
Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of the most frequently needed methods in compu-
tational physics. Quite often we are confronted with the need of evaluating either f ′ or an integral∫

f(x)dx. The aim of this chapter is to introduce some of these methods with a critical eye on numerical
accuracy, following the discussion in the previous chapter.

The next section deals essentially with topics from numerical differentiation. There we present also
the most commonly used formulae for computing first and second derivatives, formulae which in turn find
their most important applications in the numerical solution of ordinary and partial differential equations.
This section serves also the scope of introducing some more advanced C++-programming concepts, such
as call by reference and value, reading and writing to a file and the use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a function f(x) is

df(x)

dx
= lim

h→0

f(x + h) − f(x)

h

where h is the step size. If we use a Taylor expansion for f(x) we can write

f(x + h) = f(x) + hf ′(x) +
h2f ′′(x)

2
+ . . .

We can then set the computed derivative f ′

c(x) as

f ′

c(x) ≈
f(x + h) − f(x)

h
≈ f ′(x) +

hf ′′(x)

2
+ . . .

Assume now that we will employ two points to represent the function f by way of a straight line between
x and x + h. Fig. 3.1 illustrates this subdivision.

This means that we could represent the derivative with

f ′

2
(x) =

f(x + h) − f(x)

h
+ O(h),

39

Numerical differentiation

where the suffix 2 refers to the fact that we are using two points to define the derivative and the dominating
error goes like O(h). This is the forward derivative formula. Alternatively, we could use the backward
derivative formula

f ′

2(x) =
f(x) − f(x − h)

h
+ O(h).

If the second derivative is close to zero, this simple two point formula can be used to approximate the
derivative. If we however have a function like f(x) = a + bx2, we see that the approximated derivative
becomes

f ′

2(x) = 2bx + bh,

while the exact answer is 2bx. Unless h is made very small, and b is not too large, we could approach the
exact answer by choosing smaller and smaller and values for h. However, in this case, the subtraction in
the numerator, f(x + h) − f(x) can give rise to roundoff errors.

A better approach in case of a quadratic expression for f(x) is to use a 3-step formula where we
evaluate the derivative on both sides of a chosen point x0 using the above forward and backward two-step
formulae and taking the average afterward. We perform again a Taylor expansion but now around x0±h,
namely

f(x = x0 ± h) = f(x0) ± hf ′ +
h2f ′′

2
±

h3f ′′′

6
+ O(h4),

which we rewrite as
f±h = f0 ± hf ′ +

h2f ′′

2
±

h3f ′′′

6
+ O(h4).

Calculating both f±h and subtracting we obtain that

f ′

3 =
fh − f−h

2h
−

h2f ′′′

6
+ O(h3),

and we see now that the dominating error goes like h2 if we truncate at the scond derivative. We call
the term h2f ′′′/6 the truncation error. It is the error that arises because at some stage in the derivation,
a Taylor series has been truncated. As we will see below, truncation errors and roundoff errors play an
equally important role in the numerical determination of derivatives.

For our expression with a quadratic function f(x) = a + bx2 we see that the three-point formula
f ′
3

for the derivative gives the exact answer 2bx. Thus, if our function has a quadratic behavior in x in
a certain region of space, the three-point formula will result in reliable first derivatives in the interval
[−h, h]. Using the relation

fh − 2f0 + f−h = h2f ′′ + O(h4),

we can also define higher derivatives like e.g.,

f ′′ =
fh − 2f0 + f−h

h2
+ O(h2).

We could also define five-points formulae by expanding to two steps on each side of x0. Using a
Taylor expansion around x0 in a region [−2h, 2h] we have

f±2h = f0 ± 2hf ′ + 2h2f ′′
±

4h3f ′′′

3
+ O(h4),

with a first derivative given by

f ′

5c =
f−2h − 8f−h + 8fh − f2h

1 2h
+ O(h4),

40

3.2 – Numerical differentiation

-

f(x)

x

6

x0 − 2h x0 − h x0 x0 + h x0 + 2h

Figure 3.1: Demonstration of the subdivision of the x-axis into small steps h. Each point corresponds to
a set of values x,f(x). The value of x is incremented by the step length h. If we use the points x0 and
x0 + h we can draw a straight line and use the slope at this point to determine an approximation to the
first derivative. See text for further discussion.

41

Numerical differentiation

with a dominating error of the order of h4. This formula can be useful in case our function is represented
by a fourth-order polynomial in x in the region [−2h, 2h].

It is possible to show that the widely used formulae for the first and second derivatives of a function
can be written as

fh − f−h

2h
= f ′

0 +
∞
∑

j= 1

f
(2j+ 1)
0

(2j + 1)!
h2j , (3.1)

and
fh − 2f0 + f−h

h2
= f ′′

0 + 2

∞
∑

j= 1

f
(2j+ 2)
0

(2j + 2)!
h2j , (3.2)

and we note that in both cases the error goes like O(h2j). These expressions will also be used when we
evaluate integrals.

