
Chapter 12

Eigensystems

12.1 Introduction

Together with linear equations and least squares, the third major problem in matrix computations deals
with the algebraic eigenvalue problem. Here we limit our attention to the symmetric case. We focus in
particular on two similarity transformations, the Jacobi method, the famous QR algoritm with House-
holder’s method for obtaining a triangular matrix and Francis’ algorithm for the final eigenvalues. Our
presentation follows closely that of Golub and Van Loan, see Ref. [25].

12.2 Eigenvalue problems

Let us consider the matrix A of dimension n. The eigenvalues of A is defined through the matrix equation

Ax
(ν)

= λ(ν)
x

(ν), (12.1)

where λ(ν) are the eigenvalues and x
(ν) the corresponding eigenvectors. Unless otherwise stated, when

we use the wording eigenvector we mean the right eigenvector. The left eigenvector is defined as

x
(ν)

LA = λ(ν)
x

(ν)
L

The above right eigenvector problem is equivalent to a set of n equations with n unknowns xi

a11x1 + a12x2 + · · · + a1nxn = λx1

a21x1 + a22x2 + · · · + a2nxn = λx2

. . . . . .

an1x1 + an2x2 + · · · + annxn = λxn.

We can rewrite Eq. (12.1) as
(

A− λ(ν)I

)

x
(ν)

= 0,

with I being the unity matrix. This equation provides a solution to the problem if and only if the deter-
minant is zero, namely

∣

∣

∣
A− λ(ν)

I

∣

∣

∣
= 0,

303



Eigensystems

which in turn means that the determinant is a polynomial of degree n in λ and in general we will have n

distinct zeros. The eigenvalues of a matrix A ∈ C
n×n are thus the n roots of its characteristic polynomial

P (λ) = d e t(λI − A), (12.2)

or

P (λ) =
n

∏

i=1

(λi − λ) . (12.3)

The set of these roots is called the spectrum and is denoted as λ(A). If λ(A) = {λ1, λ2, . . . , λn} then
we have

d e t(A) = λ1λ2 . . . λn,

and if we define the trace of A as

Tr(A) =

n
∑

i=1

aii

then Tr(A) = λ1 + λ2 + · · · + λn.
Procedures based on these ideas can be used if only a small fraction of all eigenvalues and eigenvec-

tors are required or if the matrix is on a tridiagonal form, but the standard approach to solve Eq. (12.1)
is to perform a given number of similarity transformations so as to render the original matrix A in either
a diagonal form or as a tridiagonal matrix which then can be be diagonalized by computational very
effective procedures.

The first method leads us to Jacobi’s method whereas the second one is given by Householder’s
algorithm for tridiagonal transformations. We will discuss both methods below.

12.3 Similarity transformations

In the present discussion we assume that our matrix is real and symmetric, that is A ∈ R
n×n. The matrix

A has n eigenvalues λ1 . . . λn (distinct or not). Let D be the diagonal matrix with the eigenvalues on the
diagonal

D =

















λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . λn−1

0 . . . . . . . . . . . . 0 λn

















.

If A is real and symmetric then there exists a real orthogonal matrix S such that

S
T
AS = d ia g (λ1, λ2, . . . , λn),

and for j = 1 : n we have AS(:, j) = λjS(:, j). See chapter 8 of Ref. [25] for proof.
To obtain the eigenvalues of A ∈ R

n×n, the strategy is to perform a series of similarity transfor-
mations on the original matrix A, in order to reduce it either into a diagonal form as above or into a
tridiagonal form.

We say that a matrix B is a similarity transform of A if

B = S
T
AS, where S

T
S = S

−1
S = I.

304



12.4 – Jacobi’s method

The importance of a similarity transformation lies in the fact that the resulting matrix has the same
eigenvalues, but the eigenvectors are in general different. To prove this we start with the eigenvalue
problem and a similarity transformed matrix B.

Ax = λx a n d B = S
T
AS.

We multiply the first equation on the left by S
T and insert S

T
S = I between A and x. Then we get

(ST
AS)(ST

x) = λS
T
x, (12.4)

which is the same as
B

(

S
T
x
)

= λ
(

S
T
x
)

.

The variable λ is an eigenvalue of B as well, but with eigenvector S
T
x.

The basic philosophy is to

– either apply subsequent similarity transformations so that

S
T

N
. . .ST

1
AS1 . . . SN = D, (12.5)

– or apply subsequent similarity transformations so that A becomes tridiagonal. Thereafter, tech-
niques for obtaining eigenvalues from tridiagonal matrices can be used.

Let us look at the first method, better known as Jacobi’s method or Given’s rotations.

12.4 Jacobi’s method

Consider an (n × n) orthogonal transformation matrix

S =

























1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . 0 . . .

0 0 . . . co sθ 0 . . . 0 sinθ

0 0 . . . 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . 0 . . .

0 0 . . . 0 0 . . . 1 0
0 0 . . . −sinθ . . . . . . 0 co sθ

























with property S
T = S

−1. It performs a plane rotation around an angle θ in the Euclidean n−dimensional
space. It means that its matrix elements that differ from zero are given by

skk = sll = co sθ, skl = −slk = −sinθ, sii = −sii = 1 i 6= k i 6= l,

A similarity transformation
B = S

T
AS,

results in

bik = aikco sθ − ailsinθ, i 6= k, i 6= l

bil = ailco sθ + aiksinθ, i 6= k, i 6= l

bkk = akkco s
2θ − 2aklco sθsinθ + allsin

2θ

bll = allco s
2θ + 2aklco sθsinθ + akksin

2θ

bkl = (akk − all)co sθsinθ + akl(co s
2θ − sin2θ)

305



Eigensystems

The angle θ is arbitrary. The recipe is to choose θ so that all non-diagonal matrix elements bkl become
zero.

