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Fig. 5.3 A reproduction of the experimental measurement by [Stez 73] of the number
of decays of a 7 meson as a function of time. Measurements are made during time
intervals of 10-ns length.

5.10 PROBLEM: FITTING EXPONENTIAL DECAY

Fig. 5.3 presents experimental data of [Stez 73] on the number of decays AN
of the m meson as a function of time. Notice that the time has been “binned”
into At = 10 ns intervals and that the smooth curve gives the theoretical
exponential decay law. The problem is to deduce the lifetime 7 of the 7
meson from these data (the tabulated lifetime of the pion is 2.6 x 1078 s).

5.11 MODEL: EXPONENTIAL DECAY

We start with a number Ny of radioactive particles at time ¢ = 0 that can
decay to other particles.? If we wait a short time At, then a small number AN
of the particles will decay spontaneously; that is, with no external influences.
This decay is a stochastic process, which means that there is an element of
chance involved and fluctuations are to be expected. The basic law of nature
for spontaneous decay is that the number of decays AN in time interval At
is proportional to the number of particles present at that time N(t) and to
the time interval

AN(t) = —%N(t)At, (5.19)

2Spontaneous decay is discussed further and simulated in §7.1.
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whore 7w the lifetime of the partiele. Thiv equation can be areanged Into an
cquntion for the average decay rate
AN(t)
—— = = AN(t). 5.20
A, () (5.20)
[ the number of decays AN is very small compared to the number of particles
N, and if we look at vanishingly small time intervals, then the difference
equation (5.20) becomes the differential equation

N (t)

— = —AN(). (5.21)

‘I'his differential equation has an exponential solution for the number
N(t) = Noe ¥/, (5.22)

s well as an exponential solution for the decay rate

dN(t) _ No L, dN, _,
alVt) _ _No 4y _ dN T 23
dt P a Ve (5.23)

Iiquation (5.23) is the theoretical formula we wish to “fit” to the data in
I'ip. 5.3. The output of such a fit is a “best value” for the lifetime 7. Before
we discuss how to carry out such a least-squares fit, we give some background

information on probability theory. The reader familiar with probability theory
may wish to skip ahead to §5.13.

5.12 THEORY: PROBABILITY THEORY

T'he field of statistics is an attempt to use mathematics to describe events,
siuch as coin flips, in which there is an element of chance or randomness. A
hasic building block of statistics is the binomial distribution function

Pow) = (3) =¥ = e 62

where Pp(z) is the probability that the independent event (heads) will occur
r times in the N trials. Here p is the probability of an individual event
occurring; for example, the probability of “heads” in any one toss is p = %
The variable N is the number of trials or experiments in which that event can
occur; for example, the number of times we flip the coin. For coin flipping,
the probability of success p and the probability of failure (1 — p) are both %,
but in the general case p can be any number between 0 and 1.

For calculational convenience, the factorials in the binomial distribution
(5.24) are usually eliminated by considering the limit in which the number of



4 DATA FITTING

P(x)
PO

%P,

Fig. 5.4 A Gaussian distribution of m successes in N tries, each with probability p.

trials N — oo. In Gaussian or normal statistics, the probability p of an
individual event (heads) remains finite as N — oo:

(z— “)2} . (5.25)

202

1
Pg(z)= lim Pg(z)= exp |—

6(z) N—00,p#0 5(2) V2ro P [
This produces the function shown in Fig. 5.4, where = 7 is the mean and o
is the variance. These constants are related to the others by

u=Np, o=/Np(l-p). (5.26)

The Gaussian distribution is generally a very good approximation to the
binomial distribution even for N as small as 10. To repeat, it describes an
experiment in which N measurements of the variable z are made. The average
of these measurements is y and the “error” or uncertainty in p is 0. As an
example, in N =1000 coin flips, the probability of a head is p = % and the

2
average number of heads y should be Np = N/2 = 500.
As shown in Fig. 5.4, the Gaussian distribution has a width

o =+/Np(1-p) x VN, (5.27)

so that the distribution actually gets wider and wider as more measurements
are made. Yet the relative width, whose inverse gives us an indication of the
probability of obtaining the average u, decreases with N:

width VN 1

Another limit of the binomial distribution is the Poisson distribution. In
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P(x)

Fig. 5.5 A Poisson distribution for m successes with total success a = 2.

the Poisson distribution, the number of trials N — oo, yet the probability of

an individual success p — 0 in such a way that the product Np remains finite:
. pre H

Pp(z)= lim Pp(z)= . (5.29)

N —00,p—0 z!

