N−1(x)dx.

We can use Eq. (5.14) to rewrite the above integral as

∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
(LN(x)PN−1(x)+QN−1(x))dx =

∫ 1

−1
QN−1(x)dx,

due to the orthogonality properties of the Legendre polynomials. We see that it suffices to

evaluate the integral over
∫ 1
−1 QN−1(x)dx in order to evaluate

∫ 1
−1 P2N−1(x)dx. In addition, at the

points xk where LN is zero, we have

P2N−1(xk) = QN−1(xk) k = 0,1, . . . ,N− 1,

and we see that through these N points we can fully define QN−1(x) and thereby the integral.

Note that we have chosen to let the numbering of the points run from 0 to N− 1. The reason

for this choice is that we wish to have the same numbering as the order of a polynomial of

126 5 Numerical Integration

degree N− 1. This numbering will be useful below when we introduce the matrix elements

which define the integration weights wi.

We develope then QN−1(x) in terms of Legendre polynomials, as done in Eq. (5.13),

QN−1(x) =
N−1

∑
i=0

αiLi(x). (5.15)

Using the orthogonality property of the Legendre polynomials we have

∫ 1

−1
QN−1(x)dx =

N−1

∑
i=0

αi

∫ 1

−1
L0(x)Li(x)dx = 2α0,

where we have just inserted L0(x) = 1! Instead of an integration problem we need now to

define the coefficient α0. Since we know the values of QN−1 at the zeros of LN , we may rewrite

Eq. (5.15) as

QN−1(xk) =
N−1

∑
i=0

αiLi(xk) =
N−1

∑
i=0

αiLik k = 0,1, . . . ,N− 1. (5.16)

Since the Legendre polynomials are linearly independent of each other, none of the columns

in the matrix Lik are linear combinations of the others. This means that the matrix Lik has an

inverse with the properties

L̂−1L̂ = Î.

Multiplying both sides of Eq. (5.16) with ∑N−1
j=0 L−1

ji results in

N−1

∑
i=0

(L−1)kiQN−1(xi) = αk. (5.17)

We can derive this result in an alternative way by defining the vectors

x̂k =













x0

x1

.

.

xN−1













α̂ =













α0

α1

.

.

αN−1













,

and the matrix

L̂ =









L0(x0) L1(x0) . . . LN−1(x0)

L0(x1) L1(x1) . . . LN−1(x1)

.

L0(xN−1) L1(xN−1) . . . LN−1(xN−1)









.

We have then

QN−1(x̂k) = L̂α̂,

yielding (if L̂ has an inverse)

L̂−1QN−1(x̂k) = α̂,

which is Eq. (5.17).

Using the above results and the fact that

∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx,

we get

5.3 Gaussian Quadrature 127

∫ 1

−1
P2N−1(x)dx =

∫ 1

−1
QN−1(x)dx = 2α0 = 2

N−1

∑
i=0

(L−1)0iP2N−1(xi).

If we identify the weights with 2(L−1)0i, where the points xi are the zeros of LN , we have an

integration formula of the type

∫ 1

−1
P2N−1(x)dx =

N−1

∑
i=0

ωiP2N−1(xi)

and if our function f (x) can be approximated by a polynomial P of degree 2N− 1, we have

finally that
∫ 1

−1
f (x)dx ≈

∫ 1

−1
P2N−1(x)dx =

N−1

∑
i=0

ωiP2N−1(xi).

In summary, the mesh points xi are defined by the zeros of an orthogonal polynomial of degree

N, that is LN , while the weights are given by 2(L−1)0i.

5.3.3 Application to the case N = 2

Let us apply the above formal results to the case N = 2. This means that we can approximate

a function f (x) with a polynomial P3(x) of order 2N− 1 = 3.
The mesh points are the zeros of L2(x) = 1/2(3x2− 1). These points are x0 = −1/

√
3 and

x1 = 1/
√

3.
Specializing Eq. (5.16)

QN−1(xk) =
N−1

∑
i=0

αiLi(xk) k = 0,1, . . . ,N− 1.

to N = 2 yields

Q1(x0) = α0−α1
1√
3
,

and

Q1(x1) = α0 +α1
1√
3
,

since L0(x =±1/
√

3) = 1 and L1(x =±1/
√

3) =±1/
√

3.
The matrix Lik defined in Eq. (5.16) is then

Lik =

(

1 − 1√
3

1 1√
3

)

,

with an inverse given by

(L)−1
ik =

√
3

2

(

1√
3

1√
3

−1 1

)

.

The weights are given by the matrix elements 2(L0k)
−1. We have thence ω0 = 1 and ω1 = 1.

Obviously, there is no problem in changing the numbering of the matrix elements i,k =

0,1,2, . . . ,N− 1 to i,k = 1,2, . . . ,N. We have chosen to start from zero, since we deal with poly-

nomials of degree N− 1.
Summarizing, for Legendre polynomials with N = 2 we have weights

ω : {1,1} ,

128 5 Numerical Integration

and mesh points

x :

{

− 1√
3
,

1√
3

}

.

If we wish to integrate
∫ 1

−1
f (x)dx,

with f (x) = x2, we approximate

I =
∫ 1

−1
x2dx≈

N−1

∑
i=0

ωix
2
i .

The exact answer is 2/3. Using N = 2 with the above two weights and mesh points we get

I =
∫ 1

−1
x2dx =

1

∑
i=0

ωix
2
i =

1
3
+

1
3
=

2
3
,

the exact answer!

If we were to emply the trapezoidal rule we would get

I =
∫ 1

−1
x2dx =

b− a
2

(

(a)2 +(b)2)/2 =
1− (−1)

2

(

(−1)2 +(1)2)/2 = 1!

With just two points we can calculate exactly the integral for a second-order polynomial since

our methods approximates the exact function with higher order polynomial. How many points

do you need with the trapezoidal rule in order to achieve a similar accuracy?

5.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always

through a change of variable

t =
b− a

2
x+

b+ a
2

,

rewrite the integral for an interval [a,b]

∫ b

a
f (t)dt =

b− a
2

∫ 1

−1
f

(

(b− a)x
2

+
b+ a

2

)

dx.

If we have an integral on the form
∫ ∞

0
f (t)dt,

we can choose new mesh points and weights by using the mapping

x̃i = tan
{π

4
(1+ xi)

}

,

and

ω̃i =
π
4

ωi

cos2
(π

4 (1+ xi)
) ,

where xi and ωi are the original mesh points and weights in the interval [−1,1], while x̃i and

ω̃i are the new mesh points and weights for the interval [0,∞).

To see that this is correct by inserting the the value of xi =−1 (the lower end of the interval

[−1,1]) into the expression for x̃i. That gives x̃i = 0, the lower end of the interval [0,∞). For

xi = 1, we obtain x̃i = ∞. To check that the new weights are correct, recall that the weights

5.3 Gaussian Quadrature 129

should correspond to the derivative of the mesh points. Try to convince yourself that the

above expression fulfills this condition.

