
Chapter 4

Linear algebra

In the training of programming for scientific computation the emphasis has historically
been on squeezing out every drop of floating point performance for a given algorithm. ......
This practice, however, leads to highly tuned racecarlike software codes: delicate, easily
broken and difficult to maintain, but capable of outperforming more user-friendly family
cars. Smith, Bjorstad and Gropp, An introduction to MPI [16]

4.1 Introduction

In this chapter we deal with basic matrix operations, such as the solution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution of linear equations is an important part of numerical
mathematics and arises in many applications in the sciences. Here we focus in particular on so-called
direct or elimination methods, which are in principle determined through a finite number of arithmetic
operations. Iterative methods will be discussed in connection with eigenvalue problems in chapter 12.

This chapter serves also the purpose of introducing important programming details such as handling
memory allocation for matrices, classes and the usage of the libraries which follow these lectures. The
algorithms1 we describe and their original source codes are taken from the widely used software package
LAPACK [23], which follows two other popular packages developed in the 1970s, namely EISPACK
and LINPACK. The latter was developed for linear equations and least square problems while the for-
mer was developed for solving symmetric, unsymmetric and generalized eigenvalue problems. From
LAPACK’s website it is possible to download for free all source codes from
this library. Both C++ and Fortran versions are available. Another important library is BLAS [24],
which stands for Basic Linear Algebra Subprogram. It contains efficient codes for algebraic operations
on vectors, matrices and vectors and matrices. Basically all modern supercomputer include this library,
with efficient algorithms. Else, Matlab offers a very efficient programming environment for dealing
with matrices. The classic text from where we have taken most of the formalism exposed here is the
book on matrix computations by Golub and Van Loan [25]. Good recent introductory texts are Kincaid
and Cheney [26] and Datta [27]. For more advanced ones see Trefethen and Bau III [28], Kress [29]
and Demmel [30]. Ref. [25] contains an extensive list of textbooks on eigenvalue problems and lin-
ear algebra. LAPACK [23] contains also extensive listings to the research literature on matrix com-
putations. You may also look up the lecture notes of INF-MAT3350 (Numerical Linear Algebra) at

1The various methods included in the library fi les are taken from LAPACK and Numerical Recipes [22] and have been
rewritten in Fortran 90/95 and C++ by us.
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. For the introduction of the auxil-
iary library Blitz++ [31] we refer to the online manual at .

4.2 Mathematical intermezzo

The matrices we will deal with are primarily square real symmetric or hermitian ones, assuming thereby
that an n × n matrix A ∈ R

n×n for a real matrix2 and A ∈ C
n×n for a complex matrix. For the sake of

simplicity, we take a matrix A ∈ R
4×4 and a corresponding identity matrix I

A =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









I =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









, (4.1)

where aij ∈ R. The inverse of a matrix, if it exists, is defined by

A
−1

· A = I.

In the following discussion, matrices are always two-dimensional arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced capitals letters such as A to represent a general
matrix, which is a two-dimensional array, while aij refers to a matrix element with row number i and
column number j. Similarly, a vector being a one-dimensional array, is labelled x and represented as (for
a real vector)

x ∈ R
n

⇐⇒









x1

x2

x3

x4









,

with pertinent vector elements xi ∈ R. Note that this notation implies xi ∈ R
4×1 and that the members

of x are column vectors. The elements of xi ∈ R
1×4 are row vectors.

Table 4.2 lists some essential features of various types of matrices one may encounter. Some of the

Table 4.1: Matrix properties

Relations Name matrix elements
A = A

T symmetric aij = aji

A =
(

A
T
)−1 real orthogonal

∑

k aikajk =
∑

k akiakj = δij

A = A
∗ real matrix aij = a∗ij

A = A
† hermitian aij = a∗ji

A =
(

A
†
)−1 unitary

∑

k aika
∗
jk =

∑

k a∗kiakj = δij

matrices we will encounter are listed here
2A reminder on mathematical symbols may be appropriate here. The symbol R is the set of real numbers. Correspondingly,

N, Z and C represent the set of natural, integer and complex numbers, respectively. A symbol like R
n stands for an n-

dimensional real Euclidean space, while C[a , b] is the space of real or complex-valued continuous functions on the interval
[a , b], where the latter is a closed interval. Similalry, Cm[a , b] is the space of m-times continuously differentiable functions on
the interval [a , b]. For more symbols and notations, see the main text.
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1. Diagonal if aij = 0 for i 6= j,

2. Upper triangular if aij = 0 for i > j, which for a 4 × 4 matrix is of the form








a11 a12 a13 a14

0 a2 2 a2 3 a2 4

0 0 a3 3 a3 4

0 0 0 ann









3. Lower triangular if aij = 0 for i < j









a11 0 0 0

a2 1 a2 2 0 0

a3 1 a3 2 a3 3 0

a4 1 a4 2 a4 3 a4 4









4. Upper Hessenberg if aij = 0 for i > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row









a11 a12 a13 a14

a2 1 a2 2 a2 3 a2 4

0 a3 2 a3 3 a3 4

0 0 a4 3 a4 4









5. Lower Hessenberg if aij = 0 for i < j + 1









a11 a12 0 0

a2 1 a2 2 a2 3 0

a3 1 a3 2 a3 3 a3 4

a4 1 a4 2 a4 3 a4 4









6. Tridiagonal if aij = 0 for |i − j| > 1









a11 a12 0 0

a2 1 a2 2 a2 3 0

0 a3 2 a3 3 a3 4

0 0 a4 3 a4 4









There are many more examples, such as lower banded with bandwidth p for aij = 0 for i > j + p, upper
banded with bandwidth p for aij = 0 for i < j + p, block upper triangular, block lower triangular etc.

For a real n × n matrix A the following properties are all equivalent

1. If the inverse of A exists, A is nonsingular.

2. The equation Ax = 0 implies x = 0.

3. The rows of A from a basis of R
n.

4. The columns of A from a basis of R
n.
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5. A is a product of elementary matrices.

6. 0 is not an eigenvalue of A.

The basic matrix operations that we will deal with are addition and subtraction

A = B± C =⇒ aij = bij ± cij , (4.2)

scalar-matrix multiplication
A = γB =⇒ aij = γbij , (4.3)

vector-matrix multiplication

y = Ax =⇒ yi =

n∑

j=1

aijxj, (4.4)

matrix-matrix multiplication

A = BC =⇒ aij =

n∑

k=1

bikckj , (4.5)

transposition
A = BT =⇒ aij = bji, (4.6)

and if A ∈ C
n×n, conjugation results in

A = B
T

=⇒ aij = bji, (4.7)

where a variable z = x − ıy denotes the complex conjugate of z = x + ıy. In a similar way we have the
following basic vector operations, namely addition and subtraction

x = y ± z =⇒ xi = yi ± zi, (4.8)

scalar-vector multiplication
x = γy =⇒ xi = γyi, (4.9)

vector-vector multiplication (called Hadamard multiplication)

x = yz =⇒ xi = yizi, (4.10)

the inner or so-called dot product

c = yT z =⇒ c =

n∑

j=1

yjzj , (4.11)

with a c a constant and the outer product, which yields a matrix,

A = yzT =⇒ aij = yizj , (4.12)

Other important operations are vector and matrix norms. A class of vector norms are the so-called p-
norms

||x||p = (|x1|
p + |x2|

p + · · · + |xn|
p)

1

p , (4.13)

where p ≥ 1. The most important are the 1, 2 and ∞ norms given by

||x||1 = |x1| + |x2| + · · · + |xn|, (4.14)

62



4.2 – Mathematical intermezzo

||x||2 = (|x1|
2 + |x2|

2 + · · · + |xn|
2)

1

2 = (xTx)
1

2 , (4.15)

and
||x||∞ = m a x |xi|, (4.16)

for 1 ≤ i ≤ n. From these definitions, one can derive several important relations, of which the so-called
Cauchy-Schwartz inequality is of great importance for many algorithms. It reads for any x and y in a
real or complex inner product space satisfy

|xT y| ≤ ||x||2||y||2, (4.17)

and the equality is obeyed only if x and y are linearly dependent. An important relation which follows
from the Cauchy-Schwartz relation is the famous triangle relation, which states that for any x and y in a
real or complex inner product space satisfy

||x + y||2 ≤ ||x||2 + ||y||2. (4.18)

Proofs can be found in for example Ref. [25]. As discussed in chapter 2, the analysis of the relative
error is important in our studies of loss of numerical precision. Using a vector norm we can define the
relative error for the machine representation of a vector x. We assume that fl(x) ∈ R

n is the machine
representation of a vector x ∈ R

n. If x 6= 0, we define the relative error as

ε =
||fl(x) − x||

||x||
. (4.19)

Using the ∞-norm one can define a relative error that can be translated into a statement on the correct
significant digits of fl(x),

||fl(x) − x||∞
||x||∞

≈ 10−l, (4.20)

where the largest component of fl(x) has roughly l correct significant digits.
We can define similar matrix norms as well. The most frequently used are the Frobenius norm

||A||F =

√

√

√

√

m
∑

i= 1

n
∑

j= 1

|aij |2, (4.21)

and the p-norms

||A||p =
||Ax||p
||x||p

, (4.22)

assuming that x 6= 0. We refer the reader to the text of Golub and Van Loan [25] for a further discussion
of these norms.

The way we implement these operations will be discussed below, as it depends on the programming
language we opt for.

63



Linear algebra

4.3 Programming details

Many programming problems arise from improper treatment of arrays. In this section we will discuss
some important points such as array declaration, memory allocation and array transfer between func-
tions. We distinguish between two cases: (a) array declarations where the array size is given at compi-
lation time, and (b) where the array size is determined during the execution of the program, so-called
dymanic memory allocation. Useful references on C++ programming details, in particular on the use
of pointers and memory allocation, are Reek’s text [32] on pointers in C, Berryhill’s monograph [33]
on scientific programming in C++ and finally Franek’s text [34] on memory as a programming con-
cept in C and C++. Good allround texts on C++ programming in engineering and science are the
books by Flowers [19] and Barton and Nackman [20]. See also the online lecture notes on C++ at

. For Fortran 90/95 we recommend the online lec-
tures at . These web pages contain extensive refer-
ences to other C++ and Fortran 90/95 resources. Both web pages contain enough material, lecture notes
and exercises, in order to serve as material for own studies.

Figure 4.1: Segmentation fault, again and again! Alas, this is a situation you must likely will end up
in, unless you initialize, access, allocate or deallocate properly your arrays. Many program development
environments such as Dev C++ at provide debugging possibilities. Another possi-
bility, discussed in appendix A is to use the debugger GDB within the text editor emacs. Beware however
that there may be segmentation errors which occur due to errors in libraries of the operating system.
This author spent two weeks on tracing a segmentation error from a program which run perfectly prior
to an upgrade of the operating system. There was a bug in the library glibc of the new linux distribution.
(Drawing: courtesy by Victoria Popsueva 2003.)
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4.3.1 Declaration of fixed-sized vectors and matrices

Table 4.2 presents a small program which treats essential features of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compiler reserves memory to store
five integers. The elements are vec[0], vec[1],....,vec[4]. Note that the numbering of elements starts with
zero. Declarations of other data types are similar, including structure data.

The symbol vec is an element in memory containing the address to the first element vec[0] and is a
pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements start with
zero, matr[0][0], matr[0][1], ....., matr[0][4], matr[1][0],.... . This sequence of elements also shows how
data are stored in memory. For example, the element matr[1][0] follows matr[0][4]. This is important in
order to produce an efficient code and avoid memory stride.

There is one further important point concerning matrix declaration. In a similar way as for the symbol
vec, matr is an element in memory which contains an address to a vector of three elements, but now these
elements are not integers. Each element is a vector of five integers. This is the correct way to understand
the declaration in line b. With respect to pointers this means that matr is pointer-to-a-pointer-to-an-
integer which we can write ∗∗matr. Furthermore ∗matr is a-pointer-to-a-pointer of five integers. This
interpretation is important when we want to transfer vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). To be specific, we transfer the
addresses of vec[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). The int vec[] is a pointer to an integer. Alterna-
tively we could write int ∗vec. The first version is better. It shows that it is a vector of several integers,
but not how many. The second version could equally well be used to transfer the address to a single
integer element. Such a declaration does not distinguish between the two cases.

The next definition is int matr[][5]. This is a pointer to a vector of five elements and the compiler
must be told that each vector element contains five integers. Here an alternative version could be int
(∗matr)[5] which clearly specifies that matr is a pointer to a vector of five integers.

There is at least one drawback with such a matrix declaration. If we want to change the dimension
of the matrix and replace 5 by something else we have to do the same change in all functions where this
matrix occurs.

There is another point to note regarding the declaration of variables in a function which includes
vectors and matrices. When the execution of a function terminates, the memory required for the variables
is released. In the present case memory for all variables in main() are reserved during the whole program
execution, but variables which are declared in sub_1() are released when the execution returns to main().

4.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size declaration of vectors and matrices before com-
pilation is in many cases bad. You may not know beforehand the actually needed sizes of vectors and
matrices. In large projects where memory is a limited factor it could be important to reduce memory re-
quirement for matrices which are not used any more. In C an C++ it is possible and common to postpone
size declarations of arrays untill you really know what you need and also release memory reservations
when it is not needed any more. The details are shown in Table 4.3.