To show this for the first and second derivatives starting with the three points f−h = f(x0 − h),
f0 = f(x0) and fh = f(x0 + h), we have that the Taylor expansion around x = x0 gives

a−hf−h + a0f0 + ahfh = a−h

∞
∑

j= 0

f
(j)
0

j!
(−h)j + a0f0 + ah

∞
∑

j= 0

f
(j)
0

j!
(h)j , (3.3)

where a−h, a0 and ah are unknown constants to be chosen so that a−hf−h + a0f0 + ahfh is the best
possible approximation for f ′

0 and f ′′

0 . Eq. (3.3) can be rewritten as

a−hf−h + a0f0 + ahfh = [a−h + a0 + ah] f0

+ [ah − a−h] hf ′

0 + [a−h + ah]
h2f ′′

0

2
+

∞
∑

j= 3

f
(j)
0

j!
(h)j

[

(−1)ja−h + ah

]

. (3.4)

To determine f ′

0, we require in the last equation that

a−h + a0 + ah = 0,

−a−h + ah =
1

h
,

and
a−h + ah = 0.

These equations have the solution
a−h = −ah = −

1

2h
,

and
a0 = 0,

yielding
fh − f−h

2h
= f ′

0 +
∞
∑

j= 1

f
(2j+ 1)
0

(2j + 1)!
h2j .

To determine f ′′

0 , we require in the last equation that

a−h + a0 + ah = 0,

42

3.2 – Numerical differentiation

−a−h + ah = 0,

and
a−h + ah =

2

h2
.

These equations have the solution
a−h = −ah = −

1

h2
,

and
a0 = −

2

h2
,

yielding
fh − 2f0 + f−h

h2
= f ′ ′

0 + 2

∞∑

j= 1

f
(2j+ 2)
0

(2j + 2)!
h2j .

3.2.1 The second derivative of e
x

As an example, let us calculate the second derivatives of e x p (x) for various values of x. Furthermore, we
will use this section to introduce three important C++-programming features, namely reading and writing
to a file, call by reference and call by value, and dynamic memory allocation. We are also going to split
the tasks performed by the program into subtasks. We define one function which reads in the input data,
one which calculates the second derivative and a final function which writes the results to file.

Let us look at a simple case first, the use of printf and scanf. If we wish to print a variable defined as
double speed_of_sound; we could for example write printf (‘‘ speed_of_sound = %lf\n ’’, speed_of_sound);.

In this case we say that we transfer the value of this specific variable to the function printf . The
function printf can however not change the value of this variable (there is no need to do so in this case).
Such a call of a specific function is called call by value. The crucial aspect to keep in mind is that the
value of this specific variable does not change in the called function.

When do we use call by value? And why care at all? We do actually care, because if a called function
has the possibility to change the value of a variable when this is not desired, calling another function with
this variable may lead to totally wrong results. In the worst cases you may even not be able to spot where
the program goes wrong.

We do however use call by value when a called function simply receives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a called function, we refer to this call as
call by reference. What is transferred then is the address of the first element of the array, and the called
function has now access to where that specific variable ’lives’ and can thereafter change its value.

The function scanf is then an example of a function which receives the address of a variable and is
allowed to modify it. Afterall, when calling scanf we are expecting a new value for a variable. A typical
call could be scanf(‘‘%lf \n ’’, &speed_of_sound);.

Consider now the following program

//
// This program module
// demonstrates memory allocation and data transfer in
// between functions in C++
//

< > // Standard ANSI-C++ include files

43

Numerical differentiation

< >

int main(int argc, char ∗argv[])
{

int a: // line 1
int ∗b; // line 2

a = 10; // line 3
b = new int[10]; // line 4
for(i = 0; i < 10; i++) {

b[i] = i; // line 5
}
func(a,b); // line 6

return 0;
} // End: function main()

void func(int x, int ∗y) // line 7
{

x += 7; // line 8
∗y += 10; // line 9
y[6] += 10; // line 10
return; // line 11

} // End: function func()

There are several features to be noted.

– Lines 1,2: Declaration of two variables a and b. The compiler reserves two locations in memory.
The size of the location depends on the type of variable. Two properties are important for these
locations – the address in memory and the content in the location.
The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.

– Line 3: The value of a is now 10.

– Line 4: Memory to store 10 integers is reserved. The address to the first location is stored in b.
Address to element number 6 is given by the expression (b + 6).

– Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,, b[9] = 9;

– Line 6: The main() function calls the function func() and the program counter transfers to the first
statement in func(). With respect to data the following happens. The content of a (= 10) and the
content of b (a memory address) are copied to a stack (new memory location) associated with the
function func()

– Line 7: The variable x and y are local variables in func(). They have the values – x = 10, y =
address of the first element in b in the main().