5.3.5 Other orthogonal polynomials

5.3.5.1 Laguerre polynomials

If we are able to rewrite our integral of Eq. (5.7) with a weight function W (x) = xα e−x with

integration limits [0,∞), we could then use the Laguerre polynomials. The polynomials form

then the basis for the Gauss-Laguerre method which can be applied to integrals of the form

I =
∫ ∞

0
f (x)dx =

∫ ∞

0
xα e−xg(x)dx.

These polynomials arise from the solution of the differential equation

(

d2

dx2 −
d
dx

+
λ
x
− l(l + 1)

x2

)

L (x) = 0,

where l is an integer l≥ 0 and λ a constant. This equation arises for example from the solution

of the radial Schrödinger equation with a centrally symmetric potential such as the Coulomb

potential. The first few polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2− 4x+ x2,

L3(x) = 6− 18x+ 9x2− x3,

and

L4(x) = x4− 16x3 + 72x2− 96x+ 24.

They fulfil the orthogonality relation

∫ ∞

−∞
e−x

Ln(x)
2dx = 1,

and the recursion relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

5.3.5.2 Hermite polynomials

In a similar way, for an integral which goes like

I =
∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
e−x2

g(x)dx.

we could use the Hermite polynomials in order to extract weights and mesh points. The

Hermite polynomials are the solutions of the following differential equation

d2H(x)
dx2 − 2x

dH(x)
dx

+(λ − 1)H(x) = 0.

130 5 Numerical Integration

A typical example is again the solution of Schrödinger’s equation, but this time with a har-

monic oscillator potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2− 2,

H3(x) = 8x3− 12,

and

H4(x) = 16x4− 48x2 + 12.

They fulfil the orthogonality relation

∫ ∞

−∞
e−x2

Hn(x)
2dx = 2nn!

√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

5.3.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since

the mesh points are not evenly distributed, a careful analysis of the behavior of the integrand

as function of x and the location of mesh points is mandatory. To give you an example, in

the Table below we show the mesh points and weights for the integration interval [0,100]

for N = 10 points obtained by the Gauss-Legendre method. Clearly, if your function oscillates

Table 5.1 Mesh points and weights for the integration interval [0,100] with N = 10 using the Gauss-Legendre

method.

i xi ωi

1 1.305 3.334

2 6.747 7.473

3 16.030 10.954

4 28.330 13.463

5 42.556 14.776

6 57.444 14.776

7 71.670 13.463

8 83.970 10.954

9 93.253 7.473

10 98.695 3.334

strongly in any subinterval, this approach needs to be refined, either by choosing more points

or by choosing other integration methods. Note also that for integration intervals like for

example x ∈ [0,∞], the Gauss-Legendre method places more points at the beginning of the

integration interval. If your integrand varies slowly for large values of x, then this method

may be appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s

method and the Gauss-Legendre approach. We choose two functions to integrate:

5.3 Gaussian Quadrature 131

∫ 100

1

exp(−x)
x

dx,

and
∫ 3

0

1
2+ x2 dx.

A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre

method is included here. For the corresponding Fortran program, replace program1.cpp with

program1.f90. The Python program is listed as program1.py.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/program1.cpp

#include <iostream>

#include "lib.h"

using namespace std;

// Here we define various functions called by the main program

// this function defines the function to integrate

double int_function(double x);

// Main function begins here

int main()

{

int n;

double a, b;

cout << "Read in the number of integration points" << endl;

cin >> n;

cout << "Read in integration limits" << endl;

cin >> a >> b;

// reserve space in memory for vectors containing the mesh points

// weights and function values for the use of the gauss-legendre

// method

double *x = new double [n];

double *w = new double [n];

// set up the mesh points and weights

gauss_legendre(a, b,x,w, n);

// evaluate the integral with the Gauss-Legendre method

// Note that we initialize the sum

double int_gauss = 0.;

for (int i = 0; i < n; i++){

int_gauss+=w[i]*int_function(x[i]);

}

// final output

cout << "Trapez-rule = " << trapezoidal_rule(a, b,n, int_function)

<< endl;

cout << "Simpson's rule = " << simpson(a, b,n, int_function)

<< endl;

cout << "Gaussian quad = " << int_gauss << endl;

delete [] x;

delete [] w;

return 0;

} // end of main program

// this function defines the function to integrate

double int_function(double x)

{

double value = 4./(1.+x*x);

return value;

} // end of function to evaluate

To be noted in this program is that we can transfer the name of a given function to integrate.

In Table 5.2 we show the results for the first integral using various mesh points, while Table

5.3 displays the corresponding results obtained with the second integral. We note here that,

since the area over where we integrate is rather large and the integrand goes slowly to zero

132 5 Numerical Integration

Table 5.2 Results for
∫ 100

1 exp (−x)/xdx using three different methods as functions of the number of mesh

points N.

N Trapez Simpson Gauss-Legendre

10 1.821020 1.214025 0.1460448

20 0.912678 0.609897 0.2178091

40 0.478456 0.333714 0.2193834

100 0.273724 0.231290 0.2193839

1000 0.219984 0.219387 0.2193839

for large values of x, both the trapezoidal rule and Simpson’s method need quite many points

in order to approach the Gauss-Legendre method. This integrand demonstrates clearly the

strength of the Gauss-Legendre method (and other GQ methods as well), viz., few points are

needed in order to achieve a very high precision.

The second Table however shows that for smaller integration intervals, both the trapezoidal

rule and Simpson’s method compare well with the results obtained with the Gauss-Legendre

approach.

Table 5.3 Results for
∫ 3

0 1/(2+x2)dx using three different methods as functions of the number of mesh points

N.

N Trapez Simpson Gauss-Legendre

10 0.798861 0.799231 0.799233

20 0.799140 0.799233 0.799233

40 0.799209 0.799233 0.799233

100 0.799229 0.799233 0.799233

1000 0.799233 0.799233 0.799233

5.4 Treatment of Singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions

for scattering to dispersion relations. Dispersion relations are often related to measurable

quantities and provide important consistency checks in atomic, nuclear and particle physics.

A PV integral is defined as

I(x) = P

∫ b

a
dt

f (t)
t− x

= lim
ε→0+

[

∫ x−ε

a
dt

f (t)
t− x

+

∫ b

x+ε
dt

f (t)
t− x

]

,

and arises in applications of Cauchy’s residue theorem when the pole x lies on the real axis

within the interval of integration [a,b]. Here P stands for the principal value. An important

assumption is that the function f (t) is continuous on the interval of integration.

In case f (t) is a closed form expression or it has an analytic continuation in the complex

plane, it may be possible to obtain an expression on closed form for the above integral.