The algorithm is then quite simple. We perform a number of iterations untill the sum over the squared
non-diagonal matrix elements are less than a prefixed test (ideally equal zero). The algorithm is more or
less foolproof for all real symmetric matrices, but becomes much slower than methods based on tridiag-
onalization for large matrices.

The main idea is thus to reduce systematically the norm of the off-diagonal matrix elements of a
matrix A

off(A) =

√

√

√

√

n
∑

i=1

n
∑

j=1,j 6=i

a2

ij .

To demonstrate the algorithm, we consider the simple 2 × 2 similarity transformation of the full matrix.
The matrix is symmetric, we single out 1 ≤ k < l ≤ n and use the abbreviations c = cos θ and s = sin θ
to obtain

(

bkk 0
0 bll

)

=

(

c −s
s c

)(

akk akl

alk all

)(

c s
−s c

)

.

We require that the non-diagonal matrix elements bkl = blk = 0, implying that

akl(c
2 − s2) + (akk − all)cs = bkl = 0.

If akl = 0 one sees immediately that cos θ = 1 and sin θ = 0.
The Frobenius norm of an orthogonal transformation is always preserved. The Frobenius norm is

defined as

||A||F =

√

√

√

√

n
∑

i=1

n
∑

j=1

|aij |2.

This means that for our 2 × 2 case we have

2a2

kl + a2

kk + a2

ll = b2

kk + b2

ll,

which leads to

off(B)2 = ||B||2F −

n
∑

i=1

b2

ii = off(A)2 − 2a2

kl,

since

||B||2F −
n

∑

i=1

b2

ii = ||A||2F −
n

∑

i=1

a2

ii + (a2

kk + a2

ll − b2

kk − b2

ll).

This results means that the matrix A moves closer to diagonal form for each transformation.
Defining the quantities ta n θ = t = s/ c and

τ =
akk − all

2akl

,

we obtain the quadratic equation
t2 + 2τt − 1 = 0,

resulting in
t = −τ ±

√

1 + τ2,

306



12.5 – Diagonalization through the Householder’s method for tridiagonalization

and c and s are easily obtained via
c =

1√
1 + t2

,

and s = tc. Choosing t to be the smaller of the roots ensures that |θ| ≤ π/4 and has the effect of
minimizing the difference between the matrices B and A since

||B − A||2F = 4(1 − c)

n
∑

i=1 ,i6=k,l

(a2

ik + a2

il) +
2a2

kk

c2
.

To implement the Jacobi algorithm we can proceed as follows

– Choose a tolerance ε, making it a small number, typically 10 −8 or smaller.

– Setup a while-test where one compares the norm of the newly computed off-diagonal
matrix elements

o ff (A) =

√

√

√

√

n
∑

i=1

n
∑

j=1 ,j 6=i

a2

ij > ε.

– Now choose the matrix elements akl so that we have those with largest value, that is
|akl| = m a x i6=j|aij |.

– Compute thereafter τ = (all − akk)/2akl, ta n θ, c o s θ and sin θ.

– Compute thereafter the similarity transformation for this set of values (k, l), obtaining
the new matrix B = S(k, l, θ)T

AS(k, l, θ).

– Compute the new norm of the off-diagonal matrix elements and continue till you have
satisfied o ff (B) ≤ ε

The convergence rate of the Jacobi method is however poor, one needs typically 3n2 − 5n2 rotations
and each rotation requires 4n operations, resulting in a total of 12n3−20n3 operations in order to zero out
non-diagonal matrix elements. Although the classical Jacobi algorithm performs badly compared with
methods based on tridiagonalization, it is easy to parallelize. We discuss how to parallelize this method
in the next subsection.

12.4.1 Parallel Jacobi algorithm
In preparation for Fall 2008.

12.5 Diagonalization through the Householder’s method for tridiagonalization

In this case the diagonalization is performed in two steps: First, the matrix is transformed into tridiagonal
form by the Householder similarity transformation. Secondly, the tridiagonal matrix is then diagonalized.
The reason for this two-step process is that diagonalising a tridiagonal matrix is computational much

307



Eigensystems

faster then the corresponding diagonalization of a general symmetric matrix. Let us discuss the two steps
in more detail.

12.5.1 The Householder’s method for tridiagonalization
The first step consists in finding an orthogonal matrix S which is the product of (n − 2) orthogonal
matrices

S = S1S2 . . . Sn−2,

each of which successively transforms one row and one column of A into the required tridiagonal form.
Only n − 2 transformations are required, since the last two elements are already in tridiagonal form. In
order to determine each Si let us see what happens after the first multiplication, namely,

S
T

1 AS1 =













a11 e1 0 0 . . . 0 0
e1 a

′

22 a
′

23 . . . . . . . . . a
′

2n

0 a
′

32 a
′

33 . . . . . . . . . a
′

3n

0 . . . . . . . . . . . . . . .

0 a
′

n2 a
′

n3 . . . . . . . . . a
′

nn













where the primed quantities represent a matrix A
′ of dimension n − 1 which will subsequentely be

transformed by S2. The factor e1 is a possibly non-vanishing element. The next transformation produced
by S2 has the same effect as S1 but now on the submatirx A

′ only

(S1S2)
T

AS1S2 =













a11 e1 0 0 . . . 0 0
e1 a

′

22 e2 0 . . . . . . 0
0 e2 a

′′

33 . . . . . . . . . a
′′

3n

0 . . . . . . . . . . . . . . .