In line a we declare a pointer to an integer which later will be used to store an address to the first
element of a vector. Similarily, line b declares a pointer-to-a-pointer which will contain the address to a
pointer of row vectors, each with col integers. This will then become a matrix[col][col]
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Table 4.2: Matrix handling program where arrays are defined at compilation time

int main()
{

int k,m, row = 3, col = 5;
int vec[5]; // line a
int matr[3][5]; // line b

for(k = 0; k < col; k++) vec[k] = k; // data into vector[]
for(m = 0; m < row; m++) { // data into matr[][]

for(k = 0; k < col ; k++) matr[m][k] = m + 10 ∗ k;
}
printf( \ \ \ ); // print vector data
for(k = 0; k < col; k++) printf( = ,k, vec[k]);
printf( \ \ );

for(m = 0; m < row; m++) {
printf( \ );
for(k = 0; k < col; k++)

printf( = ,m,k,matr[m][k]);
}

}
printf( \ );
sub_1(row, col, vec, matr); // line c
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int matr[][5]) // line d
{

int k,m;

printf( \ \ \ ); // print vector data
for(k = 0; k < col; k++) printf( = ,k, vec[k]);
printf( \ \ );

for(m = 0; m < row; m++) {
printf( \ );
for(k = 0; k < col; k++) {

printf( = ,m, k, matr[m][k]);
}

}
printf( \ );

} // End: function sub_1()
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4.3 – Programming details

Table 4.3: Matrix handling program with dynamic array allocation.

int main()
{

int ∗vec; // line a
int ∗∗matr; // line b
int m, k, row, col, total = 0;

printf( \ \ = ); // line c
scanf( ,&row);
printf( \ \ = );
scanf( , &col);

vec = new int [col]; // line d
matr = (int ∗∗)matrix(row, col, sizeof(int)); // line e
for(k = 0; k < col; k++) vec[k] = k; // store data in vector[]
for(m = 0; m < row; m++) { // store data in array[][]

for(k = 0; k < col; k++) matr[m][k] = m + 10 ∗ k;
}
printf( \ \ \ ); // print vector data
for(k = 0; k < col; k++) printf( = ,k,vec[k]);
printf( \ \ );
for(m = 0; m < row; m++) {

printf( \ );
for(k = 0; k < col; k++) {

printf( = ,m, k, matr[m][k]);
}

}
printf( \ );
for(m = 0; m < row; m++) { // access the array

for(k = 0; k < col; k++) total += matr[m][k];
}
printf( \ \ = \ ,total);
sub_1(row, col, vec, matr);
free_matrix((void ∗∗)matr); // line f
delete [] vec; // line g
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int ∗∗matr) // line h
{

int k,m;

printf( \ \ \ ); // print vector data
for(k = 0; k < col; k++) printf( = ,k, vec[k]);
printf( \ \ );
for(m = 0; m < row; m++) {

printf( \ );
for(k = 0; k < col; k++) {

printf( = ,m,k,matr[m][k]);
}

}
printf( \ );

} // End: function sub_1()
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In line c we read in the size of vec[] and matr[][] through the numbers row and col.
Next we reserve memory for the vector in line d. In line e we use a user-defined function to reserve

necessary memory for matrix[row][col] and again matr contains the address to the reserved memory
location.

The remaining part of the function main() are as in the previous case down to line f. Here we have a
call to a user-defined function which releases the reserved memory of the matrix. In this case this is not
done automatically.

In line g the same procedure is performed for vec[]. In this case the standard C++ library has the
necessary function.

Next, in line h an important difference from the previous case occurs. First, the vector declaration is
the same, but the matr declaration is quite different. The corresponding parameter in the call to sub_1[]
in line g is a double pointer. Consequently, matr in line h must be a double pointer.

Except for this difference sub_1() is the same as before. The new feature in Table 4.3 is the call to the
user-defined functions matrix and free_matrix. These functions are defined in the library file lib.cpp.
The code for the dynamic memory allocation is given below.

/∗
∗ The f u n c t i o n
∗ v o i d ∗∗ m a t r i x ( )
∗ r e s e r v e s dynamic memory f o r a two−d i m e n s i o n a l m a t r i x
∗ u s i n g t h e C++ command new . No i n i t i a l i z a t i o n o f t h e e l e m e n t s .
∗ I n p u t d a ta :
∗ i n t row − number o f rows
∗ i n t c o l − number o f co lumns
∗ i n t num_bytes− number o f b y t e s f o r each
∗ e l e m e n t
∗ R e t u r n s a v o i d ∗∗ p o i n t e r t o t h e r e s e r v e d memory l o c a t i o n .
∗ /

void ∗∗m a t r i x ( i n t row , i n t co l , i n t num_bytes )
{
i n t i , num ;
char ∗∗ p o i n t e r , ∗ p t r ;

p o i n t e r = new ( no throw ) char∗ [ row ] ;
i f ( ! p o i n t e r ) {

c o u t << ;
c o u t << << row << << e n d l ;
re turn NULL;

}
i = ( row ∗ c o l ∗ num_bytes ) / s i z e o f ( char ) ;
p o i n t e r [ 0 ] = new ( no throw ) char [ i ] ;
i f ( ! p o i n t e r [ 0 ] ) {

c o u t << ;
c o u t << << i << << e n d l ;
re turn NULL;

}
p t r = p o i n t e r [ 0 ] ;
num = c o l ∗ num_bytes ;
f o r ( i = 0 ; i < row ; i ++ , p t r += num ) {
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double ∗ ∗A =⇒ double ∗ A[0 . . . 3 ]

A[0 ][0 ] A[0 ][1 ] A[0 ][2 ] A[0 ][3 ]

A[1 ][0 ] A[1 ][1 ] A[1 ][2 ] A[1 ][3 ]

A[2 ][0 ] A[2 ][1 ] A[2 ][2 ] A[2 ][3 ]

A[3 ][0 ] A[3 ][1 ] A[3 ][2 ] A[3 ][3 ]

A[0 ]

A[1 ]

A[2 ]

A[2 ]

Figure 4.2: Conceptual representation of the allocation of a matrix in C++.

p o i n t e r [ i ] = p t r ;
}
re turn ( void ∗∗ ) p o i n t e r ;
} / / end : f u n c t i o n v o i d ∗∗ m a t r i x ( )

As an alternative, you could write your own allocation and deallocation of matrices. This can be
done rather straightforwardly with the following statements. Recall first that a matrix is represented by
a double pointer that points to a contiguous memory segment holding a sequence of double* pointers in
case our matrix is a double precision variable. Then each double* pointer points to a row in the matrix.
A declaration like double∗∗ A; means that A[i] is a pointer to the i + 1-th row A[i] and A[i][j] is matrix
entry (i,j). The way we would allocate memory for such a matrix of dimensionality n×n is for example
using the following piece of code
i n t n ;
double ∗∗ A;

A = new double ∗ [ n ]
f o r ( i = 0 ; i < n ; i ++)

A[ i ] = new double [N ] ;

When we declare a matrix (a two-dimensional array) we must first declare an array of double variables.
To each of this variables we assign an allocation of a single-dimensional array. A conceptual picture on
how a matrix A is stored in memory is shown in Fig. 4.2.

Allocated memory should always be deleted when it is no longer needed. We free memory using the
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statements

f o r ( i = 0 ; i < n ; i ++)
d e l e t e [ ] A[ i ] ;

d e l e t e [ ] A;

delete [] A;, which frees an array of pointers to matrix rows.
However, including a library like Blitz++ makes life much easier

when dealing with matrices. This is discussed below.

4.3.3 Matrix operations and C++ and Fortran 90/95 features of matrix handling
Many program libraries for scientific computing are written in Fortran, often also in older version such
Fortran 77. When using functions from such program libraries, there are some differences between C++
and Fortran 90/95 encoding of matrices and vectors worth noticing. Here are some simple guidelines in
order to avoid some of the most common pitfalls.

First of all, when we think of an n × n matrix in Fortran and C++, we typically would have a mental
picture of a two-dimensional block of stored numbers. The computer stores them however as sequential
strings of numbers. The latter could be stored as row-major order or column-major order. What do
we mean by that? Recalling that for our matrix elements aij , i refers to rows and j to columns, we
could store a matrix in the sequence a11a12 . . . a1na21a22 . . . a2n . . . ann if it is row-major order (we go
along a given row i and pick up all column elements j) or it could be stored in column-major order
a11a21 . . . an1a12a22 . . . an2 . . . ann.

Fortran stores matrices in the latter way, i.e., by column-major, while C++ stores them by row-major.
It is crucial to keep this in mind when we are dealing with matrices, because if we were to organize the
matrix elements in the wrong way, important properties like the transpose of a real matrix or the inverse
can be wrong, and obviously yield wrong physics. Fortran subscripts begin typically with 1, although
it is no problem in starting with zero, while C++ starts with 0 for the first element. This means that
A(1, 1) in Fortran is equivalent to A[0][0] in C++. Moreover, since the sequential storage in memory
means that nearby matrix elements are close to each other in the memory locations (and thereby easier to
fetch) , operations involving e.g., additions of matrices may take more time if we do not respect the given
ordering.

To see this, consider the following coding of matrix addition in C++ and Fortran 90/95. We have
n × n matrices A, B and C and we wish to evaluate A = B + C according to Eq. (4.2). In C++ this
would be coded like

f o r ( i =0 ; i < n ; i ++) {
f o r ( j =0 ; j < n ; j ++) {

a [ i ] [ j ]= b [ i ] [ j ]+ c [ i ] [ j ]
}

}

while in Fortran 90/95 we would have

DO j =1 , n
DO i =1 , n

a ( i , j ) =b ( i , j ) +c ( i , j )
ENDDO

ENDDO

Fig. 4.3 shows how a 3 × 3 matrix A is stored in both row-major and column-major ways.

70



4.3 – Programming details

a11 a12 a13

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

=⇒⇐=

a11

a12

a13

a2 1

a2 2

a2 3

a3 1

a3 2

a3 3

a11

a2 1

a3 1

a12

a2 2

a3 2

a13

a2 3

a3 3

Figure 4.3: Row-major storage of a matrix to the left (C++ way) and column-major to the right (Fortran
way).
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Interchanging the order of i and j can lead to a considerable enhancement in process time. In Fortran
90/95 we would write the above statements in a much simpler way a=b+c. However, the addition still
involves ∼ n2 operations. Matrix multiplication or taking the inverse requires ∼ n3 operations. The
matrix multiplication of Eq. (4.5) of two matrices A = B C could then take the following form in C++

f o r ( i =0 ; i < n ; i ++) {
f o r ( j =0 ; j < n ; j ++) {

f o r ( k=0 ; k < n ; k ++) {
a [ i ] [ j ]+=b [ i ] [ k ]∗ c [ k ] [ j ]

}
}

}

and in Fortran 90/95 we have

DO j =1 , n
DO i =1 , n

DO k = 1 , n
a ( i , j ) =a ( i , j ) +b ( i , k ) ∗c ( i , j )

ENDDO
ENDDO

ENDDO

However, Fortran 90/95 has an intrisic function called MATMUL, and the above three loops can be coded
in a single statement a=MATMUL(b,c). Fortran 90/95 contains several array manipulation statements, such
as dot product of vectors, the transpose of a matrix etc etc. The outer product of two vectors is however
not included in Fortran 90/95. The coding of Eq. (4.12) takes then the following form in C++

f o r ( i =0 ; i < n ; i ++) {
f o r ( j =0 ; j < n ; j ++) {

a [ i ] [ j ]+= x [ i ]∗ y [ j ]
}

}

and in Fortran 90/95 we have

DO j =1 , n
DO i =1 , n

a ( i , j ) =a ( i , j ) +x ( j ) ∗y ( i )
ENDDO

ENDDO

A matrix-matrix multiplication of a general n × n matrix with

a(i, j) = a(i, j) + b(i, k) ∗ c(i, j),

in its inner loops requires a multiplication and an addition. We define now a flop (floating point operation)
as one of the following floating point arithmetic operations, viz addition, subtraction, multiplication and
division. The above two floating point operations (flops) are done n3 times meaning that a general matrix
multiplication requires 2n3 flops if we have a square matrix. If we assume that our computer performs
1 0 9 flops per second, then to perform a matrix multiplication of a 1 0 0 0 × 1 0 0 0 case should take two
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seconds. This can be reduced if we multiply two matrices which are upper triangular such as

A =









a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a4 4









.

The multiplication of two upper triangular matrices B C yields another upper triangular matrix A, result-
ing in the following C++ code

f o r ( i =0 ; i < n ; i ++) {
f o r ( j = i ; j < n ; j ++) {

f o r ( k= i ; k < j ; k ++) {
a [ i ] [ j ]+=b [ i ] [ k ]∗ c [ k ] [ j ]

}
}

}

The fact that we have the constraint i ≤ j leads to the requirement for the computation of aij of 2(j−i+1 )
flops. The total number of flops is then

n
∑

i= 1

n
∑

j= 1

2(j − i + 1 ) =
n

∑

i= 1

n−i+ 1
∑

j= 1

2j ≈

n
∑

i= 1

2(n − i + 1 )2

2
,

where we used that
∑n

j= 1
j = n(n + 1 )/2 ≈ n2/2 for large n values. Using in addition that

∑n
j= 1

j2 ≈

n3/3 for large n values, we end up with approximately n3/3 flops for the multiplication of two upper
triangular matrices. This means that if we deal with matrix multiplication of upper triangular matrices,
we reduce the number of flops by a factor six if we code our matrix multiplication in an efficient way.