However, the situation which we are often confronted with is that f (t) is only known at

some points ti with corresponding values f (ti). In order to obtain I(x) we need to resort to a

numerical evaluation.

To evaluate such an integral, let us first rewrite it as

P

∫ b

a
dt

f (t)
t− x

=

∫ x−∆

a
dt

f (t)
t− x

+

∫ b

x+∆
dt

f (t)
t− x

+P

∫ x+∆

x−∆
dt

f (t)
t− x

,

5.4 Treatment of Singular Integrals 133

where we have isolated the principal value part in the last integral.

Defining a new variable u = t− x, we can rewrite the principal value integral as

I∆ (x) = P

∫ +∆

−∆
du

f (u+ x)
u

. (5.18)

One possibility is to Taylor expand f (u+x) around u = 0, and compute derivatives to a certain

order as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers

of u in the Taylor expansion dissapear, we have that

I∆ (x)≈
Nmax

∑
n=0

f (2n+1)(x)
∆ 2n+1

(2n+ 1)(2n+ 1)!
.

To evaluate higher-order derivatives may be both time consuming and delicate from a

numerical point of view, since there is always the risk of loosing precision when calculating

derivatives numerically. Unless we have an analytic expression for f (u+ x) and can evaluate

the derivatives in a closed form, the above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (5.18). Let

us first introduce a new variable s = u/∆ and rewrite Eq. (5.18) as

I∆ (x) = P

∫ +1

−1
ds

f (∆s+ x)
s

. (5.19)

The integration limits are now from −1 to 1, as for the Legendre polynomials. The principal

value in Eq. (5.19) is however rather tricky to evaluate numerically, mainly since computers

have limited precision. We will here use a subtraction trick often used when dealing with

singular integrals in numerical calculations. We introduce first the calculus relation

∫ +1

−1

ds
s
= 0.

It means that the curve 1/(s) has equal and opposite areas on both sides of the singular point

s = 0.
If we then note that f (x) is just a constant, we have also

f (x)
∫ +1

−1

ds
s

=

∫ +1

−1
f (x)

ds
s

= 0.

Subtracting this equation from Eq. (5.19) yields

I∆ (x) = P

∫ +1

−1
ds

f (∆s+ x)
s

=
∫ +1

−1
ds

f (∆s+ x)− f (x)
s

, (5.20)

and the integrand is no longer singular since we have that lims→0(f (s+ x)− f (x)) = 0 and for

the particular case s = 0 the integrand is now finite.

Eq. (5.20) is now rewritten using the Gauss-Legendre method resulting in

∫ +1

−1
ds

f (∆s+ x)− f (x)
s

=
N

∑
i=1

ωi
f (∆si + x)− f (x)

si
, (5.21)

where si are the mesh points (N in total) and ωi are the weights.

In the selection of mesh points for a PV integral, it is important to use an even number of

points, since an odd number of mesh points always picks si = 0 as one of the mesh points. The

sum in Eq. (5.21) will then diverge.

Let us apply this method to the integral

134 5 Numerical Integration

I(x) = P

∫ +1

−1
dt

et

t
. (5.22)

The integrand diverges at x = t = 0. We rewrite it using Eq. (5.20) as

P

∫ +1

−1
dt

et

t
=

∫ +1

−1

et − 1
t

, (5.23)

since ex = e0 = 1. With Eq. (5.21) we have then

∫ +1

−1

et − 1
t

≈
N

∑
i=1

ωi
eti − 1

ti
. (5.24)

The exact results is 2.11450175075.....With just two mesh points we recall from the previous

subsection that ω1 =ω2 = 1 and that the mesh points are the zeros of L2(x), namely x1 =−1/
√

3
and x2 = 1/

√
3. Setting N = 2 and inserting these values in the last equation gives

I2(x = 0) =
√

3
(

e1/
√

3− e−1/
√

3
)

= 2.1129772845.

With six mesh points we get even the exact result to the tenth digit

I6(x = 0) = 2.11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we mod-

ify the integration limits to ±∞ and use the fact that

∫ ∞

−∞

dk
k− k0

=
∫ 0

−∞

dk
k− k0

+
∫ ∞

0

dk
k− k0

= 0.

A change of variable u =−k in the integral with limits from −∞ to 0 gives

∫ ∞

−∞

dk
k− k0

=

∫ 0

∞

−du
−u− k0

+

∫ ∞

0

dk
k− k0

=

∫ ∞

0

dk
−k− k0

+

∫ ∞

0

dk
k− k0

= 0.

It means that the curve 1/(k− k0) has equal and opposite areas on both sides of the singular

point k0. If we break the integral into one over positive k and one over negative k, a change of
variable k→−k allows us to rewrite the last equation as

∫ ∞

0

dk

k2− k2
0

= 0.

We can use this to express a principal values integral as

P

∫ ∞

0

f (k)dk

k2− k2
0

=

∫ ∞

0

(f (k)− f (k0))dk

k2− k2
0

, (5.25)

where the right-hand side is no longer singular at k = k0, it is proportional to the derivative

d f/dk, and can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations, as discussed in the next

section.

5.5 Parallel Computing 135

5.5 Parallel Computing

We end this chapter by discussing modern supercomputing concepts like parallel computing.

In particular, we will introduce you to the usage of the Message Passing Interface (MPI) li-

brary. MPI is a library, not a programming language. It specifies the names, calling sequences

and results of functions or subroutines to be called from C++ or Fortran programs, and the

classes and methods that make up the MPI C++ library. The programs that users write in

Fortran or C++ are compiled with ordinary compilers and linked with the MPI library. MPI

programs should be able to run on all possible machines and run all MPI implementetations

without change. An excellent reference is the text by Karniadakis and Kirby II [17].

5.5.1 Brief survey of supercomputing concepts and terminologies

Since many discoveries in science are nowadays obtained via large-scale simulations, there

is an ever-lasting wish and need to do larger simulations using shorter computer time. The

development of the capacity for single-processor computers (even with increased processor

speed and memory) can hardly keep up with the pace of scientific computing. The solution to

the needs of the scientific computing and high-performance computing (HPC) communities

has therefore been parallel computing.

The basic ideas of parallel computing is that multiple processors are involved to solve a

global problem. The essence is to divide the entire computation evenly among collaborative

processors.

Today’s supercomputers are parallel machines and can achieve peak performances almost

up to 1015 floating point operations per second, so-called peta-scale computers, see for ex-

ample the list over the world’s top 500 supercomputers at www.top500.org. This list gets

updated twice per year and sets up the ranking according to a given supercomputer’s perfor-

mance on a benchmark code from the LINPACK library. The benchmark solves a set of linear

equations using the best software for a given platform.