– Line 8: The local variable x stored in the stack memory is changed to 17. Nothing happens with
the value a in main().

– Line 9: The value of y is an address and the symbol *y means the position in memory which has
this address. The value in this location is now increased by 10. This means that the value of b[0]
in the main program is equal to 10. Thus func() has modified a value in main().

44

3.2 – Numerical differentiation

– Line 10: This statement has the same effect as line 9 except that it modifies the element b[6] in
main() by adding a value of 10 to what was there originally, namely 5.

– Line 11: The program counter returns to main(), the next expression after func(a,b);. All data on
the stack associated with func() are destroyed.

– The value of a is transferred to func() and stored in a new memory location called x. Any modifi-
cation of x in func() does not affect in any way the value of a in main(). This is called transfer of
data by value. On the other hand the next argument in func() is an address which is transferred to
func(). This address can be used to modify the corresponding value in main(). In the C language it
is expressed as a modification of the value which y points to, namely the first element of b. This is
called transfer of data by reference and is a method to transfer data back to the calling function,
in this case main().

C++ allows however the programmer to use solely call by reference (note that call by reference is
implemented as pointers). To see the difference between C and C++, consider the following simple
examples. In C we would write

i n t n ; n =8 ;
fu n c (&n) ; /∗ &n i s a p o i n t e r t o n ∗ /
. . . .
void fu n c (i n t ∗ i)
{

∗ i = 1 0 ; /∗ n i s changed t o 10 ∗ /
. . . .

}

whereas in C++ we would write

i n t n ; n =8 ;
fu n c (n) ; / / j u s t t r a n s f e r n i t s e l f
. . . .
void fu n c (i n t& i)
{

i = 1 0 ; / / n i s changed t o 10
. . . .

}

Note well that the way the have defined the input to the function func(int& i) or func(int ∗i) decides how
we transfer variables to a specific function. The reason why we emphasize the difference between call
by value and call by reference is that it allows the programmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reduces the readability of the code. It is more or less
common in C++ to use call by reference, since it gives a much cleaner code. Recall also that behind the
curtain references are usually implemented as pointers. When we transfer large objects such a matrices
and vectors one should always use call by reference. Copying such objects to a called function slows
down considerably the execution. If you need to keep the value of a call by reference object, you should
use the const declaration.

In programming languages like Fortran90/95 one uses only call by reference, but you can flag whether
a called function or subroutine is allowed or not to change the value by declaring for example an inte-
ger value as INTEGER, INTENT(IN):: i. The local function cannot change the value of i. Declaring a
transferred values as INTEGER, INTENT(OUT):: i. allows the local function to change the variable i.

45

Numerical differentiation

Initialisations and main program

In every program we have to define the functions employed. The style chosen here is to declare these
functions at the beginning, followed thereafter by the main program and the detailed task performed by
each function. Another possibility is to include these functions and their statements before the main
program, meaning that the main program appears at the very end. I find this programming style less read-
able however since I prefer to read a code from top to bottom. A further option, specially in connection
with larger projects, is to include these function definitions in a user defined header file. The following
program shows also (although it is rather unnecessary in this case due to few tasks) how one can split
different tasks into specialized functions. Such a division is very useful for larger projects and programs.

In the first version of this program we use a more C-like style for writing and reading to file. At the
end of this section we include also the corresponding C++ and Fortran files.

/∗
∗∗ Program t o compute t h e seco n d d e r i v a t i v e o f exp (x) .
∗∗ Three c a l l i n g f u n c t i o n s a re i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e d a ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e seco n d d e r i v a t i v e
∗∗ w h i l e t h e l a s t f u n c t i o n p r i n t s o u t d a ta t o s c r e e n .
∗ /
us ing namespace s t d ;
i n c l u d e < i o s t r e a m >

void i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;
void s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
void o u t p u t (double ∗ , double ∗ , double , i n t) ;

i n t main ()
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
i n t n u m b e r _ o f _ s t e p s ;
double x , i n i t i a l _ s t e p ;
double ∗ h _ s tep , ∗ c o m p u t e d _ d e r i v a t i v e ;
/ / read i n i n p u t d a ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &n u m b e r _ o f _ s t e p s) ;
/ / a l l o c a t e sp a ce i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
/ / h _ s t e p and c o m p u t e d _ d e r i v a t i v e
h _ s t e p = new double [n u m b e r _ o f _ s t e p s] ;
c o m p u t e d _ d e r i v a t i v e = new double [n u m b e r _ o f _ s t e p s] ;
/ / compute t h e seco n d d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (n u mb er_ o f_ s t ep s , x , i n i t i a l _ s t e p , h _ s t ep ,

c o m p u t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e
o u t p u t (h _ s tep , c o m p u t e d _ d e r i v a t i v e , x , n u m b e r _ o f _ s t e p s) ;
/ / f r e e memory
d e l e t e [] h _ s t e p ;
d e l e t e [] c o m p u t e d _ d e r i v a t i v e ;
re turn 0 ;

} / / end main program

We have defined three additional functions, one which reads in from screen the value of x, the initial step

46

3.2 – Numerical differentiation

length h and the number of divisions by 2 of h. This function is called initialise . To calculate the second
derivatives we define the function second_derivative . Finally, we have a function which writes our results
together with a comparison with the exact value to a given file. The results are stored in two arrays, one
which contains the given step length h and another one which contains the computed derivative.