It is also important to keep in mind that computers are finite, we can thus not store infinitely large
matrices. To calculate the space needed in memory for an n × n matrix with double precision, 64 bits or
8 bytes for every matrix element, one needs simply compute n × n × 8 bytes . Thus, if n = 1 0000, we
will need close to 1GB of storage. Decreasing the precision to single precision, only halves our needs.

A further point we would like to stress, is that one should in general avoid fixed (at compilation
time) dimensions of matrices. That is, one could always specify that a given matrix A should have size
A[1 00][1 00], while in the actual execution one may use only A[1 0][1 0]. If one has several such matrices,
one may run out of memory, while the actual processing of the program does not imply that. Thus, we will
always recommend that you use dynamic memory allocation, and deallocation of arrays when they are
no longer needed. In Fortran 90/95 one uses the intrisic functions ALLOCATE and DEALLOCATE,
while C++ employs the functions new and delete.

Fortran 90/95 allocate statement and mathematical operations on arrays

An array is declared in the declaration section of a program, module, or procedure using the dimension
attribute. Examples include

REAL, DIMENSION ( 1 0 ) : : x , y
REAL, DIMENSION ( 1 : 1 0 ) : : x , y
INTEGER , DIMENSION ( −10:10) : : p rob
INTEGER , DIMENSION ( 1 0 , 1 0 ) : : s p i n
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The default value of the lower bound of an array is 1. For this reason the first two statements are equivalent
to the first. The lower bound of an array can be negative. The last two statements are examples of two-
dimensional arrays.

Rather than assigning each array element explicitly, we can use an array constructor to give an array
a set of values. An array constructor is a one-dimensional list of values, separated by commas, and
delimited by "(/" and "/)". An example is

a ( 1 : 3 ) = ( / 2 . 0 , −3.0 , −4.0 / )

is equivalent to the separate assignments

a ( 1 ) = 2 . 0
a ( 2 ) = −3.0
a ( 3 ) = −4.0

One of the better features of Fortran 90/95 is dynamic storage allocation. That is, the size of an array
can be changed during the execution of the program. To see how the dynamic allocation works in Fortran
90/95, consider the following simple example where we set up a 4 × 4 unity matrix.

. . . . . .
IMPLICIT NONE

! The d e f i n i t i o n o f t h e ma tr i x , u s i n g dynamic a l l o c a t i o n
REAL, ALLOCATABLE, DIMENSION ( : , : ) : : u n i t y

! The s i z e o f t h e m a t r i x
INTEGER : : n

! Here we s e t t h e dim n=4
n=4

! A l l o c a t e now p l a c e i n memory f o r t h e m a t r i x
ALLOCATE ( u n i t y ( n , n ) )

! a l l e l e m e n t s a re s e t e q u a l z e r o
u n i t y =0 .

! s e t u p i d e n t i t y m a t r i x
DO i =1 , n

u n i t y ( i , i ) =1 .
ENDDO
DEALLOCATE ( u n i t y )
. . . . . . .

We always recommend to use the deallocation statement, since this frees space in memory. If the matrix
is transferred to a function from a calling program, one can transfer the dimensionality n of that matrix
with the call. Another possibility is to determine the dimensionality with the function. Writing a
statement like n=SIZE(unity,DIM=1) gives the number of rows, while using DIM=2 gives the number of
columns. Note however that this involves an extra call to a function. If speed matters, one should avoid
such calls.

4.4 Linear Systems

In this section we outline some of the most used algorithms to solve sets of linear equations. These
algorithms are based on Gaussian elimination [25, 29] and will allow us to catch several birds with a

74



4.4 – Linear Systems

stone. We will show how to rewrite a matrix A in terms of an upper and a lower triangular matrix,
from which we easily can solve linear equation, compute the inverse of A and obtain the determinant.
We start with Gaussian elimination, move to the more efficient LU-algorithm, which forms the basis
for many linear algebra applications, and end the discussion with special cases such as the Cholesky
decomposition and linear system of equations with a tridiagonal matrix.

We begin however with an example which demonstrates the importance of being able to solve linear
equations. Suppose we want to solve the following boundary value equation

−
d2u(x)

dx2
= f(x, u(x)),

with x ∈ (a, b) and with boundary conditions u(a) = u(b) = 0. We assume that f is a continuous
function in the domain x ∈ (a, b). Since, except the few cases where it is possible to find analytic
solutions, we will seek after approximate solutions, we choose to represent the approximation to the
second derivative from the previous chapter

f ′′ =
fh − 2f0 + f−h

h2
+ O(h2).

We subdivide our interval x ∈ (a, b) into n subintervals by setting xi = ih, with i = 0, 1, . . . , n+1. The
step size is then given by h = (b− a)/(n + 1) with n ∈ N. For the internal grid points i = 1, 2, . . . n we
replace the differential operator with the above formula resulting in

u′′(xi) ≈
u(xi + h) − 2u(xi) + u(xi − h)

h2
,

which we rewrite as
u

′′

i ≈
ui+ 1 − 2ui + ui−i

h2
.

We can rewrite our original differential equation in terms of a discretized equation with approximations
to the derivatives as

−
ui+ 1 − 2ui + ui−i

h2
= f(xi, u(xi)),

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+ 1. If we define a matrix

A =
1

h2

















2 −1
−1 2 −1

−1 2 −1
. . . . . . . . . . . . . . .

−1 2 −1
−1 2

















and the corresponding vectors u = (u1, u2, . . . , un)T and f(u) = f(x1, x2, . . . , xn, u1, u2, . . . , un)T we
can rewrite the differential equation including the boundary conditions as a system of linear equations
with a large number of unknowns

Au = f(u). (4.23)

We assume that the solution u exists and is unique for the exact differential equation, viz that the boundary
value problem has a solution. But the discretization of the above differential equation leads to several

75



Linear algebra

questions, such as how well does the approximate solution resemble the exact one as h → 0, or does a
given small value of h allow us to establish existence and uniqueness of the solution.

Here we specialize to two particular cases. Assume first that the function f does not depend on u(x).
Then our linear equation reduces to

Au = f , (4.24)

which is nothing but a simple linear equation with a tridiagonal matrix A. We will solve such a system
of equations in subsection 4.4.3.

If we assume that our boundary value problem is that of a quantum mechanical particle confined by
a harmonic oscillator potential, then our function f takes the form (assuming that all constants m = ~ =
ω = 1) f(xi, u(xi)) = −x2

i
u(xi)+2λu(xi) with λ being the eigenvalue. Inserting this into our equation,

we define first a new matrix A as

A =

















2

h2 + x2

1
− 1

h2

− 1

h2

2

h2 + x2

2
− 1

h2

− 1

h2

2

h2 + x2

3
− 1

h2

. . . . . . . . . . . . . . .

− 1

h2

2

h2 + x2
n−1

− 1

h2

− 1

h2

2

h2 + x2
n

















, (4.25)

which leads to the following eigenvalue problem
















2

h2 + x2
1

− 1

h2

− 1

h2

2

h2 + x2
2

− 1

h2

− 1

h2

2

h2 + x2
3

− 1

h2

. . . . . . . . . . . . . . .

− 1

h2

2

h2 + x2
n−1

− 1

h2

− 1

h2

2

h2 + x2
n

































u1

u2

un

















= 2λ

















u1

u2

un

















.

We will solve this type of equations in chapter 12. These lecture notes contain however several other
examples of rewriting mathematical expressions into matrix problems. In chapter 7 we show how a set of
linear integral equation when discretized can be transformed into a simple matrix inversion problem. The
specific example we study in that chapter is the rewriting of Schrödinger’s equation for scattering prob-
lems. Other examples of linear equations will appear in our discussion of ordinary and partial differential
equations.

4.4.1 Gaussian elimination
Any discussion on the solution of linear equations should start with Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the matrix elements along the diagonal satisfy
aii 6= 0. We discuss later how to handle such cases. In the discussion we limit ourselves again to a matrix
A ∈ R

4×4, resulting in a set of linear equations of the form








a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

















x1

x2

x3

x4









=









w1

w2

w3

w4









.
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or

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The basic idea of Gaussian elimination is to use the first equation to eliminate the first unknown x1 from
the remaining n−1 equations. Then we use the new second equation to eliminate the second unknown x2

from the remaining n− 2 equations. With n− 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

b11x1 + b12x2 + b13x3 + b14x4 = y1

b22x2 + b23x3 + b24x4 = y2

b33x3 + b34x4 = y3

b44x4 = y4.

We can solve this system of equations recursively starting from xn (in our case x4) and proceed with
what is called a backward substitution. This process can be expressed mathematically as

xm =
1

bmm

(

ym −

n
∑

k=m+ 1

bmkxk

)

m = n − 1, n − 2, . . . , 1.

To arrive at such an upper triangular system of equations, we start by eliminating the unknown x1 for
j = 2, n. We achieve this by multiplying the first equation by aj1/ a11 and then subtract the result from
the jth equation. We assume obviously that a11 6= 0 and that A is not singular. We will come back to
this problem below.

Our actual 4 × 4 example reads after the first operation








a11 a12 a13 a14

0 (a22 −
a21a12

a11
) (a23 −

a21a13

a11
) (a24 −

a21a14

a11
)

0 (a32 −
a3 1a12

a11
) (a33 −

a3 1a13

a11
) (a34 −

a3 1a14

a11
)

0 (a42 −
a4 1a12

a11
) (a43 −

a4 1a13

a11
) (a44 −

a4 1a14

a11
)

















x1

x2

x3

x4









=











y1

w
(2)
2

w
(2)
3

w
(2)
4











.

or

b11x1 + b12x2 + b13x3 + b14x4 = y1

a
(2)
22 x2 + a

(2)
23 x3 + a

(2)
24 x4 = w

(2)
2

a
(2)
32 x2 + a

(2)
33 x3 + a

(2)
34 x4 = w

(2)
3

a
(2)
42 x2 + a

(2)
43 x3 + a

(2)
44 x4 = w

(2)
4 ,

(4.26)

with the new coefficients
b1k = a

(1)
1k k = 1, . . . , n,

where each a
(1)
1k is equal to the original a1k element. The other coefficients are

a
(2)
jk = a

(1)
jk −

a
(1)
j1 a

(1)
1k

a
(1)
11

j, k = 2, . . . , n,
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with a new right-hand side given by

y1 = w
(1)
1 , w

(2)
j = w

(1)
j −

a
(1)
j1 w

(1)
1

a
(1)
11

j = 2, . . . , n.

We have also set w
(1)
1 = w1, the original vector element. We see that the system of unknowns x1, . . . , xn

is transformed into an (n − 1) × (n − 1) problem.
This step is called forward substitution. Proceeding with these substitutions, we obtain the general

expressions for the new coefficients

a
(m+ 1)
jk = a

(m)
jk −

a
(m)
jm a

(m)
mk

a
(m)
mm

j, k = m + 1, . . . , n,

with m = 1, . . . , n − 1 and a right-hand side given by

w
(m+ 1)
j = w

(m)
j −

a
(m)
jm w

(m)
m

a
(m)
mm

j = m + 1, . . . , n.

This set of n−1 elimations leads us to Eq. (4.26), which is solved by back substitution. If the arithmetics
is exact and the matrix A is not singular, then the computed answer will be exact. However, as discussed
in the two preceeding chapters, computer arithmetics is not necessarily exact. We will always have
to cope with truncations and possible losses of precision. Even though the matrix elements along the
diagonal are not zero, numerically small numbers may appear and subsequent divisions may lead to large
numbers, which, if added to a small number may yield losses of precision. Suppose for example that our
first division in (a22−a21a12/ a11) results in −10−7 and that a22 is one. one. We are then adding 107 +1.
With single precision this results in 107. Already at this stage we see the potential for producing wrong
results.

The solution to this set of problems is called pivoting, and we distinguish between partial and full
pivoting. Pivoting means that if small values (especially zeros) do appear on the diagonal we remove
them by rearranging the matrix and vectors by permuting rows and columns. As a simple example, let us
assume that at some stage during a calculation we have the following set of linear equations









1 3 4 6
0 10−8 198 19
0 −91 5 1 9
0 7 76 5 41

















x1

x2

x3

x4









=









y1

y2

y3

y4









.

The element at row i = 2 and column 2 is 10−8 and may cause problems for us in the next forward
substitution. The element i = 2, j = 3 is the largest in the second row and the element i = 3, j = 2 is
the largest in the third row. The small element can be removed by rearranging the rows and/or columns
to bring a larger value into the i = 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand side to bring the
numerically largest value in the column onto the diagonal. For our example matrix the largest value of
column two is in element i = 3, j = 2 and we interchange rows 2 and 3 to give









1 3 4 6
0 −91 5 1 9
0 10−8 198 19
0 7 76 5 41

















x1

x2

x3

x4









=









y1

y3

y2

y4









.
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Note that our unknown variables xi remain in the same order which simplifies the implementation of
this procedure. The right-hand side vector, however, has been rearranged. Partial pivoting may be im-
plemented for every step of the solution process, or only when the diagonal values are sufficiently small
as to potentially cause a problem. Pivoting for every step will lead to smaller errors being introduced
through numerical inaccuracies, but the continual reordering will slow down the calculation.