To understand the basic philosophy, it is useful to have a rough picture of how to clas-

sify different hardware models. We distinguish betwen three major groups, (i) conventional

single-processor computers, normally called SISD (single-instruction-single-data) machines,

(ii) so-called SIMD machines (single-instruction-multiple-data), which incorporate the idea of

parallel processing using a large number of processing units to execute the same instruc-

tion on different data and finally (iii) modern parallel computers, so-called MIMD (multiple-

instruction- multiple-data) machines that can execute different instruction streams in parallel

on different data. On a MIMD machine the different parallel processing units perform op-

erations independently of each others, only subject to synchronization via a given message

passing interface at specified time intervals. MIMDmachines are the dominating ones among

present supercomputers, and we distinguish between two types of MIMD computers, namely

shared memory machines and distributed memory machines. In shared memory systems the

central processing units (CPU) share the same address space. Any CPU can access any data in

the global memory. In distributed memory systems each CPU has its own memory. The CPUs

are connected by some network and may exchange messages. A recent trend are so-called

ccNUMA (cache-coherent-non-uniform-memory- access) systems which are clusters of SMP

(symmetric multi-processing) machines and have a virtual shared memory.

Distributed memory machines, in particular those based on PC clusters, are nowadays the

most widely used and cost-effective, although farms of PC clusters require large infrastuc-

tures and yield additional expenses for cooling. PC clusters with Linux as operating systems

are easy to setup and offer several advantages, since they are built from standard commodity

136 5 Numerical Integration

hardware with the open source software (Linux) infrastructure. The designer can improve

performance proportionally with added machines. The commodity hardware can be any of

a number of mass-market, stand-alone compute nodes as simple as two networked comput-

ers each running Linux and sharing a file system or as complex as thousands of nodes with

a high-speed, low-latency network. In addition to the increased speed of present individual

processors (and most machines come today with dual cores or four cores, so-called quad-

cores) the position of such commodity supercomputers has been strenghtened by the fact

that a library like MPI has made parallel computing portable and easy. Although there are

several implementations, they share the same core commands. Message-passing is a mature

programming paradigm and widely accepted. It often provides an efficient match to the hard-

ware.

5.5.2 Parallelism

When we discuss parallelism, it is common to subdivide different algorithms in three major

groups.

• Task parallelism:the work of a global problem can be divided into a number of inde-

pendent tasks, which rarely need to synchronize. Monte Carlo simulations and numerical

integration are examples of possible applications. Since there is more or less no commu-

nication between different processors, task parallelism results in almost a perfect mathe-

matical parallelism and is commonly dubbed embarassingly parallel (EP). The examples in

this chapter fall under that category. The use of the MPI library is then limited to some few

function calls and the programming is normally very simple.

• Data parallelism: use of multiple threads (e.g., one thread per processor) to dissect loops

over arrays etc. This paradigm requires a single memory address space. Communication

and synchronization between the processors are often hidden, and it is thus easy to pro-

gram. However, the user surrenders much control to a specialized compiler. An example of

data parallelism is compiler-based parallelization.

• Message-passing: all involved processors have an independent memory address space.

The user is responsible for partitioning the data/work of a global problem and distribut-

ing the subproblems to the processors. Collaboration between processors is achieved by

explicit message passing, which is used for data transfer plus synchronization.

This paradigm is the most general one where the user has full control. Better parallel

efficiency is usually achieved by explicit message passing. However, message-passing pro-

gramming is more difficult. We will meet examples of this in connection with the solution

eigenvalue problems in chapter 7 and of partial differential equations in chapter 10.

Before we proceed, let us look at two simple examples. We will also use these simple

examples to define the speedup factor of a parallel computation. The first case is that of the

additions of two vectors of dimension n,

z = αx+β y,

where α and β are two real or complex numbers and z,x,y ∈ Rn or ∈ Cn. For every element

we have thus

zi = αxi +β yi.

For every element zi we have three floating point operations, two multiplications and one

addition. If we assume that these operations take the same time ∆ t, then the total time spent

by one processor is

5.5 Parallel Computing 137

T1 = 3n∆ t.

Suppose now that we have access to a parallel supercomputer with P processors. Assume

also that P≤ n. We split then these addition and multiplication operations on every processor

so that every processor performs 3n/P operations in total, resulting in a time TP = 3n∆ t/P
for every single processor. We also assume that the time needed to gather together these

subsums is neglible

If we have perfect parallelism, our speedup should be P, the number of processors avail-

able. We see that this is the case by computing the relation between the time used in case

of only one processor and the time used if we can access P processors. The speedup SP is

defined as

SP =
T1

TP
=

3n∆ t
3n∆ t/P

= P,

a perfect speedup. As mentioned above, we call calculations that yield a perfect speedup for

embarassingly parallel. The efficiency is defined as

η(P) =
S(P)

P
.

Our next example is that of the inner product of two vectors defined in Eq. (6.5),

c =
n

∑
j=1

x jy j.

We assume again that P≤ n and define I = n/P. Each processor is assigned with its own subset

of local multiplications cP = ∑p xpyp, where p runs over all possible terms for processor P. As

an example, assume that we have four processors. Then we have

c1 =
n/4

∑
j=1

x jy j, c2 =
n/2

∑
j=n/4+1

x jy j,

c3 =
3n/4

∑
j=n/2+1

x jy j, c4 =
n

∑
j=3n/4+1

x jy j.

We assume again that the time for every operation is ∆ t. If we have only one processor, the

total time is T1 = (2n− 1)∆ t. For four processors, we must now add the time needed to add

c1 + c2 + c3 + c4, which is 3∆ t (three additions) and the time needed to communicate the local

result cP to all other processors. This takes roughly (P− 1)∆ tc, where ∆ tc need not equal ∆ t.
The speedup for four processors becomes now

S4 =
T1

T4
=

(2n− 1)∆ t
(n/2− 1)∆ t+ 3∆ t + 3∆ tc

=
4n− 2
10+ n

,

if ∆ t = ∆ tc. For n = 100, the speedup is S4 = 3.62< 4. For P processors the inner products yields

a speedup

SP =
(2n− 1)

(2I+P− 2))+ (P− 1)γ
,

with γ = ∆ tc/∆ t. Even with γ = 0, we see that the speedup is less than P.
The communication time ∆ tc can reduce significantly the speedup. However, even if it is

small, there are other factors as well which may reduce the efficiency ηp. For example, we

may have an uneven load balance, meaning that not all the processors can perform useful

work at all time, or that the number of processors doesn’t match properly the size of the

138 5 Numerical Integration

problem, or memory problems, or that a so-called startup time penalty known as latency may

slow down the transfer of data. Crucial here is the rate at which messages are transferred

5.5.3 MPI with simple examples

When we want to parallelize a sequential algorithm, there are at least two aspects we need

to consider, namely

• Identify the part(s) of a sequential algorithm that can be executed in parallel. This can be

difficult.