These arrays are defined as pointers through the statement double ∗h_step , ∗computed_derivative;
A call in the main function to the function second_derivative looks then like this second_derivative (
number_of_steps, x, intial_step , h_step , computed_derivative) ; while the called function is declared in
the following way void second_derivative (int number_of_steps, double x, double ∗h_step,double ∗computed_derivative
) ; indicating that double ∗h_step , double ∗computed_derivative; are pointers and that we transfer the ad-
dress of the first elements. The other variables int number_of_steps, double x; are transferred by value
and are not changed in the called function.

Another aspect to observe is the possibility of dynamical allocation of memory through the new
function. In the included program we reserve space in memory for these three arrays in the following way
h_step = new double[number_of_steps]; and computed_derivative = new double[number_of_steps]; When we
no longer need the space occupied by these arrays, we free memory through the declarations delete []
h_step ; and delete [] computed_derivative ;

The function initialise

/ / Read i n from s c r e e n t h e i n i t i a l s t e p , t h e number o f s t e p s
/ / and t h e v a l u e o f x

void i n i t i a l i s e (double ∗ i n i t i a l _ s t e p , double ∗x , i n t ∗ n u m b e r _ o f _ s t e p s)
{

p r i n t f () ;
s c a n f (, i n i t i a l _ s t e p , x , n u m b e r _ o f _ s t e p s) ;
re turn ;

} / / end o f f u n c t i o n i n i t i a l i s e

This function receives the addresses of the three variables double ∗ initial_step , double ∗x, int ∗

number_of_steps; and returns updated values by reading from screen.

The function second_derivative

/ / T h i s f u n c t i o n computes t h e seco n d d e r i v a t i v e

void s e c o n d _ d e r i v a t i v e (i n t n u mb er_ o f_ s t ep s , double x ,
double i n i t i a l _ s t e p , double ∗ h _ s tep ,
double ∗ c o m p u t e d _ d e r i v a t i v e)

{
i n t c o u n t e r ;
double h ;
/ / c a l c u l a t e t h e s t e p s i z e
/ / i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m i n u t e s)
/ / and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p ;
/ / s t a r t co mp u t in g f o r d i f f e r e n t s t e p s i z e s
f o r (c o u n t e r =0 ; c o u n t e r < n u m b e r _ o f _ s t e p s ; c o u n t e r ++)
{

/ / s e t u p a r r a y s w i t h d e r i v a t i v e s and s t e p s i z e s

47

Numerical differentiation

h _ s t e p [c o u n t e r] = h ;
c o m p u t e d _ d e r i v a t i v e [c o u n t e r] =

(exp (x+h) −2.∗ exp (x) +exp (x−h)) / (h∗h) ;
h = h ∗ 0 . 5 ;

} / / end o f do lo o p
re turn ;

} / / end o f f u n c t i o n seco n d d e r i v a t i v e

The loop over the number of steps serves to compute the second derivative for different values of h.
In this function the step is halved for every iteration (you could obviously change this to larger or
smaller step variations). The step values and the derivatives are stored in the arrays h_step and double
computed_derivative.

The output function

This function computes the relative error and writes to a chosen file the results.
The last function here illustrates how to open a file, write and read possible data and then close it.

In this case we have fixed the name of file. Another possibility is obviously to read the name of this file
together with other input parameters. The way the program is presented here is slightly unpractical since
we need to recompile the program if we wish to change the name of the output file.

An alternative is represented by the following program C program. This program reads from screen
the names of the input and output files.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 i n t c o l :
4
5 i n t main (i n t argc , char ∗ a rg v [])
6 {
7 FILE ∗ in , ∗ o u t ;
8 i n t c ;
9 i f (a r g c < 3) {
10 p r i n t f () ;
11 p r i n t f () ;
12 e x i t (1) ;
13 i n = fo p en (a rg v [1] ,) ; } / / r e t u r n s p o i n t e r t o t h e i n _ f i l e
14 i f (i n n == NULL) { / / can ’ t f i n d i n _ f i l e
15 p r i n t f (, a rg v [1]) ;
16 e x i t (1) ;
17 }
18 o u t = fo p en (a rg v [2] ,) ; / / r e t u r n s a p o i n t e r t o t h e o u t _ f i l e
19 i f (u t == NULL) { / / can ’ t f i n d o u t _ f i l e
20 p r i n t f (, a rg v [2]) ;
21 e x i t (1) ;
22 }

. . . program s t a t e m e n t s

23 f c l o s e (i n) ;
24 f c l o s e (o u t) ;
25 re turn 0 ;

48

3.2 – Numerical differentiation

}

This program has several interesting features.