0 0 a
′′

n3 . . . . . . . . . a
′′

nn













Note that the effective size of the matrix on which we apply the transformation reduces for every new
step. In the previous Jacobi method each similarity transformation is in principle performed on the full
size of the original matrix.

After a series of such transformations, we end with a set of diagonal matrix elements

a11, a
′

22, a
′′

33 . . . a
n−1
nn ,

and off-diagonal matrix elements
e1, e2, e3, . . . , en−1.

The resulting matrix reads

S
T
AS =



















a11 e1 0 0 . . . 0 0
e1 a

′

22 e2 0 . . . 0 0
0 e2 a

′′

33 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . a
(n−1)
n−2 en−1

0 . . . . . . . . . . . . en−1 a
(n−1)
n−1



















.

It remains to find a recipe for determining the transformation Sn. We illustrate the method for S1

which we assume takes the form
S1 =

(

1 0
T

0 P

)

,

308



12.5 – Diagonalization through the Householder’s method for tridiagonalization

with 0
T being a zero row vector, 0

T = {0, 0, · · · } of dimension (n − 1). The matrix P is symmetric
with dimension ((n− 1)× (n− 1)) satisfying P

2 = I and P
T = P. A possible choice which fullfils the

latter two requirements is
P = I − 2uu

T ,

where I is the (n− 1) unity matrix and u is an n− 1 column vector with norm u
T
u(inner product. Note

that uu
T is an outer product giving a dimension ((n − 1) × (n − 1)). Each matrix element of P then

reads
Pij = δij − 2uiuj ,

where i and j range from 1 to n − 1. Applying the transformation S1 results in

S
T
1 AS1 =

(

a11 (Pv)T

Pv A
′

)

,

where v
T = {a21, a3 1, · · · , an1} and P must satisfy (Pv)T = {k, 0, 0, · · · }. Then

Pv = v − 2u(uT
v) = ke, (12.6)

with e
T = {1, 0, 0, . . . 0}. Solving the latter equation gives us u and thus the needed transformation P.

We do first however need to compute the scalar k by taking the scalar product of the last equation with
its transpose and using the fact that P2 = I. We get then

(Pv)T
Pv = k2 = v

T
v = |v|2 =

n
∑

i= 2

a2

i1,

which determines the constant k = ±v. Now we can rewrite Eq. (12.6) as

v − ke = 2u(uT
v),

and taking the scalar product of this equation with itself and obtain

2(uT
v)2 = (v2 ± a21v), (12.7)

which finally determines
u =

v − ke

2(uTv)
.

In solving Eq. (12.7) great care has to be exercised so as to choose those values which make the right-
hand largest in order to avoid loss of numerical precision. The above steps are then repeated for every
transformations till we have a tridiagonal matrix suitable for obtaining the eigenvalues.

12.5.2 Diagonalization of a tridiagonal matrix
The matrix is now transformed into tridiagonal form and the last step is to transform it into a diagonal
matrix giving the eigenvalues on the diagonal.

Before we discuss the algorithms, we note that the eigenvalues of a tridiagonal matrix can be obtained
using the characteristic polynomial

P (λ) = d e t(λI − A) =

n
∏

i= 1

(λi − λ) ,

309



Eigensystems

which rewritten in matrix form reads

P (λ) =

















d1 − λ e1 0 0 . . . 0 0
e1 d2 − λ e2 0 . . . 0 0
0 e2 d3 − λ e3 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . dNstep−2 − λ eNstep−1

0 . . . . . . . . . . . . eNstep−1 dNstep−1 − λ

















We can solve this equation in a recursive manner. We let Pk(λ) be the value of k subdeterminant of the
above matrix of dimension n × n. The polynomial Pk(λ) is clearly a polynomial of degree k. Starting
with P1(λ) we have P1(λ) = d1 − λ. The next polynomial reads P2(λ) = (d2 − λ)P1(λ) − e

2
1
. By

expanding the determinant for Pk(λ) in terms of the minors of the nth column we arrive at the recursion
relation

Pk(λ) = (dk − λ)Pk−1(λ) − e
2

k−1Pk−2(λ).

Together with the starting values P1(λ) and P2(λ) and good root searching methods we arrive at an
efficient computational scheme for finding the roots of Pn(λ). However, for large matrices this algorithm
is rather inefficient and time-consuming.

The programs which performs these transformations are matrix A −→ tridiagonal matrix −→

diagonal matrix

C: void trd2(double ∗ ∗ a, int n, double d[], double e[])
void tqli(double d[], double[], int n, double ∗ ∗ z)

Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, z)

The last step through the function tqli() involves several technical details. Let us describe the basic idea
in terms of a four-dimensional example. For more details, see Ref. [25], in particular chapters seven and
eight.

The current tridiagonal matrix takes the form

A =









d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3

0 0 e3 d4









.

As a first observation, if any of the elements ei are zero the matrix can be separated into smaller pieces
before diagonalization. Specifically, if e1 = 0 then d1 is an eigenvalue. Thus, let us introduce a transfor-
mation S1

S1 =









c o s θ 0 0 sin θ

0 0 0 0
0 0 0 0

− sin θ 0 0 co s θ









Then the similarity transformation

S
T

1 AS1 = A
′ =









d
′

1
e
′

1
0 0

e
′

1
d2 e2 0

0 e2 d3 e
′3

0 0 e
′

3
d
′

4









310



12.6 – Schrödinger’s equation through diagonalization

produces a matrix where the primed elements in A
′ have been changed by the transformation whereas

the unprimed elements are unchanged. If we now choose θ to give the element a
′

21 = e
′

= 0 then we
have the first eigenvalue = a

′

11 = d
′

1.
This procedure can be continued on the remaining three-dimensional submatrix for the next eigen-

value. Thus after four transformations we have the wanted diagonal form.