The philosophy behind full pivoting is much the same as that behind partial pivoting. The main
difference is that the numerically largest value in the column or row containing the value to be replaced.
In our example above the magnitude of element i = 2, j = 3 is the greatest in row 2 or column 2. We
could rearrange the columns in order to bring this element onto the diagonal. This will also entail a
rearrangement of the solution vector x. The rearranged system becomes, interchanging columns two and
three,









1 6 3 4
0 198 10−8 19
0 5 1 −91 9
0 76 7 5 41

















x1

x3

x2

x4









=









y1

y2

y3

y4









.

The ultimate degree of accuracy can be provided by rearranging both rows and columns so that the
numerically largest value in the submatrix not yet processed is brought onto the diagonal. This process
may be undertaken for every step, or only when the value on the diagonal is considered too small relative
to the other values in the matrix. In our case, the matrix element at i = 4, j = 4 is the largest. We could
here interchange rows two and four and then columns two and four to bring this matrix element at the
diagonal position i = 2, j = 2. When interchanging columns and rows, one needs to keep track of all
permutations performed. Partial and full pivoting are discussed in most texts on numerical linear algebra.
For an in depth discussion we recommend again the text of Golub and Van Loan [25], in particular chapter
three. See also the discussion of chapter two in Ref. [22]. The library functions you end up using, be it
via Matlab, the library included with this text or other ones, do all include pivoting.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal, then the
matrix A is singular and no solution exists.

Gaussian elimination requires however many floating point operations. An n× n matrix requires for
the simultaneous solution of a set of r different right-hand sides, a total of n3/3 + rn2

− n/3 multi-
plications. Adding the cost of additions, we end up with 2n3/3 + O(n2) floating point operations, see
Kress [29] for a proof. An n × n matrix of dimensionalty n = 103 requires, on a modern PC with a
processor that allows for something like 109 floating point operations per second (flops), approximately
one second. If you increase the size of the matrix to n = 104 you need 1000 seconds, or roughly 16
minutes.

Although the direct Gaussian elmination algorithm allows you to compute the determinant of A via
the product of the diagonal matrix of the triangular matrix, it is seldomly used in normal applications.
The more practical elimination is provided by what is called lower and upper decomposition. Once
decomposed, one can use this matrix to solve many other linear systems which use the same matrix A, viz
with different right-hand sides. With an LU decomposed matrix, the number of floating point operations
for solving a set of linear equations scales as O(n2). One should however remember that to obtain the LU
decompsed matrix requires roughly O(n3) floating point operations. Finally, LU decomposition allows
for an efficient computation of the inverse of A.

4.4.2 LU decomposition of a matrix
A frequently used form of Gaussian elimination is L(ower)U(pper) factorisation also known as LU De-
composition or Crout or Dolittle factorisation. In this section we describe how one can decompose a
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matrix A in terms of a matrix B with elements only below the diagonal (and thereby the naming lower)
and a matrix C which contains both the diagonal and matrix elements above the diagonal (leading to the
labelling upper). Consider again the matrix A given in Eq. (4.1). The LU decomposition method means
that we can rewrite this matrix as the product of two matrices B and C where

A = BC =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









=









1 0 0 0

b21 1 0 0

b31 b32 1 0

b41 b42 b43 1

















c11 c12 c13 c14

0 c22 c23 c24

0 0 c33 c34

0 0 0 c44









. (4.27)

LU decomposition forms the backbone of other algorithms in linear algebra, such as the solution of
linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

The above set of equations is conveniently solved by using LU decomposition as an intermediate step,
see the next subsection for more details on how to solve linear equations with an LU decomposed matrix.

The matrix A ∈ R
n×n has an LU factorization if the determinant is different from zero. If the LU

factorization exists and A is non-singular, then the LU factorization is unique and the determinant is
given by

d e t{A} = c11c22 . . . cnn.

For a proof of this statement, see chapter 3.2 of Ref. [25].
The algorithm for obtaining B and C is actually quite simple. We start always with the first column.

In our simple (4 × 4) case we obtain then the following equations for the first column

a11 = c11

a21 = b21c11

a31 = b31c11

a41 = b41c11,

which determine the elements c11, b21, b31 and b41 in B and C. Writing out the equations for the second
column we get

a12 = c12

a22 = b21c12 + c22

a32 = b31c12 + b32c22

a42 = b41c12 + b42c22.

Here the unknowns are c12, c22, b32 and b42 which all can be evaluated by means of the results from
the first column and the elements of A. Note an important feature. When going from the first to the
second column we do not need any further information from the matrix elements ai1. This is a general
property throughout the whole algorithm. Thus the memory locations for the matrix A can be used to
store the calculated matrix elements of B and C. This saves memory.

We can generalize this procedure into three equations

i < j : bi1c1j + bi2c2j + · · · + biicij = aij

i = j : bi1c1j + bi2c2j + · · · + biicjj = aij

i > j : bi1c1j + bi2c2j + · · · + cijcjj = aij
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which gives the following algorithm:
Calculate the elements in B and C columnwise starting with column one. For each column (j):

– Compute the first element c1j by
c1j = a1j .

– Next, we calculate all elements cij , i = 2, . . . , j − 1

cij = aij −

i−1
∑

k= 1

bikckj.

– Then calculate the diagonal element cjj

cjj = ajj −

j−1
∑

k= 1

bjkckj . (4.28)

– Finally, calculate the elements bij, i > j

bij =
1

cjj

(

aij −

i−1
∑

k= 1

bikckj

)

, (4.29)

The algorithm is known as Doolittle’s algorithm since the diagonal matrix elements of B are 1 along
the diagonal. For the case where the diagonal elements of C are 1 along the diagonal, we have what is
called Crout’s algorithm. For the case where C = B

T so that cii = bii for 1 ≤ i ≤ n we can use what
is called the Cholesky factorization algorithm. In this case the matrix A has to fulfil several features;
namely, it should be real, symmetric and positive definite. A matrix is positive definite if the quadratic
form x

T
Ax > 0. Establishing this feature is not easy since it implies the use of an arbitrary vector

x 6= 0. If the matrix is positive definite and symmetric, its eigenvalues are always real and positive. We
discuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the case where cjj is close to or equals zero,
a case which can lead to serious problems. Consider the following simple 2 × 2 example taken from
Ref. [28]

A =

(

0 1
1 1

)

.

The algorithm discussed above fails immediately, the first step simple states that c11 = 0. We could
change slightly the above matrix by replacing 0 with 10−2 0 resulting in

A =

(

10−2 0 1
1 1

)

,

yielding
c11 = 10−2 0

b2 1 = 102 0

and c12 = 1 and
c11 = a11 − b2 1 = 1 − 102 0 ,
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we obtain
B =

(

1 0
1020 1

)

,

and
C =

(

10−20 1
0 1 − 1020

)

,

With the change from 0 to a small number like 10−20 we see that the LU decomposition is now stable,
but it is not backward stable. What do we mean by that? First we note that the matrix C has an element
c22 = 1 − 1020. Numerically, since we do have a limited precision, which for double precision is
approximately εM ∼ 10−1 6 it means that this number is approximated in the machine as c22 ∼ −1020

resulting in a machine representation of the matrix as

C =

(

10−20 1
0 −1020

)

.

If we multiply the matrices BC we have
(

1 0
1020 1

)(

10−20 1
0 −1020

)

=

(

10−20 1
1 0

)

6= A.

We do not get back the original matrix A!
The solution is pivoting (interchanging rows ) around the largest element in a column j. Then we are

actually decomposing a rowwise permutation of the original matrix A. The key point to notice is that
Eqs. (4.28) and (4.29) are equal except for the case that we divide by cjj in the latter one. The upper
limits are always the same k = j − 1(= i − 1). This means that we do not have to choose the diagonal
element cjj as the one which happens to fall along the diagonal in the first instance. Rather, we could
promote one of the undivided bij’s in the column i = j + 1, . . . N to become the diagonal of C . The
partial pivoting in Crout’s or Doolittle’s methods means then that we choose the largest value for cjj (the
pivot element) and then do the divisions by that element. Then we need to keep track of all permutations
performed. For the above matrix A it would have sufficed to interchange the two rows and start the LU
decomposition with

A =

(

1 1
0 1

)

.

The error which is done in the LU decomposition of an n×n matrix if no zero pivots are encountered
is given by, see chapter 3.3 of Ref. [25],

BC = A + H,

with
|H| ≤ 3 (n − 1)u (|A| + |B||C|) + O(u2),

with |H| being the absolute value of a matrix and u is the error done in representing the matrix elements
of the matrix A as floating points in a machine with a given precision εM , viz. every matrix element of u

is
|fl(aij) − aij| ≤ uij,

with |uij | ≤ εM resulting in
|fl(A) − A| ≤ u|A|.

The programs which perform the above described LU decomposition are called as follows
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C++: ludcmp(double ∗∗a, int n, int ∗indx, double ∗d)
Fortran 90/95: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input the matrix to be LU decomposed. In C++ this
is given by the double pointer ∗∗a. Further, both functions need the size of the matrix n. It returns the
determinant d, a pointer indx with the number of permutations and the LU decomposed matrix. Note
that the original matrix is destroyed. If you need to care of it during the calculations, you should transfer
another matrix variable.

The codes are listed in the program libraries, see under programs/cplusplus Library/lib.cpp and pro-
grams/Fortran90 Library/f90lib.f90 for the C++ and Fortran 90/95 libraries, respectively.

Cholesky’s factorization

If the matrix A is real, symmetric and positive definite, then it has a unique factorization (called Cholesky
factorization)

A = LU = LLT

where LT is the upper matrix, implying that

LT
ij = Lji.

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

– Calculate the diagonal element Lii by setting up a loop for i = 0 to i = n − 1 (C++ indexing of
matrices and vectors)

Lii =

(

Aii −

i−1
∑

k= 0

L2

ik

)1/2

.

– within the loop over i, introduce a new loop which goes from j = i + 1 to n − 1 and calculate

Lji =
1

Lii

(

Aij −

i−1
∑

k= 0

Likljk

)

.

For the Cholesky algorithm we have always that Lii > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need for pivoting.

To decide whether a matrix is positive definite or not needs some careful analysis. To find criteria
for positive definiteness, one needs two statements from matrix theory, see Golub and Van Loan [25] for
examples. First, the leading principal submatrices of a positive definite matrix are positive definite and
non-singular and secondly a matrix is positive definite if and only if it has an LDL

T factorization with
positive diagonal elements only in the diagonal matrix D. A positive definite matrix has to be symmetric
and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is positive definite or not is to solve the eigenvalue
problem A x = λx and check that all eigenvalues are positive.
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4.4.3 Solution of linear systems of equations
With the LU decomposition it is rather simple to solve a system of linear equations

a11x1 + a12x2 + a13x3 + a14x4 = w1

a21x1 + a22x2 + a23x3 + a24x4 = w2

a31x1 + a32x2 + a33x3 + a34x4 = w3

a41x1 + a42x2 + a43x3 + a44x4 = w4.

This can be written in matrix form as
Ax = w.

where A and w are known and we have to solve for x. Using the LU dcomposition we write

Ax ≡ BC x = w. (4.30)

This equation can be calculated in two steps

By = w; C x = y. (4.31)

To show that this is correct we use to the LU decomposition to rewrite our system of linear equations as

BC x = w,

and since the determinat of B is equal to 1 (by construction since the diagonals of B equal 1) we can use
the inverse of B to obtain

C x = B−1w = y,

which yields the intermediate step
B−1w = y

and multiplying with B on both sides we reobtain Eq. (4.31). As soon as we have y we can obtain x

through C x = y.
For our four-dimentional example this takes the form

y1 = w1

b21y1 + y2 = w2

b31y1 + b32y2 + y3 = w3

b41y1 + b42y2 + b43y3 + y4 = w4.

and

c11x1 + c12x2 + c13x3 + c14x4 = y1

c22x2 + c23x3 + c24x4 = y2

c33x3 + c34x4 = y3

c44x4 = y4

This example shows the basis for the algorithm needed to solve the set of n linear equations. The algo-
rithm goes as follows
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– Set up the matrix A and the vector w with their correct dimensions. This determines
the dimensionality of the unknown vector x.

– Then LU decompose the matrix A through a call to the function

C++: ludcmp(double ∗∗a, int n, int ∗indx, double ∗d)
Fortran 90/95: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed matrix A, its determinant and the vector
indx which keeps track of the number of interchanges of rows. If the determinant is
zero, the solution is malconditioned.

– Thereafter you call the function

C++: lubksb(double ∗∗a, int n, int ∗indx, double ∗w
Fortran 90/95: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matrix A and the vector w and returns x in the same
place as w. Upon exit the original content in w is destroyed. If you wish to keep this
information, you should make a backup of it in your calling function.

The codes are listed in the program libraries, see under programs/cplusplus Library/lib.cpp and pro-
grams/Fortran90 Library/f90lib.f90 for the C++ and Fortran 90/95 libraries, respectively.

4.4.4 Inverse of a matrix and the determinant
The basic definition of the determinant of A is

det{A} =
∑

p

(−)pa1p1
· a2p2

· · · an pn
,

where the sum runs over all permutations p of the indices 1, 2, . . . , n, altogether n! terms. Also to
calculate the inverse of A is a formidable task. Here we have to calculate the complementary cofactor a ij

of each element aij which is the (n − 1)determinant obtained by striking out the row i and column j in
which the element aij appears. The inverse of A is then constructed as the transpose a matrix with the
elements (−)i+jaij . This involves a calculation of n2 determinants using the formula above. A simplified
method is highly needed.