Line Program comments

5 • takes three arguments, given by argc. argv points to the following:
the name of the program, the fi rst and second arguments, in this case fi le
names to be read from screen.

7 • C++ has a called . The pointers and point to spe-
cifi c fi les. They must be of the type .

10 • The command line has to contain 2 fi lenames as parameters.
13–17 • The input fi le has to exit, else the pointer returns NULL. It has only read

permission.
18–22 • Same for the output fi le, but now with write permission only.
23–24 • Both fi les are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own class for
such operations.

/∗
∗∗ Program t o compute t h e seco n d d e r i v a t i v e o f exp (x) .
∗∗ In t h i s v e r s i o n we u se C++ o p t i o n s f o r r e a d i n g and
∗∗ w r i t i n g f i l e s and d a ta . The r e s t o f t h e code i s as i n
∗∗ programs / c h a p t e r 3 / program1 . cpp
∗∗ Three c a l l i n g f u n c t i o n s a re i n c l u d e d
∗∗ i n t h i s v e r s i o n . In one f u n c t i o n we read i n t h e d a ta from screen ,
∗∗ t h e n e x t f u n c t i o n computes t h e seco n d d e r i v a t i v e
∗∗ w h i l e t h e l a s t f u n c t i o n p r i n t s o u t d a ta t o s c r e e n .
∗ /
us ing namespace s t d ;
i n c l u d e < i o s t r e a m >
i n c l u d e < f s t r e a m >
i n c l u d e <iomanip >
i n c l u d e <cmath >
void i n i t i a l i s e (double ∗ , double ∗ , i n t ∗) ;
void s e c o n d _ d e r i v a t i v e (i n t , double , double , double ∗ , double ∗) ;
void o u t p u t (double ∗ , double ∗ , double , i n t) ;

o f s t r e a m o f i l e ;

i n t main (i n t argc , char∗ a rg v [])
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
char ∗ o u t f i l e n a m e ;
i n t n u m b e r _ o f _ s t e p s ;
double x , i n i t i a l _ s t e p ;
double ∗ h _ s tep , ∗ c o m p u t e d _ d e r i v a t i v e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e a re t o o few command− l i n e

a rg u men t s
i f (a r g c <= 1) {

c o u t << << arg v [0] <<

49

Numerical differentiation

<< e n d l ;
e x i t (1) ;

}
e l s e {

o u t f i l e n a m e= arg v [1] ;
}
o f i l e . open (o u t f i l e n a m e) ;
/ / read i n i n p u t d a ta from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , &x , &n u m b e r _ o f _ s t e p s) ;
/ / a l l o c a t e sp a ce i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
/ / h _ s t e p and c o m p u t e d _ d e r i v a t i v e
h _ s t e p = new double [n u m b e r _ o f _ s t e p s] ;
c o m p u t e d _ d e r i v a t i v e = new double [n u m b e r _ o f _ s t e p s] ;
/ / compute t h e seco n d d e r i v a t i v e o f exp (x)
s e c o n d _ d e r i v a t i v e (n u mb er_ o f_ s t ep s , x , i n i t i a l _ s t e p , h _ s t ep ,

c o m p u t e d _ d e r i v a t i v e) ;
/ / Then we p r i n t t h e r e s u l t s t o f i l e

o u t p u t (h _ s t ep , c o m p u t e d _ d e r i v a t i v e , x , n u m b e r _ o f _ s t e p s) ;
/ / f r e e memory
d e l e t e [] h _ s t e p ;
d e l e t e [] c o m p u t e d _ d e r i v a t i v e ;
/ / c l o s e o u t p u t f i l e
o f i l e . c l o s e () ;
re turn 0 ;

} / / end main program

The main part of the code includes now an object declaration ofstream ofi le which is included in C++ and
allows the programmer to open and declare files. This is done via the statement ofi le .open(outfi lename) ; .
We close the file at the end of the main program by writing ofi le . close () ; . There is a corresponding
object for reading inputfiles. In this case we declare prior to the main function, or in an evantual header
file, ifstream ifi le and use the corresponding statements ifi le .open(infi lename) ; and ifi le . close () ; for
opening and closing an input file. Note that we have declared two character variables char∗ outfi lename
; and char∗ infi lename ; . In order to use these options we need to include a corresponding library of
functions using # include <fstream>.

One of the problems with C++ is that formatted output is not as easy to use as the printf and scanf
functions in C. The output function using the C++ style is included below.