A Poisson distribution describes radioactive decay experiments or telephone
interchanges where there may be a very large number of trials (each microsec-
ond when the counter is on), but a low probability of an event (a decay or
phone call) occurring in this one microsecond. As we see in Fig. 5.5, the
Poisson distribution is quite asymmetric for small px, and in this way quite
different from a Gaussian distribution. For p > 1, the Poisson distribution
approaches a Gaussian distribution.

5.13 METHOD: LEAST-SQUARES FITTING

Books have been written and careers have been spent discussing what is meant
by a good fit to experimental data. We cannot do justice to the subject here
and refer the reader to several other sources [B&R 92, Pres 94, M&W 65,
Thom 92]. However, we will emphasize two points:

¢ If the data being fit contain errors, then the “best” fit in a statistical
sense will not necessarily pass through the data points.

e Only for the simplest case of a linear, least-squares fit, can we write
down a closed-form solution to evaluate and obtain the fit. More realistic
problems are usually solved by trial-and-error search procedures using
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Imagine that you have measured Npy values of the independent. variablo y

as a function of the dependent variable a:
(Iiayiiai)a i= 13Nl)v (53())

where 0, is the uncertainty in the ith value of y. (For simplicity we assume
that all the errors o; occur in the dependent variable, although this is hardly
ever true [Thom 92]). For our problem, y is the number of decays as a function
of time.

Our goal is to determine how well a mathematical function y = f(z) (also-
called theory) can describe these data. Alternatively, if the theory contains
some parameters or constants, our goal can be viewed as determining best
values for these parameters. We assume that the model function f(z) contains,
in addition to the functional dependence on z, an additional dependence upon

Mp parameters {a1,az,...,an, }. For the exponential decay function (5.23),
the parameter is the lifetime 7. We indicate this as
f(iI?) :f(z;{alaaQ""’aMp}) =f(.T; {am})' (5'31)

Notice that the parameters {a,} are not variables, in the sense of numbers
read from a meter, but rather are parts of the theoretical model such as the
size of a box, the mass of a particle, or the depth of a potential well.

We take the chi-squared (x?) measure as a gauge of how well a theoretical
function f reproduces data

v o %(—*—yi—f(z“{am}))Z, (5.32)

O;
=1 v

where the sum is over the Np experimental points (z;,y; 2 0;). The definition
(5.32) is such that smaller values of x? are better fits, with x> = 0 occurring
if the theoretical curve went through the center of every data point. Notice
also that the 1/0? weighting means that measurements with larger errors
contribute less to y2.

Least-squares fitting refers to adjusting the theory until a minimum in x?2
is found; that is, finding a curve that produces the least value for the summed
squares of the deviations of the data from the function f(z). In general, this is
the best fit possible or the best way to determine the parameters in a theory.

31f you are not given the errors, you can guess them on the basis of the apparent deviation
of the data from a smooth curve, or you can weigh all points equally by setting o; = 1 and
continue with the fitting.
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The My parameters {a,,,m = 1, Mp) that make x? an extremum are
found by solving the M equations:

O _ 0 m=1Mp),  (533)
oanm,
Np .
N zyi—al;(z‘i)af(iga{':m}) = 0, (m=1,Mp). (534)
1=1 '

More usually, the function f(z;{an}) has a sufficiently complicated depen-
dence on the a,, values for (5.34) to produce Mp simultaneous, nonlinear
equations in the a,, values. In these cases, solutions are found by a trial-and-
error search through the Mp-dimensional parameter space. To be safe, when
such a search is completed you need to check that the minimum x? you found
is global and not local. One way to do that is to repeat the search for a whole
grid of starting values, and if different minima are found, to pick the one with
the lowest x2.

5.14 THEORY: GOODNESS OF FIT

When the deviations from theory are due to random errors and when these
errors are described by a Gaussian distribution, there are some useful rules of
thumb to remember [B&R 92]. You know that your fit is good if the value of
x? calculated via the definition (5.32) is approximately equal to the number
of degrees of freedom

X2 zND —Mp, (5.35)

where Np is the number of data points and Mp the number of parameters in
the theoretical function. If your x? is much less than (5.35), it doesn’t mean
that you have a “great” theory or a really precise measurement; instead,
you probably have <00 many parameters or have assigned errors (o; values)
that are too large. In fact, too small a x? may indicate that you are fitting
the random scatter in the data rather than missing ~ % of the error bars
(as expected for Gaussian statistics). If your x? is significantly greater than
(5.35), the theory may not be good, you may have significantly underestimated
your errors, or you may have errors which are not random.