With the LU decomposed matrix A in Eq. (4.27) it is rather easy to find the determinant

det{A} = det{B} × det{C} = det{C},

since the diagonal elements of B equal 1. Thus the determinant can be written

det{A} =

N∏

k= 1

ckk.

The inverse is slightly more difficult to obtain from the LU decomposition. It is formally defined as

A
−1 = C

−1
B

−1.
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We use this form since the computation of the inverse goes through the inverse of the matrices B and
C. The reason is that the inverse of a lower (upper) triangular matrix is also a lower (upper) triangular
matrix. If we call D for the inverse of B, we can determine the matrix elements of D through the equation









1 0 0 0

b21 1 0 0

b3 1 b3 2 1 0

b4 1 b4 2 b4 3 1

















1 0 0 0

d21 1 0 0

d3 1 d3 2 1 0

d4 1 d4 2 d4 3 1









=









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

which gives the following general algorithm

dij = −bij −

i−1
∑

k=j+ 1

bikdkj , (4.32)

which is valid for i > j. The diagonal is 1 and the upper matrix elements are zero. We solve this equation
column by column (increasing order of j). In a similar way we can define an equation which gives us the
inverse of the matrix C, labelled E in the equation below. This contains only non-zero matrix elements
in the upper part of the matrix (plus the diagonal ones)









e11 e12 e13 e14

0 e22 e23 e24

0 0 e3 3 e3 4

0 0 0 e4 4

















c11 c12 c13 c14

0 c22 c23 c24

0 0 c3 3 c3 4

0 0 0 c4 4









=









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

with the following general equation

eij = −
1

cjj

j−1
∑

k=1

eikckj. (4.33)

for i ≤ j.
A calculation of the inverse of a matrix could then be implemented in the following way:

– Set up the matrix to be inverted.

– Call the LU decomposition function.

– Check whether the determinant is zero or not.

– Then solve column by column Eqs. (4.32, 4.33).

The following codes compute the inverse of a matrix using either C++ or Fortran 90/95 as programming
languages. They are both included in the library packages, but we include them explicitely here as well
as two distinct programs. We list first the C++ code

/∗ The f u n c t i o n
∗∗ i n v e r s e ( )
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∗∗ p er fo rm a mtx i n v e r s i o n o f t h e i n p u t m a t r i x a [ ] [ ] w i t h
∗∗ d i m e n s i o n n . The method i s d e s c r i b e d i n N u mer ica l R e c i p e s
∗∗ s e c t . 2 . 3 , page 4 8 .
∗ /
void i n v e r s e ( double ∗∗a , i n t n )
{

i n t i , j , ∗ i n d x ;
double d , ∗ co l , ∗∗y ;

/ / a l l o c a t e sp a ce i n memory
i n d x = new i n t [ n ] ;
c o l = new double [ n ] ;
y = ( double ∗∗ ) m a t r i x ( n , n , s i z e o f ( double ) ) ;
/ / f i r s t we need t o LU decompose t h e m a t r i x
ludcmp ( a , n , indx , &d ) ;
/ / f i n d i n v e r s e o f a [ ] [ ] by co lumns
f o r ( j = 0 ; j < n ; j ++) {

/ / i n i t i a l i z e r i g h t−s i d e o f l i n e a r e q u a t i o n s
f o r ( i = 0 ; i < n ; i ++) c o l [ i ] = 0 . 0 ;
c o l [ j ] = 1 . 0 ;
l u b k s b ( a , n , indx , c o l ) ;
/ / sa ve r e s u l t i n y [ ] [ ]
f o r ( i = 0 ; i < n ; i ++) y [ i ] [ j ] = c o l [ i ] ;

}
/ / r e t u r n t h e i n v e r s e m a t r i x i n a [ ] [ ]

f o r ( i = 0 ; i < n ; i ++) {
f o r ( j = 0 ; j < n ; j ++) a [ i ] [ j ] = y [ i ] [ j ] ;

}
f r e e _ m a t r i x ( ( void ∗∗ ) y ) ; / / r e l e a s e l o c a l memory
d e l e t e [ ] c o l ;
d e l e t e [ ] in d x ;

} / / End : f u n c t i o n i n v e r s e ( )

We first need to LU decompose the matrix. Thereafter we solve Eqs. (4.32) and (4.33) by using the back
substitution method calling the function lubksb and obtain finally the inverse matrix.

An example of a C++ function which calls this function is also given in the program and reads

/ / S imp le m a t r i x i n v e r s i o n example
# i n c l u d e < i o s t r e a m >
# i n c l u d e <new>
# i n c l u d e < c s t d i o >
# i n c l u d e < c s t d l i b >
# i n c l u d e <cmath >
# i n c l u d e < c s t r i n g >
# i n c l u d e

us ing namespace s t d ;

/∗ f u n c t i o n d e c l a r a t i o n s ∗ /
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void i n v e r s e ( double ∗∗ , i n t ) ;
/∗
∗∗ T h i s program s e t s up a s i m p l e 3 x3 s y m m e t r i c m a t r i x
∗∗ and f i n d s i t s d e t e r m i n a n t and i n v e r s e
∗ /

i n t main ( )
{

i n t i , j , k , r e s u l t , n = 3 ;
double ∗∗matr , sum ,

a [ 3 ] [ 3 ] = { { 1 . 0 , 3 . 0 , 4 . 0 } ,
{ 3 . 0 , 4 . 0 , 6 . 0 } ,
{ 4 . 0 , 6 . 0 , 8 . 0 } } ;

/ / memory f o r i n v e r s e m a t r i x
matr = ( double ∗∗ ) m a t r i x ( n , n , s i z e o f ( double ) ) ;
/ / v a r i o u s p r i n t s t a t e m e n t s i n t h e o r i g i n a l code a re o m i t t e d

i n v e r s e ( matr , n ) ; / / c a l c u l a t e and r e t u r n i n v e r s e m a t r i x
. . . .
re turn 0 ;

} / / End : f u n c t i o n main ( )

In order to use the program library you need to include the lib.h file using the #include
statement. This function utilizes the library function matrix and free_matrix to allocate and free memory
during execution. The matrix a[3][3] is set at compilation time. The corresponding Fortran 90/95 program
for the inverse of a matrix reads

!
! R o u t i n e s t o do mtx i n v e r s i o n , from N u mer ica l
! Rec ip es , T e u k o l s k y e t a l . R o u t i n e s i n c l u d e d
! below a re MATINV , LUDCMP and LUBKSB . See chap 2
! o f N u mer ica l R e c i p e s f o r f u r t h e r d e t a i l s
!
SUBROUTINE mat in v ( a , n , indx , d )

IMPLICIT NONE
INTEGER , INTENT ( IN ) : : n
INTEGER : : i , j
REAL(DP) , DIMENSION( n , n ) , INTENT (INOUT) : : a
REAL(DP) , ALLOCATABLE : : y ( : , : )
REAL(DP) : : d
INTEGER , , INTENT (INOUT) : : i n d x ( n )

ALLOCATE ( y ( n , n ) )
y =0 .
! s e t u p i d e n t i t y m a t r i x
DO i =1 , n

y ( i , i ) =1 .
ENDDO
! LU decompose t h e m a t r i x j u s t once
CALL lu_decompose ( a , n , indx , d )

! Find i n v e r s e by co lumns
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DO j =1 , n
CALL l u _ l i n e a r _ e q u a t i o n ( a , n , indx , y ( : , j ) )

ENDDO
! The o r i g i n a l m a t r i x a was d e s t r o y e d , now we e q u a t e i t w i t h t h e

i n v e r s e y
a=y
DEALLOCATE ( y )

END SUBROUTINE mat in v

The Fortran 90/95 program matinv receives as input the same variables as the C++ program and calls
the function for LU decomposition lu_decompose and the function to solve sets of linear equations
lu_linear_equation. The program listed under programs/chapter4/program1.f90 performs the same ac-
tion as the C++ listed above. In order to compile and link these programs it is convenient to use a so-called
makefile. Examples of these are found under the same catalogue as the above programs.

Inverse of the Vandermonde matrix

In chapter 6 we discuss how to interpolate a function f which is known only at n+1 points x0, x1, x2, . . . , xn

with corresponding values f(x0), f(x1), f(x2), . . . , f(xn). The latter is often a typical outcome of a
large scale computation or from an experiment. In most cases in the sciences we do not have a closed
form expressions for a function f . The function is only known at specific points.

We seek a functional form for a function f which passes through the above pairs of values (x0, f(x0)),(x1, f(x1)),
(x2, f(x2)), . . . , (xn, f(xn)). This is normally achieved by expanding the function f(x) in terms of
well-known polynomials φi(x), such as Legendre, Chebyshev, Laguerre etc. The function is then ap-
proximated by a polynomial of degree n pn(x)

f(x) ≈ pn(x) =
n

∑

i= 0

aiφi(x),

where ai are unknown coefficients and φi(x) are a priori well-known functions. The simplest possible
case is to assume that φi(x) = xi, resulting in an approximation

f(x) ≈ a0 + a1x + a2x
2 + · · · + anxn.

Our function is known at the points n+1 points x0, x1, x2, . . . , xn, leading to n+1 equations of the type

f(xi) ≈ a0 + a1xi + a2x
2

i + · · · + anxn

i .

We can then obtain the unknown coefficients by rewriting our problem as
















1 x0 x2

0
. . . . . . xn

0

1 x1 x2

1
. . . . . . xn

1

1 x2 x2

2
. . . . . . xn

2

1 x3 x2

3
. . . . . . xn

3

. . . . . . . . . . . . . . . . . .

1 xn x2
n . . . . . . xn

n

































a0

a1

a2

a3

. . .

an

















=

















f(x0)
f(x1)
f(x2)
f(x3)
. . .

f(xn)

















,

an expression which can be rewritten in a more compact form as

Xa = f ,
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with

X =

















1 x0 x2
0 . . . . . . xn

0

1 x1 x2
1 . . . . . . xn

1

1 x2 x2
2 . . . . . . xn

2

1 x3 x2
3 . . . . . . xn

3

. . . . . . . . . . . . . . . . . .
1 xn x2

n
. . . . . . xn

n

















.

. This matrix is called a Vandermonde matrix and is by definition non-singular since all points x i are
different. The inverse exists and we can obtain the unknown coefficients by inverting X, resulting in

a = X
−1

f .

Although this algorithm for obtaining an interpolating polynomial which approximates our data set
looks very simple, it is an inefficient algorithm since the computation of the inverse requires O(n3) flops.
The methods we will discuss in chapter 6 are much more effective from a numerical point of view. There
is also another subtle point. Although we have a data set with n+1 points, this does not necessarily mean
that our function f(x) is well represented by a polynomial of degree n. On the contrary, our function
f(x) may be a parabola (second-order in n), meaning that we have a large excess of data points. In such
cases a least-square fit or a spline interpolation may be better approaches to represent the function. These
techniques are discussed in chapter 6.

4.4.5 Tridiagonal systems of linear equations
We start with the linear set of equations from Eq. (4.24), viz

Au = f ,

where A is a tridiagonal matrix which we rewrite as

A =

















b1 c1 0 . . . . . . . . .
a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .
. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an bn

















(4.34)

where a, b, c are one-dimensional arrays of length 1 : n. In the example of Eq. (4.24) the arrays a and c
are equal, namely ai = ci = −1/ h 2. We can rewrite Eq. (4.24) as

A =

















b1 c1 0 . . . . . . . . .
a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .
. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an bn

































u1

u2

. . .

. . .

. . .
un

















=

















f1

f2

. . .

. . .

. . .
fn

















.

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except for those
on and immediately above and below the leading diagonal. The above tridiagonal system can be written
as

aiui−1 + biui + ciui+ 1 = fi,
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for i = 1, 2, . . . , n. We see that u
−1 and un+ 1 are not required and we can set a1 = cn = 0. In many

applications the matrix is symmetric and we have ai = ci. The algorithm for solving this set of equations
is rather simple and requires two steps only, a forward substitution and a backward substitution. These
steps are also common to the algorithms based on Gaussian elimination that we will discussed previously.
However, due to its simplicity, the number of floating point operations is in this case proportional with
O(n) while Gaussian elimination requires 2n3/3 + O(n2) floating point operations. In case your system
of equations leads to a tridiagonal matrix, it is clearly an overkill to employ Gaussian elimination or the
standard LU decomposition. You will encounter several applications involving tridiagonal matrices in
our discussion of partial differential equations in chapter 15.

Our algorithm starts with forward substitution with a loop over of the elements i and can be expressed
via the following code piece of code taken from the Numerical Recipe text of Teukolsky et al [22]

btemp = b [ 1 ] ;
u [ 1 ] = f [ 1 ] / btemp ;
f o r ( i =2 ; i <= n ; i ++) {

temp [ i ] = c [ i −1]/ btemp ;
btemp = b [ i ]−a [ i ]∗ temp [ i ] ;
u [ i ] = ( f [ i ] − a [ i ]∗ u [ i −1]) / btemp ;

}

Note that you should avoid cases with b1 = 0. If that is the case, you should rewrite the equations as a set
of order n− 1 with u2 eliminated. Finally we perform the backsubstitution leading to the following code

f o r ( i =n−1 ; i >= 1 ; i −−) {
u [ i ] −= temp [ i +1]∗u [ i + 1 ] ;

}

Note that our sums start with i = 1 and that one should avoid cases with b1 = 0. If that is the case, you
should rewrite the equations as a set of order n − 1 with u2 eliminated. However, a tridiagonal matrix
problem is not a guarantee that we can find a solution. The matrix A which rephrases a second derivative
in a discretized form

A =

















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 . . . . . . . . . . . . . . .
0 0 0 −1 2 −1
0 0 0 0 −1 2

















,

fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an| and |bk| ≥
|ak| + |ck| for k = 2, 3, . . . , n − 1. This is a relevant but not sufficient condition to guarantee that the
matrix A yields a solution to a linear equation problem. The matrix needs also to be irreducible. A
tridiagonal irreducible matrix means that all the elements ai and ci are non-zero. If these two conditions
are present, then A is nonsingular and has a unique LU decomposition.