12.6 Schrödinger’s equation through diagonalization

Instead of solving the Schrödinger equation as a differential equation, we will solve it through diago-
nalization of a large matrix. However, in both cases we need to deal with a problem with boundary
conditions, viz., the wave function goes to zero at the endpoints.

To solve the Schrödinger equation as a matrix diagonalization problem, let us study the radial part of
the Schrödinger equation. The radial part of the wave function, R(r), is a solution to

−

~
2

2m

(

1

r2

d

dr
r2 d

dr
−

l(l + 1)

r2

)

R(r) + V (r)R(r) = ER(r).

Then we substitute R(r) = (1/ r)u(r) and obtain

−

~
2

2m

d2

dr2
u(r) +

(

V (r) +
l(l + 1)

r2

~
2

2m

)

u(r) = Eu(r).

We introduce a dimensionless variable ρ = (1/ α)r where α is a constant with dimension length and get

−

~
2

2mα2

d2

dρ2
u(r) +

(

V (ρ) +
l(l + 1)

ρ2

~
2

2mα2

)

u(ρ) = Eu(ρ).

In the example below, we will replace the latter equation with that for the one-dimensional harmonic
oscillator. Note however that the procedure which we give below applies equally well to the case of e.g.,
the hydrogen atom. We replace ρ with x, take away the centrifugal barrier term and set the potential equal
to

V (x) =
1

2
kx2,

with k being a constant. In our solution we will use units so that k = ~ = m = α = 1 and the
Schrödinger equation for the one-dimensional harmonic oscillator becomes

−

d2

dx2
u(x) + x2u(x) = 2Eu(x).

Let us now see how we can rewrite this equation as a matrix eigenvalue problem. First we need to compute
the second derivative. We use here the following expression for the second derivative of a function f

f ′′ =
f(x + h) − 2f(x) + f(x − h)

h2
+ O(h2), (12.8)

where h is our step. Next we define minimum and maximum values for the variable x, Rm in and Rm a x ,
respectively. With a given number of steps, Nste p , we then define the step h as

h =
Rm a x − Rm in

Nste p

.

311



Eigensystems

If we now define an arbitrary value of x as

xi = Rmin + ih i = 1, 2, . . . ,Nste p − 1

we can rewrite the Schrödinger equation for xi as

−
u(xk + h) − 2u(xk) + u(xk − h)

h2
+ x2

ku(xk) = 2Eu(xk),

or in a more compact way

−
uk+ 1 − 2uk + uk−1

h2
+ x2

kuk = −
uk+ 1 − 2uk + uk−1

h2
+ Vkuk = 2Euk,

where uk = u(xk), uk±1 = u(xk ± h) and Vk = x2
k
, the given potential. Let us see how this recipe may

lead to a matrix reformulation of the Schrödinger equation. Define first the diagonal matrix element

dk =
2

h2
+ Vk,

and the non-diagonal matrix element
ek = −

1

h2
.

In this case the non-diagonal matrix elements are given by a mere constant. All non-diagonal matrix
elements are equal. With these definitions the Schrödinger equation takes the following form

dkuk + ek−1uk−1 + ek+ 1uk+ 1 = 2Euk,

where uk is unknown. Since we have Nste p − 1 values of k we can write the latter equation as a matrix
eigenvalue problem

















d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . dNstep−2 eNstep−1

0 . . . . . . . . . . . . eNstep−1 dNstep−1

































u1

u2

. . .

. . .

. . .

uNstep−1

















= 2E

















u1

u2

. . .

. . .

. . .

uNstep−1

















(12.9)

or if we wish to be more detailed, we can write the tridiagonal matrix as
















2
h2 + V1 −

1
h2 0 0 . . . 0 0

−
1
h2

2
h2 + V2 −

1
h2 0 . . . 0 0

0 −
1
h2

2
h2 + V3 −

1
h2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 2
h2 + VNstep−2 −

1
h2

0 . . . . . . . . . . . . −
1
h2

2
h2 + VNstep−1

















(12.10)

This is a matrix problem with a tridiagonal matrix of dimension Nste p − 1 × Nste p − 1 and will
thus yield Nste p − 1 eigenvalues. It is important to notice that we do not set up a matrix of dimension
Nste p ×Nste p since we can fix the value of the wave function at k = Nste p . Similarly, we know the wave
function at the other end point, that is for x0.

312



12.6 – Schrödinger’s equation through diagonalization

The above equation represents an alternative to the numerical solution of the differential equation for
the Schrödinger equation discussed in chapter 14.

The eigenvalues of the harmonic oscillator in one dimension are well known. In our case, with all
constants set equal to 1, we have

En = n +
1

2
,

with the ground state being E0 = 1/2. Note however that we have rewritten the Schrödinger equation so
that a constant 2 stands in front of the energy. Our program will then yield twice the value, that is we will
obtain the eigenvalues 1, 3, 5, 7.. . . . .

In the next subsection we will try to delineate how to solve the above equation. A program listing is
also included.

12.6.1 Numerical solution of the Schrödinger equation by diagonalization
The algorithm for solving Eq. (12.9) may take the following form

– Define values for Nste p , Rm in and Rm a x . These values define in turn the step size h. Typical values
for Rm a x and Rm in could be 10 and −10 respectively for the lowest-lying states. The number of
mesh points Nste p could be in the range 100 to some thousands. You can check the stability of the
results as functions of Nste p − 1 and Rm a x and Rm in against the exact solutions.

– Construct then two one-dimensional arrays which contain all values of xk and the potential Vk.
For the latter it can be convenient to write a small function which sets up the potential as function
of xk. For the three-dimensional case you may also need to include the centrifugal potential. The
dimension of these two arrays should go from 0 up to Nste p .