/ / f u n c t i o n t o w r i t e o u t t h e f i n a l r e s u l t s
void o u t p u t (double ∗ h _ s tep , double ∗ c o m p u t e d _ d e r i v a t i v e , double x ,

i n t n u m b e r _ o f _ s t e p s)
{

i n t i ;
o f i l e << << e n d l ;
o f i l e << s e t i o s f l a g s (i o s : : sh o wp o in t | i o s : : u p p e r c a s e) ;
f o r (i =0 ; i < n u m b e r _ o f _ s t e p s ; i ++)

{
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) << lo g 1 0 (h _ s t e p [i]) ;
o f i l e << se tw (1 5) << s e t p r e c i s i o n (8) <<
lo g 1 0 (f a b s (c o m p u t e d _ d e r i v a t i v e [i]−exp (x)) / exp (x))) << e n d l ;

}
} / / end o f f u n c t i o n o u t p u t

50

3.2 – Numerical differentiation

The function setw(15) reserves an output of 15 spaces for a given variable while setprecision (8) yields
eight leading digits. To use these options you have to use the declaration # include <iomanip>

Before we discuss the results of our calculations we list here the corresponding Fortran90 program.
The corresponding Fortran 90/95 example is

! Program t o compute t h e seco n d d e r i v a t i v e o f exp (x) .
! Only one c a l l i n g f u n c t i o n i s i n c l u d e d .
! I t computes t h e seco n d d e r i v a t i v e and i s i n c l u d e d i n t h e
! MODULE f u n c t i o n s as a s e p a r a t e method
! The v a r i a b l e h i s t h e s t e p s i z e . We a l s o f i x t h e t o t a l number
! o f d i v i s i o n s by 2 o f h . The t o t a l number o f s t e p s i s read from
! s c r e e n

MODULE c o n s t a n t s
! d e f i n i t i o n o f v a r i a b l e s f o r d o u b le p r e c i s i o n s and complex v a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))

END MODULE c o n s t a n t s

! Here you can i n c l u d e s p e c i f i c f u n c t i o n s which can be used by
! many s u b r o u t i n e s or f u n c t i o n s

MODULE f u n c t i o n s
USE c o n s t a n t s
IMPLICIT NONE
CONTAINS

SUBROUTINE d e r i v a t i v e (n u mb er_ o f_ s t ep s , x , i n i t i a l _ s t e p , h _ s t ep , &
c o m p u t e d _ d e r i v a t i v e)

USE c o n s t a n t s
INTEGER , INTENT (IN) : : n u m b e r _ o f _ s t e p s
INTEGER : : l o o p
REAL(DP) , DIMENSION(n u m b e r _ o f _ s t e p s) , INTENT (INOUT) : : &

c o m p u t e d _ d e r i v a t i v e , h _ s t e p
REAL(DP) , INTENT (IN) : : i n i t i a l _ s t e p , x
REAL(DP) : : h
! c a l c u l a t e t h e s t e p s i z e
! i n i t i a l i s e t h e d e r i v a t i v e , y and x (i n m i n u t e s)
! and i t e r a t i o n c o u n t e r
h = i n i t i a l _ s t e p
! s t a r t co mp u t in g f o r d i f f e r e n t s t e p s i z e s
DO l o o p =1 , n u m b e r _ o f _ s t e p s

! s e t u p a r r a y s w i t h d e r i v a t i v e s and s t e p s i z e s
h _ s t e p (lo o p) = h
c o m p u t e d _ d e r i v a t i v e (lo o p) = (EXP(x+h) −2.∗EXP(x) +EXP(x−h)) / (h∗h)
h = h ∗0 . 5

ENDDO
END SUBROUTINE d e r i v a t i v e

END MODULE f u n c t i o n s

PROGRAM s e c o n d _ d e r i v a t i v e
USE c o n s t a n t s

51

Numerical differentiation

USE f u n c t i o n s
IMPLICIT NONE
! d e c l a r a t i o n s o f v a r i a b l e s
INTEGER : : n u mb er_ o f_ s t ep s , lo o p
REAL(DP) : : x , i n i t i a l _ s t e p
REAL(DP) , ALLOCATABLE, DIMENSION (:) : : h _ s t ep , c o m p u t e d _ d e r i v a t i v e
! read i n i n p u t d a ta from s c r e e n
WRITE(∗ , ∗) ’Read in i n i t i a l s t e p , x v a l u e and number o f s t e p s ’
READ(∗ , ∗) i n i t i a l _ s t e p , x , n u m b e r _ o f _ s t e p s
! open f i l e t o w r i t e r e s u l t s on
OPEN(UNIT=7 ,FILE= ’ out . d a t ’)
! a l l o c a t e sp a ce i n memory f o r t h e one−d i m e n s i o n a l a r r a y s
! h _ s t e p and c o m p u t e d _ d e r i v a t i v e
ALLOCATE(h _ s t e p (n u m b e r _ o f _ s t e p s) , c o m p u t e d _ d e r i v a t i v e (n u m b e r _ o f _ s t e p s))
! compute t h e seco n d d e r i v a t i v e o f exp (x)
! i n i t i a l i z e t h e a r r a y s
h _ s t e p = 0 . 0 _dp ; c o m p u t e d _ d e r i v a t i v e = 0 . 0 _dp
CALL d e r i v a t i v e (n u mb er_ o f_ s t ep s , x , i n i t i a l _ s t e p , h _ s t ep , c o m p u t e d _ d e r i v a t i v e