We can obviously extend our boundary value problem to include a first derivative as well

−
d2u(x)

dx2
+ g(x)

du(x)

dx
+ h(x)u(x) = f(x),

with x ∈ [a, b] and with boundary conditions u(a) = u(b) = 0. We assume athat f , g and h are
continuous functions in the domain x ∈ [a, b] and that h(x) ≥ 0. Then the differential equation has
a unique solution. We subdivide our interval x ∈ [a, b] into n subintervals by setting xi = ih, with
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i = 0, 1, . . . , n + 1. The step size is then given by h = (b− a)/(n + 1) with n ∈ N. For the internal grid
points i = 1, 2, . . . n we replace the differential operators with

u
′′

i ≈
ui+1 − 2ui + ui−i

h2
.

for the second derivative while the first derivative is given by

u
′

i ≈
ui+1 − ui−i

2h
.

We rewrite our original differential equation in terms of a discretized equation as

−
ui+1 − 2ui + ui−i

h2
+ gi

ui+1 − ui−i

2h
+ hiui = fi,

with i = 1, 2, . . . , n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+1. This equation can again be rewritten as a tridiagonal matrix problem. We leave it as
an exercise to the reader to find the matrix elements, find the conditions for having weakly dominant
diagonal elements and that the matrix is irreducible.

4.5 Singular value decomposition

In preparation, Fall 2008

4.6 QR decomposition

In preparation, Fall 2008

4.7 Handling sparse matrices

In preparation, Fall 2008

4.8 Classes, templates and Blitz++

In the above pseudocode for solving a system of linear equations, we started our indexing from i = 1.
This was done because in many mathematical expressions the indices of vectors and matrices would
typically start from i = 1. Quite often we would like our codes to mimick the mathematical expressions
we derive as much as possible.

In Fortran a vector or matrix start with 1, but it is to change a vector so that it starts with zero or even
a negative number. If we have a double precision Fortran vector which starts at −10 and ends at 10, we
could declare it as REAL(KIND=8):: vector(−10:10). Similarly, if we want to start at zero and end at 10
we could write REAL(KIND=8):: vector (0:10) . We have also seen that Fortran 90/95 allows us to write a
matrix addition A = B + C as A = B + C. This means that we have overloaded the addition operator so
that it translates this operation into two loops and an addition of two matrix elements aij = bij + cij .
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The way the matrix addition is written is very close to the way we express this relation mathemat-
ically. The benefit for the programmer is that our code is easier to read. Furthermore, such a way of
coding makes it more likely to spot eventual errors as well.

In Ansi C and C++ arrays start by default from i = 0. Moreover, if we wish to add two matrices we
need to explicitely write out the two loops as

f o r ( i =0 ; i < n ; i ++) {
f o r ( j =0 ; j < n ; j ++) {

a [ i ] [ j ]= b [ i ] [ j ]+ c [ i ] [ j ]
}

}

However, the strength of C++ over programming languages like C and Fortran 77 is the possibility
to define new data types, tailored to some particular problem. Via new data types and overloading of
operations such as addition and subtraction, we can easily define sets of operations and data types which
allow us to write a matrix addition in exactly the same way as we would do in Fortran 90/95. We could
also change the way we declare a C++ matrix elements aij , from a[i][j] to say a(i,j), as we would do in
Fortran 90/95. Similarly, we could also change the default range from 0 : n − 1 to 1 : n.

To achieve this we need to introduce two important entities in C++ programming, classes and tem-
plates. Till now, except for a brief encounter in the previous chapter on how to handle files in C++, we
have not defined properly this programming feature.

The function and class declarations are fundamental concepts within C++. Functions are abstractions
which encapsulate an algorithm or parts of it and perform specific tasks in a program. We have already
met several examples on how to use functions. Classes can be defined as abstractions which encapsulate
data and operations on these data. The data can be very complex data structures and the class can contain
particular functions which operate on these data. Classes allow therefore for a higher level of abstrac-
tion in computing. The elements (or components) of the data type are the class data members, and the
procedures are the class member functions.

Classes are user-defined tools used to create multi-purpose software which can be reused by other
classes or functions. These user-defined data types contain data (variables) and functions operating on
the data.

A simple example is that of a point in two dimensions. The data could be the x and y coordinates
of a given point. The functions we define could be simple read and write functions or the possibility to
compute the distance between two points.

The two examples we elaborate on below3 demonstrate most of the features of classes. We develop
first a class called Complex which allows us to perform various operations on complex variables. In
appendix A we extend our discussion of classes to define a class vector_operations which allows us to
perform various operations on a user-specified one-dimesional array, from declarations of a vector to
mathematical operations such as additions of vectors.

The classes we define are easy to use in other codes and/or other classes and many of the details which
would be present in C (or Fortran 77) codes are hidden inside the class. The reuse of a well-written and
functional class is normally rather simple. However, to write a given class is often complicated, especially
if we deal with complicated matrix operations. In this text we will rely on ready-made classes in C++ for
dealing with matrix operations. We have chosen to use the Blitz++ library, discussed below. This library
hides for us many low-level operations with matrices and vectors, such as matrix-vector multiplications

3These examples are taken from the course INF-VERK3830, see for
more information.
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or allocation and deallocation of memory. Such libraries make it then easier to build our own high-level
classes out of well-tested lower-level classes.

The way we use classes in this text is close to the MODULE data type in Fortran90/95 and we provide
some simple demonstrations of the latter as well in appendix A.

In this text we will mainly use classes to encapsulate specific operations, but will not use the full
power such as inheritance and other object-oriented programming concepts. For examples of the latter
see Refs. [20, 19, 21]

4.8.1 The Complex class
As remarked in chapter 2, C++ has a class complex in its standard template library (STL). The standard
usage in a given function could then look like
/ / Program t o c a l c u l a t e a d d i t i o n and m u l t i p l i c a t i o n o f two complex numbers
us ing namespace s t d ;
# i n c l u d e < i o s t r e a m >
# i n c l u d e <cmath >
# i n c l u d e <complex >
i n t main ( )
{

complex <double > x ( 6 . 1 , 8 . 2 ) , y ( 0 . 5 , 1 . 3 ) ;
/ / w r i t e o u t x+y
c o u t << x + y << x∗y << e n d l ;
re turn 0 ;

}

where we add and multiply two complex numbers x = 6.1 + ı8.2 and y = 0.5 + ı1.3 with the obvious
results z = x + y = 6.6 + ı9.5 and z = x · y = −7.61 + ı12.03. In Fortran90/95 we would declare the
above variables as COMPLEX(DPC):: x(6.1,8.2), y (0.5,1.3) .

The library Blitz++ includes an extension of the complex class to operations on vectors, matrices
and higher-dimensional arrays. We recommend the use of Blitz++ when you develop your own codes.
However, writing a complex class yourself is a good pedagogical exercise.

We proceed by splitting our task in three files.

– We define first a header file complex.h which contains the declarations of the class. The header
file contains the class declaration (data and functions), declaration of stand-alone functions, and all
inlined functions, starting as follows
# i f n d e f Complex_H
# d e f i n e Complex_H
/ / v a r i o u s i n c l u d e s t a t e m e n t s and d e f i n i t i o n s
# i n c l u d e < i o s t r e a m > / / S ta n d a rd ANSI−C++ i n c l u d e f i l e s
# i n c l u d e <new>
# i n c l u d e . . . .

c l a s s Complex
{ . . .
d e f i n i t i o n o f v a r i a b l e s and t h e i r c h a r a c t e r
} ;
/ / d e c l a r a t i o n s o f v a r i o u s f u n c t i o n s used by t h e c l a s s
. . .
# e n d i f
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– Next we provide a file complex.cpp where the code and algorithms of different functions (except
inlined functions) declared within the class are written. The files complex.h and complex.cpp are
normally placed in a directory with other classes and libraries we have defined.

– Finally,we discuss here an example of a main program which uses this particular class. An example
of a program which uses our complex class is given below. In particular we would like our class
to perform tasks like declaring complex variables, writing out the real and imaginary part and
performing algebraic operations such as adding or multiplying two complex numbers.
# i n c l u d e
. . . o t h e r i n c l u d e and d e c l a r a t i o n s
i n t main ( )
{

Complex a ( 0 . 1 , 1 . 3 ) ; / / we d e c l a r e a complex v a r i a b l e a
Complex b ( 3 . 0 ) , c ( 5 . 0 , −2 . 3 ) ; / / we d e c l a r e complex v a r i a b l e s b and

c
Complex d = b ; / / we d e c l a r e a new complex v a r i a b l e d
c o u t << << d << << a << << b << e n d l ;
d = a∗c + b / a ; / / we add , m u l t i p l y and d i v i d e two complex numbers
c o u t << << d . Re ( ) << << d . Im ( ) << e n d l ; / / w r i t e

o u t o f t h e r e a l and i m a g i n a r y p a r t s
}

We include the header file complex.h and define four different complex variables. These are a =

0.1 + ı1.3, b = 3.0 + ı0 (note that if you don’t define a value for the imaginary part this is set to
zero), c = 5.0 − ı2.3 and d = b. Thereafter we have defined standard algebraic operations and the
member functions of the class which allows us to print out the real and imaginary part of a given
variable.

To achieve these features, let us see how we could define the complex class. In C++ we could define
a complex class as follows
c l a s s Complex
{
p r i v a t e :

double re , im ; / / r e a l and i m a g i n a r y p a r t
p u b l i c :

Complex ( ) ; / / Complex c ;
Complex ( double re , double im = 0 . 0 ) ; / / D e f i n i t i o n o f a complex v a r i a b l e

;
Complex ( c o n s t Complex& c ) ; / / Usage : Complex c ( a ) ; / /

e q u a t e two complex v a r i a b l e s
Complex& o pera to r= ( c o n s t Complex& c ) ; / / c = a ; / / e q u a t e two complex

v a r i a b l e s , same as p r e v i o u s
~Complex ( ) {} / / d e s t r u c t o r

double Re ( ) c o n s t ; / / d o u b le r e a l _ p a r t = a . Re ( ) ;
double Im ( ) c o n s t ; / / d o u b le ima g _ p a r t = a . Im ( ) ;
double ab s ( ) c o n s t ; / / d o u b le m = a . abs ( ) ; / / modulus
f r i e n d Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex operator− ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex o pera to r∗ ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex o pera to r / ( c o n s t Complex& a , c o n s t Complex& b ) ;

} ;
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The class is defined via the statement class Complex. We must first use the key word class , which in
turn is followed by the user-defined variable name Complex. The body of the class, data and functions, is
encapsulated within the parentheses {...};.

Data and specific functions can be private, which means that they cannot be accessed from outside
the class. This means also that access cannot be inherited by other functions outside the class. If we
use protected instead of private, then data and functions can be inherited outside the class. The key
word public means that data and functions can be accessed from outside the class. Here we have defined
several functions which can be accessed by functions outside the class. The declaration friend means that
stand-alone functions can work on privately declared variables of the type ( re , im). Data members of a
class should be declared as private variables.

The first public function we encounter is a so-called constructor, which tells how we declare a variable
of type Complex and how this variable is initialized. We have chose three possibilities in the example
above:

1. A declaration like Complex c; calls the member function Complex() which can have the following
implementation
Complex : : Complex ( ) { r e = im = 0 . 0 ; }

meaning that it sets the real and imaginary parts to zero. Note the way a member function is
defined. The constructor is the first function that is called when an object is instantiated.

2. Another possibility is
Complex : : Complex ( ) {}

which means that there is no initialization of the real and imaginary parts. The drawback is that a
given compiler can then assign random values to a given variable.

