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thermodynamics.
i, PROBLEM 1: NUMERICAL LIMITS

7.20 ASSESSMENT(®

A pirticle is moving through space, and you record its position as a function of
, tlme (1) in a table. Your problem is to determine its velocity v(t) = dz/dt
Use the von Neumann rejection technique to generate a normal distribution || when all you have is this table of z versus t.
of standard deviation 1, and compare to the preceding Boz-Muller method., e

.2 METHOD: NUMERIC

You probably did rather well in your first calculus course and feel competent
il tiking derivatives. However, you probably did not take derivatives of a
inble of numbers using the elementary definition:

dj h)— f(z

#(@) ger fl+h) - flo) (8.1)
dz h—0 h

I fact, even a computer runs into errors with this kind of limit because it

i« wrought with subtractive cancellation; the computer’s finite word length

¢nnses the numerator to fluctuate between 0 and the machine precision €, as
{he denominator approaches zero.

#.2.1 Method: Forward Difference

‘I'he most direct method for numerical differentiation of a function starts by
sxpanding it in a Taylor series. This series advances the function one small
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Fig. 8.1 Forward difference (solid line) and central-difference (dashed line) methods
for numerical first derivative.

step forward:

f+h)=f(z)+hf' () + Ef'(2) + fO@) +...,  (82)

where h is the step size. This is illustrated in Fig. 8.1. We obtain the forward-
difference derivative algorithm by solving (8.2) for f'(z):

fz+h) - f(z)
h b

F@)+ 5w+

(z) (8.3)

~ (8.4)
where the subscript ¢ denotes a computed expression. You can think of this

approximation as using two points to represent the function by a straight line
in the interval from z to z + h.

The approximation (8.3) has an error proportional to h (unless the “ultra-
user” looks down kindly upon you and makes f" vanish). We can make the
approximation error smaller and smaller by making h smaller and smaller.
For too small an h, however, all precision will be lost through the subtrac-
tive cancellation on the LHS of (8.4), and the decreased approximation error
becomes irrelevant.

For example, consider a case where f(z) is a simple, analytic polynomial:

f(z) = a+ bz’ (85)
The exact derivative is f

f' = 2. (86)

ST EE T e e e

Fhe computed derlvative ix

flath) - )

[i(x) ~ N = 2bx + bh. (8.7)
Thin cloarly becomes a good approximation only for small h (h < 21).
#,2.2 Method: Central Difference
A lmproved approximation to the derivative starts with the basic definition

(A.1). Rather than making a single step of h forward, we form a central
difference by stepping forward by h/2 and backward by h/2:

_ Ja+h/2) = f@—h/2)
h

def

= D.f(z,h). (8.8)

fe(x)

{ere 1, is the symbol for the central difference. The central-difference approxi-
pintion is illustrated in Fig. 8.1.

When the Taylor series for f(x + h/2) are substituted into (8.8), we obtain
fi(@) = f'(2) + k2 D (@) + -

I important difference from (8.3) is that when f(z — h/2) is subtracted
from f(x + h/2), all terms containing an odd power of h in the Taylor series
tnneel. Therefore, the central-difference algorithm becomes accurate to one
order higher in h; that is, h?. If the function is well behaved; that is, if
(/"1?%))24 < (fPh)/2, then you can expect the error with the central-
difference method to be smaller than with the forward difference (8.4).

Il we now return to our polynomial example (8.5), we find that for a
pirabola, the central difference gives the exact answer regardless of the size

ol e
| T —fa-hj2)
- .

(8.9)

(8.10)

fe(@)

#.2.3 Method: Extrapolated Difference

ljecause the Taylor series provides an analytic expression for the error, we
can be even more clever. While the central difference (8.8) makes the error
(erm proportional to h vanish, we can also make the term proportional to h?
vanish by algebraically eztrapolating from relatively large h (and, because of
(his, small roundoff error) to h — 0:

fi(@) = lim D.f(z,h). (8.11)
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We introduce the additional information by forming the central differonce wit An o ongh gubde, thiv occurs whon e, & Capprox -

step size h/2: - Decnne differentintion subtracts two numbers very close in value, the limit
[+ 1) — flx - hA) ' of tonndofl ervor is essentially machine precision:
def T+ h - flex—=h
D.f(x,h/2) W (8.12) padet = f@) e (817)
N0 | ! " |
M S g (8.19)] 5w om (8.18)

We now eliminate the quadratic error term as well as the linear error term in

(8.9) with the combination The approximation error with the forward-difference algorithm (8.4) is an

O(h) term, while that with the central-difference algorithm (8.9) is an O(h2)

4D.f(x,h/2) — D.f(z,h o,
@)p
~ f’(x) — M R 6fi)prox ~ f 9 (819)
1920 x 4 x 16 o
cd
~ . 8.20
If h = 0.4, there is only one place of roundoff error, and if f® = O(1), the Capprox 24 (8.20)

truncation error in (8.15) is now the same size as machine precision €,,, which

T'lie i value for which roundoff and approximation erro al is theref
is the best you can hope for. P onerrors areeqtatt e