If you think you obtained a good fit to the data, but cannot determine the
x? because you did not have values for the experimental errors (maybe you
assumed o; = 1), you can get an approximate o2 for use in calculating x2.
First you fit the data using an arbitrary value for o;. Then you calculate the
variance of your data,

Np
oo 5o Y- S (5.36)
=1
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Final!y, YOU UKC Gayyy A% an approximation to a, and apply (6.32) to obtain a
meaningful y?, l

5.15 IMPLEMENTATION: LEAST-SQUARES FITS, FIT.F (.C)

The Mp simultaneogs equations (5.34) simplify considerably if the functions
f(z;{am}) depend linearly on the a values. This happens, for example, when
the theory function f(z) is linear: ,

f(z;{a1,02}) = a1 + apa. (5.37)

In this case (also known as linear regression) there are Mp = 2 parameters
the slope ay and the y intercept a;. Notice that while there are only two’
pa‘rameters to determine, there still may be an arbitrary number Np, of data
points to fit. Remember, a unique solution is not possible unless the number
of data points is equal to or greater than the number of parameters.

For the linear case, the x* minimization equations (5.34) become two

in number, and determine the parameters in term .
s of all
[Pres 94]: the data points

Sz2Sy — 558 88y — S.S
a = ==Y “tarwy — zy T
! A ) G = —, (5.38)
ND 1 ND z
S = = =y =
; 7 Se= ; g2 (5.39)
N,
S = ~ & S — 2 ‘1’.3
Y P a_iga T — p E; (540)
Sey = Y —5 A=55,-82 (5.41)

If you know 'the €ITors o; in your experimental measurements of the Yi,
gr have det.ermlned an approximate o from the sample variance from your
tted fl_lnctlf)n, the theory then gives you an expression for the variance or
uncertainty in the deduced parameters:
2 Siz 9 S

g, = o°f =

a1 A’ TeT R (5.42)

T}'li.s is a measure of the uncertainties in the values of the fitted parameters
arising from the uncertainties 0; in the measured y; values.

A measure of the dependence of the parameters on each other is given by
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the correlation coefficient:

cov(ay,ay) .
ap,ay) = — 5.43
play,ay) P (5.43)
cov(ay,ay) = =5 (5.44)
A 1,2 - A . .

Iere cov(ay, ay) is the covariance of a; and as and vanishes if a; and ay are
independent. The correlation coefficient p(aq, as) lies in the range —1 < p < 1.
PPositive p indicates that the errors in a; and ag are likely to have the same
Hign; negative p indicates opposite signs.

The preceding analytic solutions for the parameters are of the form found
in statistics books, but are not optimal for numerical calculations because
subtractive cancellation can make the answers unstable. As discussed in
Chapter 3, Errors and Uncertainties in Computations, a rearrangement of
the equations can decrease this type of error. For example, [Thom 92] gives
improved expressions that measure the data relative to their averages:

Sey

a = UYav — 2Ty, as = S 3 (545)
Na Ny 9
T; — ZTav )\Yi — Yav T; — Tay

Sly = Z ( 0)_5 y )7 Sa:a: = Z ( : 02_21 ) 3 (546)
=1 i =1 i
1 Ny 1 Ng

T = T YT Yo = DU (5.47)
N =1 N =1

5.16 ASSESSMENT: FITTING EXPONENTIAL DECAY

Fit the exponential decay law (5.23) to the data in Fig. 5.3. This means
finding a value of 7 that provides a best fit to the data, and then judging how
good the fit is.

1. Construct a table (dN/dt;, t;), for i = 1, Np from Fig. 5.3. Notice that
because time was measured in bins, t; should correspond to the middle

of a bin.

2. Add an estimate of the error o; to obtain a table of the form (dN/dt; +o;,
t;). You can estimate the errors by eye, say, by estimating how much
the histogram values appear to fluctuate about a smooth curve, or you
can take 0; ~ vEvents. (This last approximation is reasonable for large
numbers, which this is not.)
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3. In the limit of very large numbers, we would expect that a plot of

In|dN/dt| versus t is a straight line:

AN@| - |dN,
In | S0 L |22
n. dt } In =7

1
- (5.48)
.

(While we do not have truly large numbers here, this result should be

good on average.) This means that if we treat In | 4%@| as the dependent
variable and time ¢ as the independent variable, we can use our linear fit
results. Plot In |dN/dt| versus t.

4. Make a least-squares fit of a straight line to your data and use it to
determine the lifetime 7 of the 7 meson. Compare your deduction to
the tabulated lifetime of 2.6 x 10~ s and comment on the difference.

5. Plot your best fit on the same graph as the data and comment on the
agreement.

6. Use. the fpnnulas from statistics to deduce the goodness of fit of your
straight line and the approximate error in your deduced lifetime. Do
these agree with what your “eye” tells you?