3. A call like Complex a (0.1,1.3) ; means that we could call the member function Complex(double,
double)as
Complex : : Complex ( double re_a , double im_a )
{ r e = r e _ a ; im = im_a ; }

The simplest member function are those we defined to extract the real and imaginary part of a variable.
Here you have to recall that these are private data, that is they invisible for users of the class. We obtain
a copy of these variables by defining the functions
double Complex : : Re ( ) c o n s t { re turn r e ; }} / / g e t t i n g t h e r e a l p a r t
double Complex : : Im ( ) c o n s t { re turn im ; } / / and t h e i m a g i n a r y p a r t
\ end { l s t l i s t i n g l i n e }
Note t h a t we have i n t r o d u c e d t h e d e c l a r a t i o n \ l s t i n l i n e { c o n s t } . What

does i t mean?
Th i s d e c l a r a t i o n means t h a t a v a r i b a l e c a n n o t be changed w i t h i n a c a l l e d

f u n c t i o n .
I f we d e f i n e a v a r i a b l e as
\ l s t i n l i n e { c o n s t double p = 3 ; } and t h e n t r y t o change i t s v a lu e , we w i l l

g e t an e r r o r when we
co mp i l e o u r program . Th i s means t h a t c o n s t a n t a rg u men t s i n f u n c t i o n s c a n n o t

be changed .
\ b e g i n { l s t l i s t i n g }
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/ / c o n s t a rg u men t s ( i n f u n c t i o n s ) ca n n o t be changed :
void myfunc ( c o n s t Complex& c )
{ c . r e = 0 . 2 ; /∗ ILLEGAL ! ! c o m p i l e r e r r o r . . . ∗ / }

If we declare the function and try to change the value to 0.2, the compiler will complain by sending an
error message. If we define a function to compute the absolute value of complex variable like

double Complex : : ab s ( ) { re turn s q r t ( r e ∗ r e + im∗ im ) ; }

without the constant declaration and define thereafter a function myabs as

double myabs ( c o n s t Complex& c )
{ re turn c . ab s ( ) ; } / / Not ok b eca u se c . abs ( ) i s n o t a c o n s t f u n c .

the compiler would not allow the c.abs() call in myabs since Complex::abs is not a constant member
function. Constant functions cannot change the object’s state. To avoid this we declare the function abs
as

double Complex : : ab s ( ) c o n s t { re turn s q r t ( r e ∗ r e + im∗ im ) ; }

Overloading operators

C++ (and Fortran 90/95) allow for overloading of operators. That means we can define algebraic op-
erations on for example vectors or any arbitrary object. As an example, a vector addition of the type
c = a + b means that we need to write a small part of code with a for-loop over the dimension of the
array. We would rather like to write this statement as c = a+b; as this makes the code much more read-
able and close to eventual equations we want to code. To achieve this we need to extend the definition of
operators.

Let us study the declarations in our complex class. In our main function we have a statement like
d = b;, which means that we call d.operator= (b) and we have defined a so-called assignment operator as
a part of the class defined as

Complex& Complex : : o pera to r= ( c o n s t Complex& c )
{

r e = c . r e ;
im = c . im ;
re turn ∗ t h i s ;

}

With this function, statements like Complex d = b; or Complex d(b); make a new object d, which becomes
a copy of b. We can make simple implementations in terms of the assignment

Complex : : Complex ( c o n s t Complex& c )
{ ∗ t h i s = c ; }

which is a pointer to "this object", ∗ this is the present object, so ∗ this = c; means setting the present
object equal to c, that is this−>operator= (c);.

The meaning of the addition operator + for Complex objects is defined in the function Complex
operator+ (const Complex& a, const Complex& b); // a+b The compiler translates c = a + b; into c = operator
+ (a , b) ; . Since this implies the call to function, it brings in an additional overhead. If speed is crucial
and this function call is performed inside a loop, then it is more difficult for a given compiler to perform
optimizations of a loop. The solution to this is to inline functions. We discussed inlining in chapter 2.
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Inlining means that the function body is copied directly into the calling code, thus avoiding calling the
function. Inlining is enabled by the inline keyword
i n l i n e Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b )
{ re turn Complex ( a . r e + b . re , a . im + b . im ) ; }

Inline functions, with complete bodies must be written in the header file complex.h. Consider the case c
= a + b; that is, c.operator= (operator+ (a ,b)) ; If operator+, operator= and the constructor Complex(r,i )

all are inline functions, this transforms to
c . r e = a . r e + b . r e ;
c . im = a . im + b . im ;

by the compiler, i.e., no function calls
The stand-alone function operator+ is a friend of the Complex class

c l a s s Complex
{

. . .
f r i e n d Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b ) ;
. . .

} ;

so it can read (and manipulate) the private data parts re and im via
i n l i n e Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b )
{ re turn Complex ( a . r e + b . re , a . im + b . im ) ; }

Since we do not need to alter the re and im variables, we can get the values by Re() and Im(), and there
is no need to be a friend function
i n l i n e Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b )
{ re turn Complex ( a . Re ( ) + b . Re ( ) , a . Im ( ) + b . Im ( ) ) ; }

The multiplication functionality can now be extended to imaginary numbers by the following code
i n l i n e Complex o pera to r∗ ( c o n s t Complex& a , c o n s t Complex& b )
{

re turn Complex ( a . r e ∗b . r e − a . im∗b . im , a . im∗b . r e + a . r e ∗b . im ) ;
}

It will be convenient to inline all functions used by this operator. To inline the complete expression a∗b;,
the constructors and operator= must also be inlined. This can be achieved via the following piece of code
i n l i n e Complex : : Complex ( ) { r e = im = 0 . 0 ; }
i n l i n e Complex : : Complex ( double re_ , double im_ )
{ . . . }
i n l i n e Complex : : Complex ( c o n s t Complex& c )
{ . . . }
i n l i n e Complex : : o pera to r= ( c o n s t Complex& c )
{ . . . }
/ / e , c , d a re complex
e = c∗d ;
/ / f i r s t c o m p i l e r t r a n s l a t i o n :
e . o pera to r= ( o pera to r∗ ( c , d ) ) ;
/ / r e s u l t o f n e s t e d i n l i n e f u n c t i o n s
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/ / o p e r a t o r = , o p e r a t o r ∗ , Complex ( double , d o u b le =0) :
e . r e = c . r e ∗d . r e − c . im∗d . im ;
e . im = c . im∗d . r e + c . r e ∗d . im ;

The definitions operator− and operator/ follow the same set up.
Finally, if we wish to write to file or another device a complex number using the simple syntax

cout << c;, we obtain this by defining the effect of << for a Complex object as
o s t r e a m& operator << ( o s t r e a m& o , c o n s t Complex& c )
{ o << << c . Re ( ) << << c . Im ( ) << ; re turn o ; }

Templates

The reader may have noted that all variables and some of the functions defined in our class are declared
as doubles. What if we wanted to make a class which takes integers or floating point numbers with single
precision? A simple way to achieve this is copy and paste our class and replace double with for example
int .

C++ allows us to do this automatically via the usage of templates, which are the C++ constructs for
parameterizing parts of classes. Class templates is a template for producing classes. The declaration
consists of the keyword template followed by a list of template arguments enclosed in brackets. We can
therefore make a more general class by rewriting our original example as
template < c l a s s T>
c l a s s Complex
{
p r i v a t e :

T re , im ; / / r e a l and i m a g i n a r y p a r t
p u b l i c :

Complex ( ) ; / / Complex c ;
Complex (T re , T im = 0 ) ; / / D e f i n i t i o n o f a complex v a r i a b l e ;
Complex ( c o n s t Complex& c ) ; / / Usage : Complex c ( a ) ; / /

e q u a t e two complex v a r i a b l e s
Complex& o pera to r= ( c o n s t Complex& c ) ; / / c = a ; / / e q u a t e two complex

v a r i a b l e s , same as p r e v i o u s
~Complex ( ) {} / / d e s t r u c t o r

T Re ( ) c o n s t ; / / T r e a l _ p a r t = a . Re ( ) ;
T Im ( ) c o n s t ; / / T ima g _ p a r t = a . Im ( ) ;
T ab s ( ) c o n s t ; / / T m = a . abs ( ) ; / / modulus
f r i e n d Complex o pera to r+ ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex operator− ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex o pera to r∗ ( c o n s t Complex& a , c o n s t Complex& b ) ;
f r i e n d Complex o pera to r / ( c o n s t Complex& a , c o n s t Complex& b ) ;

} ;

What it says is that Complex is a parameterized type with T as a parameter and T has to be a type such as
double or float. The class complex is now a class template and we would define variables in a code as
Complex<double > a ( 1 0 . 0 , 5 . 1 ) ;
Complex< i n t > b ( 1 , 0 ) ;

Member functions of our class are defined by preceding the name of the function with the template
keyword. Consider the function we defined as Complex:: Complex (double re_a, double im_a). We would
rewrite this function as
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template < c l a s s T>
Complex<T > : : Complex (T re_a , T im_a )
{ r e = r e _ a ; im = im_a ; }

The member functions are otherwise defined following ordinary member function definitions.
To write a class like the above is rather straightforward. The class for handling one-dimensional

arrays, presented in appendix A shows some of the additional possibilities which C++ offers. However,
it can be rather difficult to write good classes for handling matrices or more complex objects. For such
applications we recommend therefore the usage of ready-made libraries like Blitz++

Blitz++ is a C++ library whose two main goals are to im-
prove the numerical efficiency of C++ and to extend the conventional dense array model to incorporate
new and useful features. Some examples of such extensions are flexible storage formats, tensor notation
and index placeholders. It allows you also to write several operations involving vectors and matrices in
a simple and clear (from a mathematical point of view) way. The way you would code the addition of
two matrices looks very similar to the way it is done in Fortran90/95. The C++ programming language
offers many features useful for tackling complex scientific computing problems: inheritance, polymor-
phism, generic programming, and operator overloading are some of the most important. Unfortunately,
these advanced features came with a hefty performance pricetag: until recently, C++ lagged behind For-
tran’s performance by anywhere from 20% to a factor of ten. It was not uncommon to read in textbooks on
high-performance computing that if performance matters, then one should resort to Fortran, preferentially
Fortran 77. As a result, untill very recently, the adoption of C++ for scientific computing has been slow.
This has changed quite a lot in the last years and modern C++ compilers with numerical libraries have
improved the situation considerably. Recent benchmarks show C++ encroaching steadily on Fortran’s
high-performance monopoly, and for some benchmarks, C++ is even faster than Fortran! These results
are being obtained not through better optimizing compilers, preprocessors, or language extensions, but
through the use of template techniques. By using templates cleverly, optimizations such as loop fusion,
unrolling, tiling, and algorithm specialization can be performed automatically at compile time.

The features of Blitz++ which are useful for our studies are the dynamical allocation of vectors and
matrices and algebraic operations on these objects. In particular, if you access the Blitz++ webpage at

, we recommend that you study chapters two and three.
In this section we discuss several applications of the Blitz++ library and demonstrate the benefits

when handling arrays and mathematical expressions involving arrays.
At you will find examples of

makefiles, simple examples like those discussed here and the C++ library which contains the algorithms
discussed in this text. You can choose whether you want to employ Blitz++ fully or just use the more
old-fashioned C++ codes.

The example included here shows some of the versatility of Blitz++ when handling matrices. Note
that you need to define the path where you have store Blitz++. We recommend that you study the exam-
ples available at the Blitz++ web page and the examples which follow this text.

As an example, a float matrix is defined simply as Array<float ,2> A(r, r ) ; . As the example shows
we can even change the range of the matrix from the standard which starts at 0 and ends at n − 1 to one
which starts at 1 and ends at n. This can be useful if you deal with matrices from a Fortran code or if you
wish to code your matrix operation following the way you index the matrix elements.

You can also easily initialise to zero your matrix by simply writing A=0.;. Note also the way you can
fill in matrix elements and print out elements using one single statement, instead of for example two for
loops. The following example illustrates some of these features.
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/ / S imp le t e s t ca se o f m a t r i x o p e r a t i o n s
/ / u s i n g B l i t z ++
# i n c l u d e < b l i t z / a r r a y . h>
# i n c l u d e < i o s t r e a m >
us ing namespace s t d ;
us ing namespace b l i t z ;

i n t main ( )
{

/ / Crea te two 4 x4 a r r a y s . We want them t o l o o k l i k e m a t r i c e s , so
/ / we ’ l l make t h e v a l i d i n d e x range 1 . . 4 ( r a t h e r th a n 0 . . 3 which i s
/ / t h e d e f a u l t ) .

Range r ( 1 , 4 ) ;
Array < f l o a t ,2 > A( r , r ) , B( r , r ) ;

/ / The f i r s t w i l l be a H i l b e r t m a t r i x :
/ /
/ / a = 1
/ / i j −−−−−

/ / i +j −1
/ /
/ / B l i t z ++ p r o v i d e s a s e t o f t y p e s { f i r s t I n d e x , seco n d In d ex , . . . }
/ / which a c t as p l a c e h o l d e r s f o r i n d i c e s . These can be used d i r e c t l y
/ / i n e x p r e s s i o n s . For example , we can f i l l o u t t h e A m a t r i x l i k e t h i s :

f i r s t I n d e x i ; / / P l a c e h o l d e r f o r t h e f i r s t i n d e x
s e c o n d I n d e x j ; / / P l a c e h o l d e r f o r t h e seco n d i n d e x

A = 1 . 0 / ( i + j −1) ;
c o u t << << A << e n d l ;

/ / Now t h e A m a t r i x has each e l e m e n t e q u a l t o a _ i j = 1 / ( i +j −1) .
/ /
/ / The m a t r i x B w i l l be t h e p e r m u t a t i o n m a t r i x
/ /
/ / [ 0 0 0 1 ]
/ / [ 0 0 1 0 ]
/ / [ 0 1 0 0 ]
/ / [ 1 0 0 0 ]
/ /
/ / Here a re two ways o f f i l l i n g o u t B:

B = ( i == (5− j ) ) ; / / Using an e q u a t i o n −− a b i t c r y p t i c

c o u t << << B << e n d l ;

B = 0 , 0 , 0 , 1 , / / Using an i n i t i a l i z e r l i s t
0 , 0 , 1 , 0 ,
0 , 1 , 0 , 0 ,
1 , 0 , 0 , 0 ;
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c o u t << << B << e n d l ;
}

More examples are discussed in appendix A.