A good way of computing (8.14) is to group the terms as €m . f@n
T ~ eapprox = 2 s (821)
fil@) = {8 [fle+ )~ fa- D] - [fla+§) - fa-H)]}. (816) o B} F@Op2
The advantage to (8.16) is that it reduces the loss of precision that occurs h Capprox 24 (8.22)
when large and small numbers are added together, only to be subtracted from = By = ge_"" B3, = Mﬂ (8.23)
other large numbers; it is better to first subtract the large numbers from each f@ ¢ AR

th d th dd the diffe to th 11 bers. s
other and then a ¢ difference 1o the smatl humber Wi take f' = f® ~ fG) (which is crude, although not really so crude for e

ni cosx), and assume a single precision calculation €, &~ 10~7. In this case
wi obtain

When working with these and similar higher-order methods, it is important
to remember that while they may work very well for well-behaved functions,
they may fail badly for computed or measured functions containing noise. In
these difficult cases it may be better to first fit the data with some analytic
function using the techniques of Chapter 5, Data Fitting, and then differenti-
ate the fit.

But regardless of the algorithm, you may remember that evaluating the
derivative of f(z) at x requires you to know the values of f surrounding z. We
shall use this same idea in Chapter 9, Differential Equations and Oscillations.

Q

htq
hcd

0.0005, (8.24)
0.01. (8.25)

Q

T'his may seem backward because the better algorithm leads to a larger h
value. It is not. The ability to use a large h means that the error in the central-
ilifference method is some 20 times smaller than the error in the forward-
ilifference method. For the forward-difference algorithm, approximately half
ol the machine precision is lost.

8.3 ASSESSMENT: ERROR ANALYSIS

The approximation errors in numerical differentiation decrease with decreas- -
ing step size h while roundoff errors increase with a smaller step size (you have
to take more steps and do more calculations). We know from our discussion in |
Chapter 3, Errors and Uncertainties in Computations, that the best approxi-
mation occurs for an h that makes the total error €;pprox + €ro @ minimum. |




8.4 IMPLEMENTATION: DIFFERENTIATION, DIFF.F (.C) B M tiowt dorluntive

[0y [+ h/2_‘)’ - "/2)’ (8.28)
8.5 ASSESSMENT: ERROR ANALYSIS, NUMERICAL h £~ h)]
[y~ Uath) = J@I- U@ =SBl g
r) = 2
1. Differentiate the functions cosz and e® at r — 0.1, 1., and 100 uge h o )
ing single-precision forward-, central-, and extrapolated-difference algo- - An wan true for first derivatives, by evaluating a func.tlon. in the region sur-
rithms. pineing x, it is possible to determine the second derivative at x. But soglle
’ gate In roquired to preserve the grouping in (8.29) and not convert it to the
(a) Print out the derivative and its relative error € as a function of h, poater form:
Reduce the step size h until it equals machine precision h ~ €m. ' £ (g) ~ f(z+h)+ f(x—h) —2f (1‘) (8.30)
; ~ ®
(b) Plot log, |€| versus log;o h and check whether the number of decs. : ) . h uter first
imal places obtained agrees with the estimates in the text. Thin Intter form increases s?l?tract;l\;e fa,;(cellat;:))nlxslclal;;e ft :oz(smrlll:)t hangs
‘ he “large” number f(z + T - )
(c) Seeif you can identify truncation error at large h and roundf)ff.erro;" :::;"‘:":)‘l:l t,h:rflfm is larger than either f(z + k) or f(z —h)] only to subtract
at small h in your plot. Do the slopes agree with our predictions ' iother large number 2f(z) from it.

8.6 PROBLEM 2: SECOND DERIVATIVES .9 ASSESSMENT: NUMERICAL SECOND DERIVATIVES

Let’s say that you have measured the position versus time z(t) for a particle, -

ivati ing the central-
Your problem is to determine the force on the particle Wilte a program to calculate the second derivative of cosz using

dilference algorithm (8.29). Test it over four c.y.cles. Start with h =~ 7/10 and
keep reducing b until you reach machine precision.

8.7 THEORY: NEWTON II

Newton’s second law tells us that the force and acceleration are linearly re-
lated:

F =ma, (8.26)

where F' is the force, m is the particle’s mass, and a is the acceleration. So if

we can determine the acceleration a(t) = d?z/dt* from the z(t) table, we can
determine the force.

8.8 METHOD: NUMERICAL SECOND DERIVATIVES

The concern about errors we expressed for first derivatives is even more of
a concern for second derivatives because the additional subtractions lead to
more cancellations. Let’s go back to the central-difference method:

flz) = f(z+h/2);f($~h/2)_ (8.27)
This algorithm gives the derivative at z by moving forward and backward from

z by h/2. The second derivative f(®)(z) is taken to be the central difference