• Distribute the global work and data among P processors. Stated differently, here you need

to understand how you can get computers to run in parallel. From a practical point of view

it means to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is then a tool for writing programs

to run in parallel, without needing to know much (in most cases nothing) about a given ma-

chine’s architecture. MPI programs work on both shared memory and distributed memory

machines. Furthermore, MPI is a very rich and complicated library. But it is not necessary to

use all the features. The basic and most used functions have been optimized for most machine

architectures

Before we proceed, we need to clarify some concepts, in particular the usage of the words

process and processor. We refer to process as a logical unit which executes its own code,

in an MIMD style. The processor is a physical device on which one or several processes are

executed. The MPI standard uses the concept process consistently throughout its documen-

tation. However, since we only consider situations where one processor is responsible for one

process, we therefore use the two terms interchangeably in the discussion below, hopefully

without creating ambiguities.

The six most important MPI functions are

• MPI_ Init - initiate an MPI computation

• MPI_Finalize - terminate the MPI computation and clean up

• MPI_Comm_size - how many processes participate in a given MPI computation.

• MPI_Comm_rank - which rank does a given process have. The rank is a number between 0

and size-1, the latter representing the total number of processes.

• MPI_Send - send a message to a particular process within an MPI computation

• MPI_Recv - receive a message from a particular process within an MPI computation.

The first MPI C++ program is a rewriting of our ’hello world’ program (without the com-

putation of the sine function) from chapter 2. We let every process write "Hello world" on the

standard output.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program2.cpp

// First C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

5.5 Parallel Computing 139

cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

// End MPI

MPI_Finalize ();

return 0;

}

The corresponding Fortran program reads

PROGRAM hello

INCLUDE "mpif.h"

INTEGER:: numprocs, my_rank, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)

WRITE(*,*)"Hello world, I've rank ",my_rank," out of ",numprocs

CALL MPI_FINALIZE(ierr)

END PROGRAM hello

MPI is a message-passing library where all the routines have a corresponding C++-bindings3

MPI_Command_name or Fortran-bindings (function names are by convention in uppercase, but can

also be in lower case) MPI_COMMAND_NAME

To use the MPI library you must include header files which contain definitions and decla-

rations that are needed by the MPI library routines. The following line must appear at the top

of any source code file that will make an MPI call. For Fortran you must put in the beginning

of your program the declaration

INCLUDE 'mpif.h'

while for C++ you need to include the statement

#include "mpi.h"

These header files contain the declarations of functions, variabels etc. needed by the MPI

library.

The first MPI call must be MPI_INIT, which initializes the message passing routines, as

defined in for example

INTEGER :: ierr

CALL MPI_INIT(ierr)

for the Fortran example. The variable ierr is an integer which holds an error code when

the call returns. The value of ierr is however of little use since, by default, MPI aborts the

program when it encounters an error. However, ierr must be included when MPI starts. For

the C++ code we have the call to the function

MPI_Init(int *argc, char *argv)

where argc and argv are arguments passed to main. MPI does not use these arguments in any

way, however, and in MPI-2 implementations, NULL may be passed instead. When you have

finished you must call the function MPI_Finalize. In Fortran you use the statement

CALL MPI_FINALIZE(ierr)

3 The C++ bindings used in practice are the same as the C bindings, although reading older texts like [15–17]

one finds extensive discussions on the difference between C and C++ bindings. Throughout this text we will

use the C bindings.

140 5 Numerical Integration

while for C++ we use the function MPI_Finalize().

In addition to these calls, we have also included calls to so-called inquiry functions. There

are two MPI calls that are usually made soon after initialization. They are for C++,

MPI_COMM_SIZE((MPI_COMM_WORLD, &numprocs)

and

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

for Fortran. The function MPI_COMM_SIZE returns the number of tasks in a specified MPI com-

municator (comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groups, called communicators. What

does that mean? All MPI communication is associated with what one calls a communicator

that describes a group of MPI processes with a name (context). The communicator desig-

nates a collection of processes which can communicate with each other. Every process is

then identified by its rank. The rank is only meaningful within a particular communicator. A

communicator is thus used as a mechanism to identify subsets of processes. MPI has the flex-

ibility to allow you to define different types of communicators, see for example [16]. However,

here we have used the communicator MPI_COMM_WORLD that contains all the MPI processes that

are initiated when we run the program.

The variable numprocs refers to the number of processes we have at our disposal. The func-

tion MPI_COMM_RANK returns the rank (the name or identifier) of the tasks running the code. Each

task (or processor) in a communicator is assigned a number my_rank from 0 to numprocs− 1.
We are now ready to perform our first MPI calculations.

5.5.3.1 Running codes with MPI

To compile and load the above C++ code (after having understood how to use a local cluster),

we can use the command

mpicxx -O2 -o program2.x program2.cpp

and try to run with ten nodes using the command

mpiexec -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the C++ compiler statement mpicc

with mpif90 or equivalent compilers. The name of the compiler is obviously system dependent.

The command mpirunmay be used instead of mpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executable version of the code and

all processes are running exactly the same code. The question is then how can we tell the

difference between our parallel code running on a given number of processes and a serial

code? There are two major distinctions you should keep in mind: (i) MPI lets each process

have a particular rank to determine which instructions are run on a particular process and (ii)

the processes communicate with each other in order to finalize a task. Even if all processes

receive the same set of instructions, they will normally not execute the same instructions.We

will discuss this point in connection with our integration example below.

The above example produces the following output

5.5 Parallel Computing 141

Hello world, I’ve rank 0 out of 10 procs.

Hello world, I’ve rank 1 out of 10 procs.

Hello world, I’ve rank 4 out of 10 procs.

Hello world, I’ve rank 3 out of 10 procs.

Hello world, I’ve rank 9 out of 10 procs.

Hello world, I’ve rank 8 out of 10 procs.

Hello world, I’ve rank 2 out of 10 procs.

Hello world, I’ve rank 5 out of 10 procs.

Hello world, I’ve rank 7 out of 10 procs.

Hello world, I’ve rank 6 out of 10 procs.

The output to screen is not ordered since all processes are trying to write to screen simul-

taneously. It is then the operating system which opts for an ordering. If we wish to have an

organized output, starting from the first process, we may rewrite our program as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program3.cpp

// Second C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank, i;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

for (i = 0; i < numprocs; i++) {

MPI_Barrier (MPI_COMM_WORLD);

if (i == my_rank) {

cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

fflush (stdout);

}

}

// End MPI

MPI_Finalize ();

return 0;

}

Here we have used the MPI_Barrier function to ensure that every process has completed its set

of instructions in a particular order. A barrier is a special collective operation that does not

allow the processes to continue until all processes in the communicator (here MPI_COMM_WORLD)

have called MPI_Barrier. The output is now

Hello world, I’ve rank 0 out of 10 procs.