4.9 Single-value decomposition

Topic for fall 2008.

4.10 QR decomposition

Topic for fall 2008.

4.11 Physics project, the one-dimensional Poisson equation

The aim of this project is to get familiar with various matrix operations, from dynamic memory allocation
to the usage of programs in the library package of the course. For Fortran users memory handling and
most matrix and vector operations are included in the ANSI standard of Fortran 90/95. For C++ user
however, there are three possible options

1. Make your own functions for dynamic memory allocation of a vector and a matrix. Use then the
library package lib.cpp with its header file lib.hpp for obtaining LU-decomposed matrices, solve
linear equations etc.

2. Use the library package lib.cpp with its header file lib.hpp which includes a function for
dynamic memory allocation. This program package includes all the other functions discussed
during the lectures for solving systems of linear equations, obatining the determinant, getting the
inverse etc.

3. Finally, we provide on the web-page of the course a library package which uses Blitz++’s classes
for array handling. You could then, since Blitz++ is installed on all machines at the lab, use these
classes for handling arrays.

Your program, whether it is written in C++ or Fortran 90/95, should include dynamic memory han-
dling of matrices and vectors. You should also read the matrix from a file and write your results to a file.
Make sure your code includes these options.

(a) Consider the linear system of equations

a11x1 + a12x2 + a13x3 = w1

a21x1 + a22x2 + a23x3 = w2

a31x1 + a32x2 + a33x3 = w3.

This can be written in matrix form as
Ax = w.
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Use the included programs for LU decomposition to solve the system of equations

− x1 + x2 − 4x3 = 0

2x1 + 2x2 = 1

3x1 + 3x2 + 2x3 = 1

2
.

Use first standard Gaussian elimination and compute the result analytically. Compare thereafter
your analytical results with the numerical ones obtained using the LU programs in the program
library.

(b) In the rest of this project we will solve the one-dimensional Poisson equation with Dirichlet bound-
ary conditions by rewriting it as a set of linear equations.
The three-dimensional Poisson equation is a partial differential equation,

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= −

ρ(x, y, z)

ε0

,

whose solution we will discuss in chapter 15. The function ρ(x, y, z) is the charge density and φ

is the electrostatic potential. In this project we consider the one-dimensional case since there are a
few situations, possessing a high degree of symmetry, where it is possible to find analytic solutions.
Let us discuss some of these solutions.
Suppose, first of all, that there is no variation of the various quantities in the y- and z-directions.
In this case, Poisson’s equation reduces to an ordinary differential equation in x, the solution of
which is relatively straightforward. Consider for example a vacuum diode, in which electrons are
emitted from a hot cathode and accelerated towards an anode. The anode is held at a large positive
potential V0 with respect to the cathode. We can think of this as an essentially one-dimensional
problem. Suppose that the cathode is at x = 0 and the anode at x = d. Poisson’s equation takes
the form

d2φ

dx2
= −

ρ(x)

ε0

,

where φ(x) satisfies the boundary conditions φ(0) = 0 and φ(d) = V0. By energy conservation,
an electron emitted from rest at the cathode has an x-velocity v(x) which satisfies

1

2
mev

2(x) − eφ(x) = 0.

Furthermore, we assume that the current I is independent of x between the anode and cathode,
otherwise, charge will build up at some points. From electromagnetism one can then show that
the current I is given by I = −ρ(x)v(x)A, where A is the cross-sectional area of the diode. The
previous equations can be combined to give

d2φ

dx2
=

I

ε0A

(me

2e

)1/2

φ−1/2.

The solution of the above equation which satisfies the boundary conditions is

φ = V0

(x

d

)4/3

,
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with

I =
4

9

ε0A

d2

(

2e

me

)1/2

V
3/2

0
.

This relationship between the current and the voltage in a vacuum diode is called the Child-
Langmuir law.
Another physics example in one dimension is the famous Thomas-Fermi model, widely used as a
mean-field model in simulations of quantum mechanical systems [35, 36], see Lieb for a newer and
updated discussion [37]. Thomas and Fermi assumed the existence of an energy functional, and
derived an expression for the kinetic energy based on the density of electrons, ρ(r) in an infinite
potential well. For a large atom or molecule with a large number of electrons. Schrödinger’s equa-
tion, which would give the exact density and energy, cannot be easily handled for large numbers
of interacting particles. Since the Poisson equation connects the electrostatic potential with the
charge density, one can derive the following equation for potential V

d2V

dx2
=

V 3/2

√
x

,

with V (0) = 1.
In our case we will rewrite Poisson’s equation in terms of dimensional variables. We can then
rewrite the equation as

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

and we define the discretized approximation to u as vi with grid points xi = ih in the interval from
x0 = 0 to xn+ 1 = 1. The step length or spacing is defined as h = 1/(n + 1). We have then the
boundary conditions v0 = vn+ 1 = 0. We approximate the second derivative of u with

−
vi+ 1 + vi−1 − 2vi

h2
= fi fo r i = 1, . . . , n,

where fi = f(xi). Show that you can rewrite this equation as a linear set of equations of the form

Av = b̃,

where A is an n × n tridiagonal matrix which we rewrite as

A =

















2 −1 0 . . . . . . 0
−1 2 −1 0 . . . . . .
0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . .
0 . . . −1 2 −1
0 . . . 0 −1 2

















(4.35)

and b̃i = h2fi.
In our case we will assume that f(x) = (3x + x2)ex, and keep the same interval and boundary
conditions. Then the above differential equation has an analytic solution given by u(x) = x(1 −
x)ex (convince yourself that this is correct by inserting the solution in the Poisson equation). We
will compare our numerical solution with this analytic result in the next exercise.
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(c) We can rewrite our matrix A in terms of one-dimensional vectors a, b, c of length 1 : n. Our linear
equation reads

A =

















b1 c1 0 . . . . . . . . .

a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .

. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an bn

































v1

v2

. . .

. . .

. . .

vn

















=

















b̃1

b̃2

. . .

. . .

. . .

b̃n

















. (4.36)

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except for
those on and immediately above and below the leading diagonal. The above tridiagonal system can
be written as

aivi−1 + bivi + civi+ 1 = b̃i, (4.37)
for i = 1, 2, . . . , n. The algorithm for solving this set of equations is rather simple and requires
two steps only, a decomposition and forward substitution and finally a backward substitution.
Your first task is to set up the algorithm for solving this set of linear equations. Find also the
number of operations needed to solve the above equations. Show that they behave like O(n) with
n the dimensionality of the problem. Compare this with standard Gaussian elimination.
Then you should code the above algorithm and solve the problem for matrices of the size 10 × 10,
100 × 100 and 1000 × 1000. That means that you choose n = 10, n = 100 and n = 1000 grid
points.
Compare your results (make plots) with the analytic results for the different number of grid points
in the interval x ∈ (0, 1). The different number of grid points corresponds to different step lengths
h.
Compute also the maximal relative error in the data set i = 1, . . . , n,by setting up

εi = lo g 10

(∣

∣

∣

∣

vi − ui

ui

∣

∣

∣

∣

)

,

as function of lo g 10 (h) for the function values ui and vi. For each step length extract the max value
of the relative error. Try to increase n to n = 10000 and n = 105. Comment your results.

(d) Compare your results with those from the LU decomposition codes for the matrix of size 1000 ×

1000. Use for example the unix function time when you run your codes and compare the time
usage between LU decomposition and your tridiagonal solver. Can you run the standard LU de-
composition for a matrix of the size 105

× 105? Comment your results.

4.11.1 Solution to exercise c)
The program listed below encodes a possible solution to part c) of the above project. Note that we have
employed Blitz++ as library and that the range of the various vectors are now shifted from their default
ranges (0 : n − 1) to (1 : n) and that we access vector elements as a(i) instead of the standard C++
declaration a[i].

The program reads from screen the name of the ouput file and the dimension of the problem, which in
our case corresponds to the number of mesh points as well, in addition to the two endpoints. The function
f(x) = (3x + x2) e x p (x) is included explicitely in the code. An obvious change is to define a separate
function, allowing thereby for a generalization to other function f(x).
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/∗
Program t o s o l v e t h e one−d i m e n s i o n a l P o i s s o n e q u a t i o n
−u ’ ’ ( x ) = f ( x ) r e w r i t t e n as a s e t o f l i n e a r e q u a t i o n s
A u = f where A i s an n x n ma tr i x , and u and f a re 1 x n v e c t o r s
In t h i s problem f ( x ) = (3 x+x∗x ) exp ( x ) w i t h s o l u t i o n u ( x ) = x(1−x ) exp ( x )
The program r e a d s from s c r e e n t h e name o f t h e o u t p u t f i l e .
B l i t z ++ i s used here , w i t h a r r a y s s t a r t i n g from 1 t o n

∗ /
# i n c l u d e <iomanip >
# i n c l u d e < f s t r e a m >
# i n c l u d e < b l i t z / a r r a y . h>
# i n c l u d e < i o s t r e a m >
us ing namespace s t d ;
us ing namespace b l i t z ;

o f s t r e a m o f i l e ;
/ / Main program only , no o t h e r f u n c t i o n s
i n t main ( i n t argc , char∗ a rg v [ ] )
{

char ∗ o u t f i l e n a m e ;
i n t i , j , n ;
double h , btemp ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e a re t o o few command− l i n e a rg u men t s
i f ( a r g c <= 1 ) {

c o u t << << arg v [ 0 ] <<
<< e n d l ;

e x i t ( 1 ) ;
}
e l s e {

o u t f i l e n a m e= arg v [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
c o u t << << e n d l ;
c i n >> n ;
h = 1 . 0 / ( ( double ) n +1) ;
/ / Use B l i t z t o a l l o c a t e a r r a y s
/ / Use range t o change d e f a u l t a r r a y s from 0 : n−1 t o 1 : n
Range r ( 1 , n ) ;
Array <double ,1 > a ( r ) , b ( r ) , c ( r ) , y ( r ) , f ( r ) , temp ( r ) ;
/ / s e t up t h e m a t r i x d e f i n e d by t h r e e a rra ys , d ia g o n a l , upper and lo wer

d i a g o n a l band
b = 2 . 0 ; a = −1.0 ; c = −1.0;
/ / Then d e f i n e t h e v a l u e o f t h e r i g h t hand s i d e f ( m u l t i p l i e d by h∗h )
f o r ( i =1 ; i <= n ; i ++) {

/ / E x p l i c i t e x p r e s s i o n f o r f , c o u l d code as s e p a r a t e f u n c t i o n
f ( i ) = h∗h ∗ ( i ∗h ∗3 . 0 + ( i ∗h ) ∗ ( i ∗h ) ) ∗ exp ( i ∗h ) ;

}
/ / s o l v e t h e t r i d i a g o n a l sy s t em , f i r s t fo rwa rd s u b s t i t u t i o n
btemp = b ( 1 ) ;
f o r ( i = 2 ; i <= n ; i ++) {

temp ( i ) = c ( i −1) / btemp ;
btemp = b ( i ) − a ( i ) ∗ temp ( i ) ;
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Figure 4.4: Numerical solution obtained with n = 10 compared with the analytical solution.

y ( i ) = ( f ( i ) − a ( i ) ∗ y ( i −1) ) / btemp ;
}
/ / t h e n backward s u b s t i t u t i o n , t h e s o l u t i o n i s i n y ( )
f o r ( i = n−1; i >= 1 ; i −−) {

y ( i ) −= temp ( i +1) ∗ y ( i +1) ;
}
/ / w r i t e r e s u l t s t o t h e o u t p u t f i l e
f o r ( i = 1 ; i <= n ; i ++) {

o f i l e << s e t i o s f l a g s ( i o s : : sh o wp o in t | i o s : : u p p e r c a s e ) ;
o f i l e << se tw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << i ∗h ;
o f i l e << se tw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << y ( i ) ;
o f i l e << se tw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << i ∗h∗ (1 .0− i ∗h ) ∗ exp ( i ∗h ) << e n d l ;

}
o f i l e . c l o s e ( ) ;

}

The program writes also the exact solution to file. In Fig. 4.4 we show the results obtained with n = 10 .
Even with so few points, the numerical solution is very close to the analytic answer. With n = 10 0 it is
almost impossible to distinguish the numerical solution from the analytical one, as shown in Fig. 4.5. It
is therefore instructive to study the relative error, which we display in Table 4.4 as function of the step
length h = 1/(n + 1).

The mathematical truncation we made when computing the second derivative goes like O(h2). Our
results for n from n = 10 to somewhere between n = 10 4 and n = 10 5 result in a slope which is
almost exactly equal 2,in good agreement with the mathematical truncation made. Beyond n = 10 5

the relative error becomes bigger, telling us that there is no point in increasing n. For most practical
application a relative error between 10 −6 and 10−8 is more than sufficient, meaning that n = 10 4 may
be an acceptable number of mesh points. Beyond n = 10 5, numerical round off errors take over, as
discussed in the previous chapter as well.
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Figure 4.5: Numerical solution obtained with n = 1 0 compared with the analytical solution.

Table 4.4: lo g 10 values for the relative error and the step length h computed at x = 0.5.
n lo g 10(h) εi = lo g 10 (|(vi − ui)/ ui|)

10 -1.04 -2.29
100 -2.00 -4.19

1000 -3.00 -6.18
1 04 -4.00 -8.18
1 05 -5.00 -9.19
1 06 -6.00 -6.08
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