– Construct thereafter the one-dimensional vectors d and e, where d stands for the diagonal matrix
elements and e the non-diagonal ones. Note that the dimension of these two arrays runs from 1 up
to Nste p − 1, since we know the wave function u at both ends of the chosen grid.

– We are now ready to obtain the eigenvalues by calling the function tqli which can be found on the
web page of the course. Calling tqli, you have to transfer the matrices d and e, their dimension
n = Nste p −1 and a matrix z of dimension Nste p −1×Nste p −1 which returns the eigenfunctions.
On return, the array d contains the eigenvalues. If z is given as the unity matrix on input, it returns
the eigenvectors. For a given eigenvalue k, the eigenvector is given by the column k in z, that is
z[][k] in C, or z(:,k) in Fortran 90.

– TQLI does however not return an ordered sequence of eigenvalues. You may then need to sort
them as e.g., an ascending series of numbers. The program we provide includes a sorting function
as well.

– Finally, you may perhaps need to plot the eigenfunctions as well, or calculate some other expec-
tation values. Or, you would like to compare the eigenfunctions with the analytical answers for
the harmonic oscillator or the hydrogen atom. We provide a function plot which has as input one
eigenvalue chosen from the output of tqli. This function gives you a normalized wave function u
where the norm is calculated as

∫
Rmax

Rmin

|u(x)|2 dx → h

Nste p∑
i= 0

u2
i = 1,

and we have used the trapezoidal rule for integration discussed in chapter 7.

313



Eigensystems

12.6.2 Program example and results for the one-dimensional harmonic oscillator
We present here a program example which encodes the above algorithm. The corresponding Fortran
90/95 program is at programs/chapter12/program1.f90.

/∗
S o l v e s t h e one−p a r t i c l e S c h r o d i n g e r e q u a t i o n
f o r a p o t e n t i a l s p e c i f i e d i n f u n c t i o n
p o t e n t i a l ( ) . T h i s example i s f o r t h e harmonic o s c i l l a t o r

∗ /
# i n c l u d e <cmath >
# i n c l u d e < i o s t r e a m >
# i n c l u d e < f s t r e a m >
# i n c l u d e <iomanip >
# i n c l u d e
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;

/ / f u n c t i o n d e c l a r a t i o n s

void i n i t i a l i s e ( double &, double &, i n t &, i n t &) ;
double p o t e n t i a l ( double ) ;
i n t comp ( c o n s t double ∗ , c o n s t double ∗ ) ;
void o u t p u t ( double , double , i n t , double ∗ ) ;

i n t main ( i n t argc , char∗ a rg v [ ] )
{

i n t i , j , max_step , o r b _ l ;
double r_min , r_max , s t e p , co n s t_ 1 , co n s t_ 2 , o r b _ f a c t o r ,

∗e , ∗d , ∗w, ∗ r , ∗∗ z ;
char ∗ o u t f i l e n a m e ;
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e a re t o o few command− l i n e a rg u men t s
i f ( a r g c <= 1 ) {

c o u t << << arg v [ 0 ] <<
<< e n d l ;

e x i t ( 1 ) ;
}
e l s e {

o u t f i l e n a m e= arg v [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n d a ta
i n i t i a l i s e ( r_min , r_max , o r b _ l , max_step ) ;
/ / i n i t i a l i s e c o n s t a n t s
s t e p = ( r_max − r_min ) / max_step ;
c o n s t _ 2 = −1.0 / ( s t e p ∗ s t e p ) ;
c o n s t _ 1 = − 2 . 0 ∗ c o n s t _ 2 ;
o r b _ f a c t o r = o r b _ l ∗ ( o r b _ l + 1 ) ;

/ / l o c a l memory f o r r and t h e p o t e n t i a l w[ r ]
r = new double [ max_step + 1 ] ;

314



12.6 – Schrödinger’s equation through diagonalization

w = new double [ max_step + 1 ] ;
f o r ( i = 0 ; i <= max_step ; i ++) {

r [ i ] = r_min + i ∗ s t e p ;
w[ i ] = p o t e n t i a l ( r [ i ] ) + o r b _ f a c t o r / ( r [ i ] ∗ r [ i ] ) ;

}
/ / l o c a l memory f o r t h e d i a g o n a l i z a t i o n p r o c e s s
d = new double [ max_step ] ; / / d i a g o n a l e l e m e n t s
e = new double [ max_step ] ; / / t r i d i a g o n a l o f f −d i a g o n a l e l e m e n t s
z = ( double ∗∗ ) m a t r i x ( max_step , max_step , s i z e o f ( double ) ) ;
f o r ( i = 0 ; i < max_step ; i ++) {

d [ i ] = c o n s t _ 1 + w[ i + 1 ] ;
e [ i ] = c o n s t _ 2 ;
z [ i ] [ i ] = 1 . 0 ;
f o r ( j = i + 1 ; j < max_step ; j ++) {

z [ i ] [ j ] = 0 . 0 ;
}

}
/ / d i a g o n a l i z e and o b t a i n e i g e n v a l u e s
t q l i ( d , e , max_step − 1 , z ) ;
/ / S o r t e i g e n v a l u e s as an a s c e n d i n g s e r i e s
q s o r t ( d , ( UL) max_step − 1 , s i z e o f ( double ) ,

( i n t ( ∗ ) ( c o n s t vo id ∗ , c o n s t vo id ∗ ) ) comp ) ;
/ / send r e s u l t s t o o u p u t f i l e
o u t p u t ( r_min , r_max , max_step , d ) ;
d e l e t e [ ] r ; d e l e t e [ ] w; d e l e t e [ ] e ; d e l e t e [ ] d ;
f r e e _ m a t r i x ( ( void ∗∗ ) z ) ; / / f r e e memory
o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re turn 0 ;