Hello world, I’ve rank 1 out of 10 procs.

Hello world, I’ve rank 2 out of 10 procs.

Hello world, I’ve rank 3 out of 10 procs.

Hello world, I’ve rank 4 out of 10 procs.

Hello world, I’ve rank 5 out of 10 procs.

Hello world, I’ve rank 6 out of 10 procs.

142 5 Numerical Integration

Hello world, I’ve rank 7 out of 10 procs.

Hello world, I’ve rank 8 out of 10 procs.

Hello world, I’ve rank 9 out of 10 procs.

The barriers make sure that all processes have reached the same point in the code. Many

of the collective operations like MPI_ALLREDUCE to be discussed later, have the same property;

viz. no process can exit the operation until all processes have started. However, this is slightly

more time-consuming since the processes synchronize between themselves as many times as

there are processes. In the next Hello world example we use the send and receive functions

in order to a have a synchronized action.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program4.cpp

// Third C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank, flag;

// MPI initializations

MPI_Status status;

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

// Send and Receive example

if (my_rank > 0)

MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100, MPI_COMM_WORLD, &status);

cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

if (my_rank < numprocs-1)

MPI_Send (&my_rank, 1, MPI_INT, my_rank+1, 100, MPI_COMM_WORLD);

// End MPI

MPI_Finalize ();

return 0;

}

The basic sending of messages is given by the function MPI_SEND, which in C++ is defined as

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

while in Fortran we would call this function with the following parameters

CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr).

This single command allows the passing of any kind of variable, even a large array, to any

group of tasks. The variable buf is the variable we wish to send while count is the number of

variables we are passing. If we are passing only a single value, this should be 1. If we transfer

an array, it is the overall size of the array. For example, if we want to send a 10 by 10 array,

count would be 10× 10= 100 since we are actually passing 100 values.

We define the type of variable using MPI_TYPE in order to let MPI function know what to

expect. The destination of the send is declared via the variable dest, which gives the ID

number of the task we are sending the message to. The variable tag is a way for the receiver

to verify that it is getting the message it expects. The message tag is an integer number

that we can assign any value, normally a large number (larger than the expected number of

processes). The communicator comm is the group ID of tasks that the message is going to. For

complex programs, tasks may be divided into groups to speed up connections and transfers.

In small programs, this will more than likely be in MPI_COMM_WORLD.

5.5 Parallel Computing 143

Furthermore, when an MPI routine is called, the Fortran or C++ data type which is passed

must match the corresponding MPI integer constant. An integer is defined as MPI_INT in C++

and MPI_INTEGER in Fortran. A double precision real is MPI_DOUBLE in C++ and MPI_DOUBLE_PRECISION

in Fortran and single precision real is MPI_FLOAT in C++ and MPI_REAL in Fortran. For further

definitions of data types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on another task. The function MPI_RECV

is similar to the send call. In C++ we would define this as

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

while in Fortran we would use the call

CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, status, ierr)}.

The arguments that are different from those in MPI_SEND are buf which is the name of the

variable where you will be storing the received data, source which replaces the destination in

the send command. This is the return ID of the sender.

Finally, we have used MPI_Status~status;where one can check if the receive was completed.

The source or tag of a received message may not be known if wildcard values are used in the

receive function. In C++, MPI Status is a structure that contains further information. One

can obtain this information using

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)}

The output of this code is the same as the previous example, but now process 0 sends a

message to process 1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetings, we are now ready for serious

work.

5.5.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to send and receive data types. This

means also that we need to specify which data types to send to MPI functions.

The program listed here integrates

π =

∫ 1

0
dx

4
1+ x2

by simply adding up areas of rectangles according to the algorithm discussed in Eq. (5.5),

rewritten here

I =
∫ b

a
f (x)dx ≈ h

N

∑
i=1

f (xi−1/2),

where f (x) = 4/(1+ x2). This is a brute force way of obtaining an integral but suffices to

demonstrate our first application of MPI to mathematical problems. What we do is to subdi-

vide the integration range x ∈ [0,1] into n rectangles. Increasing n should obviously increase

the precision of the result, as discussed in the beginning of this chapter. The parallel part

proceeds by letting every process collect a part of the sum of the rectangles. At the end of

the computation all the sums from the processes are summed up to give the final global sum.

The program below serves thus as a simple example on how to integrate in parallel. We will

refine it in the next examples and we will also add a simple example on how to implement the

trapezoidal rule.

144 5 Numerical Integration

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program5.cpp

1 // Reactangle rule and numerical integration using MPI send and Receive

2 using namespace std;

3 #include <mpi.h>

4 #include <iostream>

5 int main (int nargs, char* args[])

6 {

7 int numprocs, my_rank, i, n = 1000;

8 double local_sum, rectangle_sum, x, h;

9 // MPI initializations

10 MPI_Init (&nargs, &args);

11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

13 // Read from screen a possible new vaue of n

14 if (my_rank == 0 && nargs > 1) {

15 n = atoi(args[1]);

16 }

17 h = 1.0/n;

18 // Broadcast n and h to all processes

19 MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

21 // Every process sets up its contribution to the integral

22 local_sum = 0.;

23 for (i = my_rank; i < n; i += numprocs) {

24 x = (i+0.5)*h;

25 local_sum += 4.0/(1.0+x*x);

26 }

27 local_sum *= h;

28 if (my_rank == 0) {

29 MPI_Status status;

30 rectangle_sum = local_sum;

31 for (i=1; i < numprocs; i++) {

32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,MPI_COMM_WORLD,&status);

33 rectangle_sum += local_sum;

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum,1,MPI_DOUBLE,0,500,MPI_COMM_WORLD);

38 // End MPI

39 MPI_Finalize ();

40 return 0;

41 }

After the standard initializations with MPI such as

MPI_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using for example

mpirun -np 10 ./prog.x

In line 14 we check if we have read in from screen the number of mesh points n. Note that in

line 7 we fix n= 1000, however we have the possibility to run the code with a different number

of mesh points as well. If my_rank equals zero, which correponds to the master node, then we

read a new value of n if the number of arguments is larger than two. This can be done as

follows when we run the code

mpiexec -np 10 ./prog.x 10000

5.5 Parallel Computing 145

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast function

MPI_Bcast. We use this particular function because we want data on one processor (our master

node) to be shared with all other processors. The broadcast function sends data to a group of

processes. The MPI routine MPI_Bcast transfers data from one task to a group of others. The

format for the call is in C++ given by the parameters of

MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);.

In case we have a floating point variable we need to declare

MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

The general structure of this function is

MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

All processes call this function, both the process sending the data (with rank zero) and all

the other processes in MPI_COMM_WORLD. Every process has now copies of n and h, the number

of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of

data sent. In case of a one-dimensional array, one needs to transfer the number of array

elements. If you have an n×m matrix, you must transfer n×m. We need also to specify whether

the variable type we transfer is a non-numerical such as a logical or character variable or

numerical of the integer, real or complex type.