)

! Then we p r i n t t h e r e s u l t s t o f i l e
DO l o o p =1 , n u m b e r _ o f _ s t e p s

WRITE(7 , ’ (E16 . 1 0 , 2X, E16 . 1 0) ’) LOG10 (h _ s t e p (lo o p)) ,&
LOG10 (ABS ((c o m p u t e d _ d e r i v a t i v e (lo o p)−EXP(x)) / EXP(x)))

ENDDO
! f r e e memory
DEALLOCATE (h _ s t ep , c o m p u t e d _ d e r i v a t i v e)
! c l o s e t h e o u t p u t f i l e
CLOSE(7)

END PROGRAM s e c o n d _ d e r i v a t i v e

The MODULE declaration in Fortran allows one to place functions like the one which calculates second
derivatives. Since this is a general method, one could extend its functionality by simply transfering the
name of the function to differentiate. In our case use explicitely the exponential function, but there is
nothing which hinders us from defining any other type of function. Note also the usage of the module
constants where we define double and complex variables. If one wishes to switch to another precision,
one just needs to change the declaration in one part of the program only. This hinders possible errors
which arise if one has to change variable declarations in every function and subroutine. Finally, dynamic
memory allocation and deallocation is in Fortran 90/95 done with the keywords ALLOCATE(array(size))
and DEALLOCATE(array). Although most compilers deallocate and thereby free space in memory when
leaving a function, you should always deallocate an array when it is no longer needed. In case your arrays
are very large, this may block unnecessarily large fractions of the memory. Furthermore, you should also
always initialise arrays. In the example above, we note that Fortran allows us to simply write h_step
= 0.0_dp; computed_derivative = 0.0_dp, which means that all elements of these two arrays are set
to zero. Coding arrays in this manner brings us much closer to the way we deal with mathematics. In
Fortran 90/95 it is irrelevant whether this is a one-dimensional or multi-dimensional array. In the next
next chapter, where we deal with allocation of matrices, we will introduce the numerical library Blitz++
which allows for similar treatments of arrays in C++. By default however, these features are not included
in the ANSI C++ standard.

52

3.2 – Numerical differentiation

Results

In Table 3.1 we present the results of a numerical evaluation for various step sizes for the second deriva-
tive of exp (x) using the approximation f ′′

0 =
fh−2f0+f

−h

h2 . The results are compared with the exact ones
for various x values. Note well that as the step is decreased we get closer to the exact value. However, if

x h = 0.1 h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1: Result for numerically calculated second derivatives of exp (x). A comparison is made with
the exact value. The step size is also listed.

it is further decreased, we run into problems of loss of precision. This is clearly seen for h = 0.0000001.
This means that even though we could let the computer run with smaller and smaller values of the step,
there is a limit for how small the step can be made before we loose precision.

3.2.2 Error analysis
Let us analyze these results in order to see whether we can find a minimal step length which does not
lead to loss of precision. Furthermore In Fig. 3.2 we have plotted

ε = lo g 1 0

(
∣

∣

∣

∣

∣

f ′′

c o m p u te d − f ′′

exa c t

f ′′

exa c t

∣

∣

∣

∣

∣

)

, (3.5)

as function of lo g 1 0(h). We used an intial step length of h = 0.01 and fixed x = 10. For large values of
h, that is −4 < lo g 1 0(h) < −2 we see a straight line with a slope close to 2. Close to lo g 1 0(h) ≈ −4
the relative error starts increasing and our computed derivative with a step size lo g 1 0(h) < −4, may no
longer be reliable.

Can we understand this behavior in terms of the discussion from the previous chapter? In chapter 2
we assumed that the total error could be approximated with one term arising from the loss of numerical
precision and another due to the truncation or approximation made, that is

εto t = εa p p ro x + εro . (3.6)

For the computed second derivative, Eq. (3.2), we have

f ′′

0 =
fh − 2f0 + f−h

h2
− 2

∞
∑

j= 1

f
(2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

εa p p ro x ≈

f
(4)
0

12
h2.