} / / End : f u n c t i o n main ( )

/∗
The f u n c t i o n p o t e n t i a l ( )
c a l c u l a t e s and r e t u r n t h e v a l u e o f t h e
p o t e n t i a l f o r a g i v e n argument x .
The p o t e n t i a l h ere i s f o r t h e 1−dim harmonic o s c i l l a t o r

∗ /

double p o t e n t i a l ( double x )
{

re turn x∗x ;

} / / End : f u n c t i o n p o t e n t i a l ( )

/∗
The f u n c t i o n i n t comp ( )
i s a u t i l i t y f u n c t i o n f o r t h e l i b r a r y f u n c t i o n q s o r t ( )
t o s o r t d o u b le numbers a f t e r i n c r e a s i n g v a l u e s .

∗ /

i n t comp ( c o n s t double ∗ val_1 , c o n s t double ∗ v a l _ 2 )
{

i f ( ( ∗ v a l _ 1 ) <= (∗ v a l _ 2 ) ) re turn −1;
e l s e i f ( ( ∗ v a l _ 1 ) > (∗ v a l _ 2 ) ) re turn +1 ;

315



Eigensystems

e l s e re turn 0 ;
} / / End : f u n c t i o n comp ( )

/ / read i n min and max r a d i u s , number o f mesh p o i n t s and l
void i n i t i a l i s e ( double& r_min , double& r_max , i n t& o r b _ l , i n t& max_step )
{

c o u t << ;
c i n >> r_min ;
c o u t << ;
c i n >> r_max ;
c o u t << ;
c i n >> o r b _ l ;
c o u t << ;
c i n >> max_step ;

} / / end o f f u n c t i o n i n i t i a l i s e
/ / o u t p u t o f r e s u l t s
void o u t p u t ( double r_min , double r_max , i n t max_step , double ∗d )
{

i n t i ;
o f i l e << << e n d l ;
o f i l e << s e t i o s f l a g s ( i o s : : sh o wp o in t | i o s : : u p p e r c a s e ) ;
o f i l e << << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << r_min << e n d l ;
o f i l e << << setw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << r_max << e n d l ;
o f i l e << << setw ( 1 5 ) << max_step << e n d l ;
o f i l e << << e n d l ;
f o r ( i = 0 ; i < 5 ; i ++) {

o f i l e << se tw ( 1 5 ) << s e t p r e c i s i o n ( 8 ) << d [ i ] << e n d l ;
}

} / / end o f f u n c t i o n o u t p u t

There are several features to be noted in this program.
The main program calls the function initialise, which reads in the minimum and maximum values of

r, the number of steps and the orbital angular momentum l. Thereafter we allocate place for the vectors
containing r and the potential, given by the variables r[i] and w[i], respectively. We also set up the
vectors d[i] and e[i] containing the diagonal and non-diagonal matrix elements. Calling the function tqli

we obtain in turn the unsorted eigenvalues. The latter are sorted by the intrinsic C-function qs o rt.
The calculaton of the wave function for the lowest eigenvalue is done in the function p lo t, while all

output of the calculations is directed to the fuction o u tp u t.
The included table exhibits the precision achieved as function of the number of mesh points N . The

exact values are 1, 3, 5, 7, 9.

Table 12.1: Five lowest eigenvalues as functions of the number of mesh points N with rmin = −10 and
rma x = 10 .

N E0 E1 E2 E3 E4

50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+00 8.568442E+00
100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E+00 8.896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E+00 8.974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E+00 8.993599E+00

1000 1.000053E+00 2.999917E+00 4.999723E+00 6.999353E+00 8.999016E+00

316



12.6 – Schrödinger’s equation through diagonalization

The agreement with the exact solution improves with increasing numbers of mesh points. However,
the agreement for the excited states is by no means impressive. Moreover, as the dimensionality in-
creases, the time consumption increases dramatically. Matrix diagonalization scales typically as ≈ N 3.
In addition, there is a maximum size of a matrix which can be stored in RAM.

The obvious question which then arises is whether this scheme is nothing but a mere example of
matrix diagonalization, with few practical applications of interest. In chapter 6, where we deal with
interpolation and extrapolation, we discussed also a called Richardson’s deferred extrapolation scheme.
Applied to this particualr case, the philosophy of this scheme would be to diagonalize the above matrix
for a set of values of N and thereby the step length h. Thereafter, an extrapolation is made to h → 0.
The obtained eigenvalues agree then with a remarkable precision with the exact solution. The algorithm
is then as follows

– Perform a series of diagonalizations of the matrix in Eq. (12.10 ) for different
values of the step size h. We obtain then a series of eigenvalues E(h/ 2k) with
k = 0, 1, 2, . . . . That will give us an array of ’x-values’ h, h/ 2, h/ 4, . . . and an
array of ’y-values’ E(h), E(h/ 2), E(h/ 4), . . . . Note that you will have such a set
for each eigenvalue.

– Use these values to perform an extrapolation calling e.g., the function POLINT with
the point where we wish to extrapolate to given by h = 0.

– End the iteration over k when the error returned by POLINT is smaller than a fixed
test.

The results for the 10 lowest-lying eigenstates for the one-dimensional harmonic oscillator are listed
below after just 3 iterations, i.e., the step size has been reduced to h/ 8 only. The exact results are
1, 3, 5, . . . , 19 and we see that the agreement is just excellent for the extrapolated results. The results
after diagonalization differ already at the fourth-fifth digit.