We transfer also an integer variable int root. This variable specifies the process which

has the original copy of the data. Since we fix this value to zero in the call in lines 19 and 20,

it means that it is the master process which keeps this information. For Fortran, this function

is called via the statement

CALL MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

In lines 23-27, every process sums its own part of the final sum used by the rectangle rule.

The receive statement collects the sums from all other processes in case my_rank==0, else an

MPI send is performed.

The above function is not very elegant. Furthermore, the MPI instructions can be simplified

by using the functions MPI_Reduce or MPI_Allreduce. The first function takes information from all

processes and sends the result of the MPI operation to one process only, typically the master

node. If we use MPI_Allreduce, the result is sent back to all processes, a feature which is useful

when all nodes need the value of a joint operation. We limit ourselves to MPI_Reduce since it is

only one process which will print out the final number of our calculation, The arguments to

MPI_Allreduce are the same.

The MPI_Reduce function is defined as follows

MPI_Reduce(void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op, int

root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one sends the

address of the variable or the first element of an array. If they are arrays they need to have the

same size. The variable count represents the total dimensionality, 1 in case of just one variable,

while MPI_Datatype defines the type of variable which is sent and received. The new feature is

MPI_Op. MPI_Op defines the type of operation we want to do. There are many options, see again

Refs. [15–17] for full list. In our case, since we are summing the rectangle contributions from

every process we define MPI_Op=MPI_SUM. If we have an array or matrix we can search for the

largest og smallest element by sending either MPI_MAX or MPI_MIN. If we want the location as

well (which array element) we simply transfer MPI_MAXLOC or MPI_MINOC. If we want the product

we write MPI_PROD. MPI_Allreduce is defined as

146 5 Numerical Integration

MPI_Allreduce(void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op,

MPI_Comm comm)

The function we list in the next example is the MPI extension of program1.cpp. The dif-

ference is that we employ only the trapezoidal rule. It is easy to extend this code to include

gaussian quadrature or other methods.

It is also worth noting that every process has now its own starting and ending point. We

read in the number of integration points n and the integration limits a and b. These are called
a and b. They serve to define the local integration limits used by every process. The local

integration limits are defined as

local_a = a + my_rank *(b-a)/numprocs

local_b = a + (my_rank-1) *(b-a)/numprocs.

These two variables are transfered to the method for the trapezoidal rule. These two methods

return the local sum variable local_sum. MPI_Reduce collects all the local sums and returns the

total sum, which is written out by the master node. The program below implements this. We

have also added the possibility to measure the total time used by the code via the calls to

MPI_Wtime.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program6.cpp

// Trapezoidal rule and numerical integration using MPI with MPI_Reduce

using namespace std;

#include <mpi.h>

#include <iostream>

// Here we define various functions called by the main program

double int_function(double);

double trapezoidal_rule(double , double , int , double (*)(double));

// Main function begins here

int main (int nargs, char* args[])

{

int n, local_n, numprocs, my_rank;

double a, b, h, local_a, local_b, total_sum, local_sum;

double time_start, time_end, total_time;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

time_start = MPI_Wtime();

// Fixed values for a, b and n

a = 0.0 ; b = 1.0; n = 1000;

h = (b-a)/n; // h is the same for all processes

local_n = n/numprocs; // make sure n > numprocs, else integer division gives zero

// Length of each process' interval of

// integration = local_n*h.

local_a = a + my_rank*local_n*h;

local_b = local_a + local_n*h;

total_sum = 0.0;

local_sum = trapezoidal_rule(local_a, local_b, local_n, &int_function);

MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

time_end = MPI_Wtime();

total_time = time_end-time_start;

if (my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;

cout << "Time = " << total_time << " on number of processors: " << numprocs << endl;

}

5.6 An Integration Class 147

// End MPI

MPI_Finalize ();

return 0;

} // end of main program

// this function defines the function to integrate

double int_function(double x)

{

double value = 4./(1.+x*x);

return value;

} // end of function to evaluate

// this function defines the trapezoidal rule

double trapezoidal_rule(double a, double b, int n, double (*func)(double))

{

double trapez_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

fa=(*func)(a)/2. ;

fb=(*func)(b)/2. ;

trapez_sum=0.;

for (j=1; j <= n-1; j++){

x=j*step+a;

trapez_sum+=(*func)(x);

}

trapez_sum=(trapez_sum+fb+fa)*step;

return trapez_sum;

} // end trapezoidal_rule

An obvious extension of this code is to read from file or screen the integration variables. One

could also use the program library to call a particular integration method.

5.6 An Integration Class

We end this chapter by presenting the usage of the integral class defined in the program

library. Here we have defined two header files, the Function.h and the Integral.h files. The

program below uses the classes defined in these header files to compute the integral

∫ 1

0
exp(x)cos(x).

#include <cmath>

#include <iostream>

#include "Function.h"

#include "Integral.h"

using namespace std;

class ExpCos: public Function{

public:

// Default constructor

ExpCos(){}

// Overloaded function operator().

// Override the function operator() of the parent class.

double operator()(double x){

148 5 Numerical Integration

return exp(x)*cos(x);

}

};

int main(){

// Declare first an object of the function to be integrated

ExpCos f;

// Set integration bounds

double a = 0.0; // Lower bound

double b = 1.0; // Upper bound

int npts = 100; // Number of integration points

// Declared (lhs) and instantiate an integral object of type Trapezoidal

Integral *trapez = new Trapezoidal(a, b, npts, f);

Integral *midpt = new MidPoint(a, b, npts, f);

Integral *gl = new Gauss_Legendre(a,b,npts, f);

// Evaluate the integral of the function ExpCos and assign its

// value to the variable result;

double resultTP = trapez->evaluate();

double resultMP = midpt->evaluate();

double resultGL = gl->evaluate();

// Print the result to screen

cout << "Result with trapezoidal : " << resultTP << endl;

cout << "Result with mid-point : " << resultMP << endl;

cout << "Result with Gauss-Legendre: " << resultGL << endl;

}

The header file Function.h is defined as

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Function.h

/**

* @file Function.h

* Interface for mathematical functions with one or more independent variables.

* The subclasses are implemented as functors, i.e., objects behaving as functions.

* They overload the function operator().

*

* Example Usage:

// 1. Declare a functor, i.e., an object which

// overloads the function operator().

class Squared: public Function{

public:

// Overload function operator()

double operator()(double x=0.0){

return x*x;

}

};

int main(){

// Instance an object Functor

Squared f;

// Use the instance of the object as a normal function

cout << f(3.0) << endl;

}

@endcode

*

**/

5.6 An Integration Class 149

#ifndef FUNCTION_H

#define FUNCTION_H

#include "Array.h"

class Function{

public:

//! Destructor

virtual ~Function(){}; // Not needed here.