5.17 ASSESSMENT: FITTING HEAT FLOW

Here is a table that gives the temperature T' along a metal rod whose ends
are kept at fixed constant temperatures. The temperature is a function of the
distance x along the rod.

Position z; (cm) Temperature T; (°C)

1.0 14.6
2.0 18.5
3.0 | 36.6
4.0 30.8
5.0 59.2
6.0 60.1
7.0 62.2
8.0 79.4
9.0 99.9

1. Plot up the data to verify the appropriateness of a linear relation

T =a+ bx. (5.49)
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Hecause you are not given the errors for each measurement, assume that
the least-significant figure has been rounded off and so o > 0.05. Use
that to compute a least-square, straight-line fit to these data.

1. Plot your best a + bax on the curve with the data.

4. Alter fitting the data, compute the variance and compare it to the devi-
ation of your fit from the data. Verify that about one-third of the points
miss the o error band (that’s what is expected for a normal distribution

of errors).

5. Use your computed variance to determine the x? of the fit. Comment
on the value obtained.

0. Determine the variances o, and oy, and check to see if they make sense
as the errors in a and b.

7. What correlation is expected between a and b?

5.18 IMPLEMENTATION: LINEAR QUADRATIC FITS

As indicated earlier, as long as the function being fit depends linearly on the
parameters a;, the condition of minimum x? leads to a set of simultaneous
lincar equations. These can be solved directly on the computer. For example,
suppose we want to fit the experimental measurements (z;, yi, ¢ = 1, N p) to
(he quadratic polynomial

y(z) = by + b1z + byz?. (5.50)

Ihe x? will be a minimum with respect to variation of these parameters (in
other words, there will be maximum likelihood that these are the correct
parameters describing the measurements), when we satisfy the three simulta-
ncous linear equations:

Szbo + Szzb1 + Sezzbe = S:cya (5.52)
Sx'zbO + Sgecb + Ssc:mczb2 = Sxxy- (5.53)

Here the definitions of the S’s are simple extensions of those used in (5.38).
These equations can be written in matrix form:

N, D Sa: Sa:x b() Sy
Sy Sz Siaz by | =] Sy |- (5.54)
S:l:x Sa:m: Sz‘:czz b2

Sz;cy



-—— VIV V VY Vwwvwe

The solution follows after finding the inverse of the S matrix:

,.
—~

[
<
[ ]
~

]

5 = s (5.
b = [S] s (5.

(&1 ]
(o}
=)
~

The inversion can be accomplished with the techniques discussed in Chap-
ter 15, Matriz Computing and Subroutine Libraries.

5.19 ASSESSMENT: QUADRATIC FIT

Fit a quadratic to the following data sets [given as (z1,41), (z2,92),...]. In
each case determine the solution to these equations, the number of degrees of
freedom in the problem, and the value of 2.

1. (0,1)

2. (0,1),(1,3)

3. (0,1),(1,3),(2,7)

4. (0,1),(1,3),(2,7),(3,15)

5.20 METHOD: NONLINEAR LEAST-SQUARES FITTING

An example of a subroutine for conducting a nonlinear search is snis! from
SLATEC.

5.21 ASSESSMENT: NONLINEAR FITTING

Return to Table 5.1, which gives the scattering cross section versus energy.
Determine what values for the parameters E,, ¢, and 7 in the Breit-Wigner
formula (5.1) provide a best fit to the data in the table (that is, minimize y?).

Deterministic
Randomness

6.1 PROBLEM: DETERMINISTIC RANDOMNESS

Some people are attracted to computing by its deterministic nature; it’s nice
(o have something in life where nothing is left to chance. Barring random
machine errors or undefined variables, you should get the same output every
time you feed your program the same input. Nevertheless, many computer
cycles are used for Monte Carlo calculations that at their very core strive to be
random. These are calculations in which random numbers generated by the
computer are used to simulate naturally random processes, such as thermal
motion or radioactive decay, or to solve equations on the average. Indeed,
much of the recognition of computational physics as a specialty has come
about from the ability of computers to solve previously intractable thermody-
namic and quantum mechanics problems using Monte Carlo techniques.

The problem in this chapter is explore how computers can generate random
numbers and how well they can do it. To check whether it really works, you
simulate some simple physical processes and evaluate some multidimensional
integrals. Other applications, such as radioactive decay, magnetism, and
lattice quantum mechanics, are considered in later chapters.

6.2 THEORY: RANDOM SEQUENCES

We define a sequence of numbers 71, 79, . . . as random if there are no correla-
tions among the numbers in the sequence. Yet randomness does not necessar-
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