53

Numerical differentiation

Relative error

log10(h)

ε

0-2-4-6-8-10-12-14

6

4

2

0

-2

-4

-6

-8

-10

Figure 3.2: Log-log plot of the relative error of the second derivative of ex as function of decreasing step
lengths h. The second derivative was computed for x = 1 0 in the program discussed above. See text for
further details

If we were not to worry about loss of precision, we could in principle make h as small as possible.
However, due to the computed expression in the above program example

f ′′

0 =
fh − 2f0 + f−h

h2
=

(fh − f0) + (f−h − f0)

h2
,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly equal
numbers becomes crucial. If (f±h − f0) are very close, we have (f±h − f0) ≈ εM , where |εM | ≤ 1 0−7

for single and |εM | ≤ 1 0−15 for double precision, respectively.
We have then

∣

∣f ′′

0

∣

∣ =

∣

∣

∣

∣

(fh − f0) + (f−h − f0)

h2

∣

∣

∣

∣

≤
2εM

h2
.

Our total error becomes

|εto t | ≤
2εM

h2
+

f
(4)
0

1 2
h2. (3.7)

It is then natural to ask which value of h yields the smallest total error. Taking the derivative of |ε to t | with
respect to h results in

h =

(

24 εM

f
(4)
0

)1/4

.

With double precision and x = 1 0 we obtain

h ≈ 1 0−4.

Beyond this value, it is essentially the loss of numerical precision which takes over. We note also that
the above qualitative argument agrees seemingly well with the results plotted in Fig. 3.2 and Table 3.1.

54

3.3 – How to make figures with Gnuplot

The turning point for the relative error at approximately h ≈ ×10−4 reflects most likely the point where
roundoff errors take over. If we had used single precision, we would get h ≈ 10−2. Due to the subtractive
cancellation in the expression for f ′ ′ there is a pronounced detoriation in accuracy as h is made smaller
and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fh − f0) + (f−h − f0) = (ex+h
− ex) + (ex−h

− ex),

as
(fh − f0) + (f−h − f0) = ex(eh + e−h

− 2),

since it is the difference (eh + e−h
− 2) which causes the loss of precision. The results, still for x = 10

are shown in the Table 3.2. We note from this table that at h ≈ ×10−8 we have essentially lost all leading

h eh + e−h eh + e−h
− 2

10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−4 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Table 3.2: Result for the numerically calculated numerator of the second derivative as function of the step
size h. The calculations have been made with double precision.

digits.
From Fig. 3.2 we can read off the slope of the curve and thereby determine empirically how truncation

errors and roundoff errors propagate. We saw that for −4 < lo g 10(h) < −2, we could extract a slope
close to 2, in agreement with the mathematical expression for the truncation error.

We can repeat this for −10 < lo g 10(h) < −4 and extract a slope ≈ −2. This agrees again with our
simple expression in Eq. (3.7).

3.3 How to make figures with Gnuplot

We end this chapter with a practical guide on making figures to be included in an eventual report file.
Gnuplot is a simple plotting program which follows the Linux/Unix operating system. It is easy to use
and allows also to generate figure files which can be included in a LATEX document. Here we show how
to make simple plots online and how to make postscript versions of the plot or even a figure file which
can be included in a LATEX document. There are other plotting programs such as xmgrace as well which
follow Linux or Unix as operating systems. An excellent alternative which many of you are familiar with
is to use Matlab to read in the data of a calculation and vizualize the results.

In order to check if gnuplot is present type

55

Numerical differentiation

If gnuplot is available, simply write

to start the program. You will then see the following prompt

and type help for a list of various commands and help options. Suppose you wish to plot data points
stored in the file mydata.dat. This file contains two columns of data points, where the first column refers
to the argument x while the second one refers to a computed function value f(x).

If we wish to plot these sets of points with gnuplot we just to need to write

or

since gnuplot assigns as default the first column as the x-axis. The abbreviations w l stand for ’with
lines’. If you prefer to plot the data points only, write

For more plotting options, how to make axis labels etc, type help and choose plot as topic.
Gnuplot will typically display a graph on the screen. If we wish to save this graph as a postscript

file, we can proceed as follows

and you will be the owner of a postscript file called mydata.ps, which you can display with ghostview
through the call

The other alternative is to generate a figure file for the document handling program LATEX. The
advantage here is that the text of your figure now has the same fonts as the remaining LATEX document.
Fig. 3.2 was generated following the steps below. You need to edit a file which ends with .gnu. The file
used to generate Fig. 3.2 is called derivative.gnu and contains the following statements, which are a mix
of LATEX and Gnuplot statements. It generates a file derivative.tex which can be included in a LATEX
document. Writing the following

56

3.3 – How to make figures with Gnuplot

generates a LATEX file derivative.tex. Alternatively, you could write the above commands in a file deriva-
tive.gnu and use Gnuplot as follows

You can then include this file in a LATEX document as shown here

Most figures included in this text have been generated using gnuplot.

57