/**

* @brief Overload the function operator().

*

* Used for evaluating functions with one independent variable.

*

**/

virtual double operator()(double x){}

/**

* @brief Overload the function operator().

*

* Used for evaluating functions with more than one independent variable.

**/

virtual double operator()(const Array<double>& x){}

};

#endif

The header file Integral.h contains, with an example on how to use it, the following state-

ments

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h

#ifndef INTEGRAL_H

#define INTEGRAL_H

#include "Array.h"

#include "Function.h"

#include <cmath>

class Integral{

protected: // Access in the subclasses.

double a; // Lower limit of integration.

double b; // Upper limit of integration.

int npts; // Number of integration points.

Function &f; // Function to be integrated.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Integral(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

virtual ~Integral(){}

150 5 Numerical Integration

/**

* @brief Evaluate the integral.

* @return The value of the integral in double precision.

**/

virtual double evaluate()=0;

// virtual forloop

}; // End class Integral

class Trapezoidal: public Integral{

private:

double h; // Step size.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Trapezoidal(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~Trapezoidal(){}

/**

* Evaluate the integral of a function f using the trapezoidal rule.

* @return The value of the integral in double precision.

**/

double evaluate();

}; // End class Trapezoidal

class MidPoint: public Integral{

private:

double h; // Step size.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

MidPoint(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~MidPoint(){}

/**

* Evaluate the integral of a function f using the midpoint approximation.

*

* @return The value of the integral in double precision.

**/

double evaluate();

5.7 Exercises 151

};

class Gauss_Legendre: public Integral{

private:

static const double ZERO = 1.0E-10;

static const double PI = 3.14159265359;

double h;

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Gauss_Legendre(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~Gauss_Legendre(){}

/**

* Evaluate the integral of a function f using the Gauss-Legendre approximation.

*

* @return The value of the integral in double precision.

**/

double evaluate();

};

#endif

5.7 Exercises

5.1. Use Lagrange’s interpolation formula for a second-order polynomial

P2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2 +

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1 +

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0,

and insert this formula in the integral

∫ +h

−h
f (x)dx ≈

∫ +h

−h
P2(x)dx,

and derive Simpson’s rule. You need to define properly the values x0, x1 and x2 and link them

with the integration limits x0− h and x0 + h. Simpson’s formula reads

∫ +h

−h
f (x)dx =

h
3
(fh + 4 f0 + f−h)+O(h5).

Write thereafter a class which implements both the Trapezoidal rule and Simpson’s rule. You

can for example follow the example given in the last section of this chapter. You can look up

the header file for this class at http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h.

5.2. Write a program which then uses the above class containing the Trapezoidal rule and

Simpson’s rule to implement the adaptive algorithm discussed in section 5.2. Compute the

integrals

152 5 Numerical Integration

I =
∫ 1

0

4
1+ x2 = π ,

and

I =
∫ ∞

0
xexp(−x)sinx =

1
2
.

Discuss strategies for choosing the integration limits using these methods

5.3. Add now to your integration class the possibility for extrapolating h→ 0 using Richard-

son’s deferred extrapolation technique, see Eq. (3.13) and exercise 3.2 in chapter 3.

5.4. Write a class which includes your own functions for Gaussian quadrature using Legen-

dre, Hermite and Laguerre polynomials. You can write your own functions for these methods

or use those included with the programs of this book. For the latter see for example the

programs in the directory programs/chapter05. The functions are called gausslegendre.cpp,

gausshermite.cpp and gausslaguerre.cpp.

Use the Legendre and Laguerre polynomials to evaluate again

I =
∫ ∞

0
xexp(−x)sinx =

1
2
.

5.5. The task here is to integrate a six-dimensional integral which is used to determine the

ground state correlation energy between two electrons in a helium atom. The integral appears

in many quantum mechanical applications. However, if you are not too familiar with quantum

mechanics, you can simply look at the mathematical details. We will employ both Gauss-

Legendre and Gauss-Laguerre quadrature. Furthermore, you will need to parallelize your

code. You can use your class from the previous problem.

We assume that the wave function of each electron can be modelled like the single-particle

wave function of an electron in the hydrogen atom. The single-particle wave function for an

electron i in the 1s state is given in terms of a dimensionless variable (the wave function is

not properly normalized)

ri = xiex + yiey + ziez,

as

ψ1s(ri) = e−αri ,

where α is a parameter and

ri =
√

x2
i + y2

i + z2
i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.
The ansatz for the wave function for two electrons is then given by the product of two

so-called 1s wave functions as

Ψ(r1,r2) = e−α(r1+r2).

Note that it is not possible to find a closed-form solution to Schrödinger’s equation for two

interacting electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correla-

tion energy between two electrons which repel each other via the classical Coulomb interac-

tion, namely

〈 1
|r1− r2|

〉=
∫ ∞

−∞
dr1dr2e−2α(r1+r2)

1
|r1− r2|

. (5.26)

Note that our wave function is not normalized. There is a normalization factor missing, but

for this project we don’t need to worry about that.

This integral can be solved in closed form and the answer is 5π2/162. Can you derive this

value?

5.7 Exercises 153

1. Use Gauss-Legendre quadrature and compute the integral by integrating for each variable

x1,y1,z1,x2,y2,z2 from −∞ to ∞. How many mesh points do you need before the results con-

verges at the level of the third leading digit? Hint: the single-particle wave function e−αri is

more or less zero at ri ≈? (find the appropriate limit). You can therefore replace the integra-

tion limits −∞ and ∞ with −? and ?, respectively. You need to check that this approximation

is satisfactory, that is, make a plot of the function and check if the abovementioned limits

are appropriate. You need also to account for the potential problems which may arise when

|r1− r2|= 0.
2. The Legendre polynomials are defined for x ∈ [−1,1]. The previous exercise gave a very

unsatisfactory ad hoc procedure. We wish to improve our results. It can therefore be useful

to change to another coordinate frame and employ the Laguerre polynomials. The Laguerre

polynomials are defined for x ∈ [0,∞) and if we change to spherical coordinates

dr1dr2 = r2
1dr1r2

2dr2dcos(θ1)dcos(θ2)dφ1dφ2,

with
1

r12
=

1
√

r2
1 + r2

2− 2r1r2cos(β)

and

cos(β) = cos(θ1)cos(θ2)+ sin(θ1)sin(θ2)cos(φ1−φ2))

we can rewrite the above integral with different integration limits. Find these limits and

replace the Gauss-Legendre approach in a) with Laguerre polynomials. Do your results

improve? Compare with the results from a).

3. Make a detailed analysis of the time used by both methods and compare your results.

Parallelize your codes and check that you have an optimal speed up.