Parts of a Fortran90 program which includes Richardson’s extrapolation scheme is included here. It
performs five diagonalizations and establishes results for various step lengths and interpolates using the
function POLINT.
! s t a r t lo o p o ver i n t e r p o l a t i o n s , h ere we s e t max i n t e r p o l a t i o n s t o 5

DO i n t e r p o l =1 , 5
IF ( i n t e r p o l == 1 ) THEN

max_step= s t a r t _ s t e p
ELSE

max_step =( i n t e r p o l −1)∗2∗ s t a r t _ s t e p
ENDIF
n=max_step−1
ALLOCATE ( e ( n ) , d ( n ) )
ALLOCATE ( w( 0 : max_step ) , r ( 0 : max_step ) )
d =0 . ; e =0 .

! d e f i n e t h e s t e p s i z e
s t e p =( rmax−rmin ) /FLOAT( max_step )
hh ( i n t e r p o l ) = s t e p ∗ s t e p

! d e f i n e c o n s t a n t s f o r t h e m a t r i x t o be d i a g o n a l i z e d
c o n s t 1 = 2 . / ( s t e p ∗ s t e p )

317



Eigensystems

Table 12.2: Result for numerically calculated eigenvalues of the one-dimensional harmonic oscillator
after three iterations starting with a matrix of size 100 × 100 and ending with a matrix of dimension
8 00× 8 00. These four values are then used to extrapolate the 10 lowest-lying eigenvalues to h = 0.. The
values of x span from −10 to 10, that means that the starting step was h = 20/100 = 0.2. We list here
only the results after three iterations. The error test was set equal 10

−6.

Extrapolation Diagonalization Error
0.100000D+01 0.999931D+00 0.206825D-10
0.300000D+01 0.299965D+01 0.312617D-09
0.500000D+01 0.499910D+01 0.174602D-08
0.700000D+01 0.699826D+01 0.605671D-08
0.900000D+01 0.899715D+01 0.159170D-07
0.110000D+02 0.109958D+02 0.349902D-07
0.130000D+02 0.129941D+02 0.679884D-07
0.150000D+02 0.149921D+02 0.120735D-06
0.170000D+02 0.169899D+02 0.200229D-06
0.190000D+02 0.189874D+02 0.314718D-06

c o n s t 2 = −1 . / ( s t e p ∗ s t e p )
! s e t up r , t h e d i s t a n c e from t h e n u c l e u s and t h e f u n c t i o n w f o r en erg y

=0
! w c o r r e s p o n d s t h e n t o t h e p o t e n t i a l
! v a l u e s a t

DO i =0 , max_step
r ( i ) = rmin + i ∗ s t e p
w( i ) = p o t e n t i a l ( r ( i ) )

ENDDO
! s e t u p t h e d i a g o n a l d and t h e non−d i a g o n a l p a r t e o f
! t h e t r i d i a g o n a l m a t r i x m a t r i x t o be d i a g o n a l i z e d

d ( 1 : n ) = c o n s t 1 +w( 1 : n ) ; e ( 1 : n ) = c o n s t 2
! a l l o c a t e sp a ce f o r e i g e n v e c t o r i n f o

ALLOCATE ( z ( n , n ) )
! o b t a i n t h e e i g e n v a l u e s

CALL t q l i ( d , e , n , z )
! s o r t e i g e n v a l u e s as an a s c e n d i n g s e r i e s

CALL e i g e n v a l u e _ s o r t ( d , n )
DEALLOCATE ( z )
e r r 1 =0 .

! t h e i n t e r p o l a t i o n p a r t s t a r t s h ere
DO l =1 ,20

e r r 2 =0 .
v a l u e ( i n t e r p o l , l ) =d ( l )
i n p =d ( l )
IF ( i n t e r p o l > 1 ) THEN

CALL p o l i n t ( hh , v a l u e ( : , l ) , i n t e r p o l , 0 . d0 , inp , e r r 2 )
e r r 1 =MAX( e r r 1 , e r r 2 )
WRITE( 6 , ’ ( D12 . 6 , 2X, D12 . 6 , 2X, D12 . 6 ) ’ ) inp , d ( l ) , e r r 1

ELSE

318



12.7 – Discussion of BLAS and LAPACK functionalities

WRITE( 6 , ’ ( D12 . 6 , 2X, D12 . 6 , 2X, D12 . 6 ) ’ ) d ( l ) , d ( l ) , e r r 1
ENDIF

ENDDO
DEALLOCATE ( w, r , d , e )

ENDDO

12.7 Discussion of BLAS and LAPACK functionalities

In preparation for fall 2008.

12.8 Physics projects: Bound states in momentum space

In this problem we will solve the Schrödinger equation in momentum space for the deuteron. The
deuteron has only one bound state at an energy of −2.223 MeV. The ground state is given by the quantum
numbers l = 0, S = 1 and J = 1, with l, S, and J the relative orbital momentum, the total spin and
the total angular momentum, respectively. These quantum numbers are the sum of the single-particle
quantum numbers. The deuteron consists of a proton and neutron, with mass (average) of 9 3 8 MeV. The
electron is not included in the solution of the Schrödinger equation since its mass is much smaller than
those of the proton and the neutron. We can neglect it here. This means that e.g., the total spin S is the
sum of the spin of the neutron and the proton. The above three quantum numbers can be summarized
in the spectroscopic notation 2S+ 1lJ =3 S1, where S represents l = 0 here. It is a spin triplet state.
The spin wave function is thus symmetric. This also applies to the spatial part, since l = 0. To obtain
a totally anti-symmetric wave function we need to introduce another quantum number, namely isospin.
The deuteron has isospin T = 0, which gives a final wave function which is anti-symmetric.

We are going to use a simplified model for the interaction between the neutron and the proton. We
will assume that it goes like

V (r) = V0

e x p (−µr)

r
, (12.11)

where µ has units m−1 and serves to screen the potential for large values of r. The variable r is the
distance between the proton and the neutron. It is the relative coordinate, the centre of mass is not needed
in this problem. The nucleon-nucleon interaction has a finite and small range, typically of some few fm1.
We will in this exercise set µ = 0.7 fm−1. It is then proportional to the mass of the pion. The pion is the
lightest meson, and sets therefore the range of the nucleon-nucleon interaction. For low-energy problems
we can describe the nucleon-nucleon interaction through meson-exchange models, and the pion is the
lightest known meson, with mass of approximately 138 MeV.

Since we are going to solve the Schrödinger equation in momentum, we need the Fourier transform
of V (r). In a partial wave basis for l = 0 it becomes

V (k′, k) =
V0

4k′k
ln

(

(k′ + k)2 + µ2

(k′
− k)2 + µ2

)

, (12.12)

where k′ and k are the relative momenta for the proton and neutron system.

11 fm = 10
−15 m.

319



Eigensystems

For relative coordinates, the Schrödinger equation in momentum space becomes

k2

m
ψ(k) +

2

π

∫

∞

0

d pp2V (k, p)ψ(p) = Eψ(k). (12.13)

Here we have used units ~ = c = 1. This means that k has dimension energy. This is the equation we
are going to solve, with eigenvalue E and eigenfunction ψ(k). The approach to solve this equations goes
then as follows.

First we need to evaluate the integral over p using e.g., gaussian quadrature. This means that we
rewrite an integral like

∫ b

a

f(x)d x ≈

N
∑

i= 1

ωif(xi),

where we have fixed N lattice points through the corresponding weights ωi and points xi. The integral
in Eq. (12.13) is rewritten as

2

π

∫

∞

0

d pp2V (k, p)ψ(p) ≈
2

π

N
∑

i= 1

ωip
2

iV (k, pi)ψ(pi). (12.14)

We can then rewrite the Schrödinger equation as

k2

m
ψ(k) +

2

π

N
∑

j= 1

ωjp
2

jV (k, pj)ψ(pj) = Eψ(k). (12.15)

Using the same mesh points for k as we did for p in the integral evaluation, we get

p2

i

m
ψ(pi) +

2

π

N
∑

j= 1

ωjp
2

jV (pi, pj)ψ(pj) = Eψ(pi), (12.16)

with i, j = 1, 2, . . . ,N . This is a matrix eigenvalue equation and if we define an N ×N matrix H to be

Hij =
p2

i

m
δij +

2

π
ωjp

2

jV (pi, pj), (12.17)

where δij is the Kronecker delta, and an N × 1 vector

Ψ =













ψ(p1)
ψ(p2)
. . .

. . .

ψ(pN )













, (12.18)

we have the eigenvalue problem
HΨ = EΨ. (12.19)

The algorithm for solving the last equation may take the following form

– Fix the number of mesh points N .

320



12.8 – Physics projects: Bound states in momentum space

– Use the function gau le g in the program library to set up the weights ωi and the points pi. Before
you go on you need to recall that gau le g uses the Legendre polynomials to fix the mesh points
and weights. This means that the integral is for the interval [-1,1]. Your integral is for the interval
[0,∞]. You will need to map the weights from gau le g to your interval. To do this, call first gau le g,
with a = −1, b = 1. It returns the mesh points and weights. You then map these points over to the
limits in your integral. You can then use the following mapping

pi = co n st × tan
{π

4
(1 + xi)

}

,

and
ωi = co n st

π

4

wi

co s 2
(

π
4
(1 + xi)

) .

co ns t is a constant which we discuss below.

– Construct thereafter the matrix H with

V (pi, pj) =
V0

4pipj

ln

(

(pj + pi)
2 + µ2

(pj − pi)2 + µ2

)

.

– We are now ready to obtain the eigenvalues. We need first to rewrite the matrix H in tridiagonal
form. Do this by calling the library function tred2. This function returns the vector d with the
diagonal matrix elements of the tridiagonal matrix while e are the non-diagonal ones. To obtain the
eigenvalues we call the function tq li. On return, the array d contains the eigenvalues. If z is given
as the unity matrix on input, it returns the eigenvectors. For a given eigenvalue k, the eigenvector
is given by the column k in z, that is z[][k] in C, or z(:,k) in Fortran 90.

The problem to solve

1. Before you write the main program for the above algorithm make a dimensional analysis of Eq.
(12.13)! You can choose units so that pi and ωi are in fm−1. This is the standard unit for the
wave vector. Recall then to insert ~c in the appropriate places. For this case you can set the
value of co ns t = 1. You could also choose units so that the units of pi and ωi are in MeV. (we have
previously used so-called natural units ~ = c = 1). You will then need to multiply µ with ~c = 19 7
MeVfm to obtain the same units in the expression for the potential. Why? Show that V (pi, pj)
must have units MeV−2. What is the unit of V0? If you choose these units you should also multiply
the mesh points and the weights with ~c = 19 7 . That means, set the constant co ns t = 19 7 .

2. Write your own program so that you can solve the Schrödinger equation in momentum space.

3. Adjust the value of V0 so that you get close to the experimental value of the binding energy of the
deuteron, −2.223 MeV. Which sign should V0 have?

4. Try increasing the number of mesh points in steps of 8, for example 16, 24, etc and see how the
energy changes. Your program returns equally many eigenvalues as mesh points N . Only the true
ground state will be at negative energy.

321


