Chapter 13

Differential equations

If God has made the world a perfect mechanism, he has at least conceded so much to our
imperfect intellect that in order to predict little parts of it, we need not solve innumerable
differential equations, but can use dice with fair success. Max Born, quoted in H. R. Pagels,
The Cosmic Code [64]

13.1 Introduction

We may trace the origin of differential equations back to Newton in 1687! and his treatise on the gravita-
tional force and what is known to us as Newton’s second law in dynamics.

Needless to say, differential equations pervade the sciences and are to us the tools by which we
attempt to express in a concise mathematical language the laws of motion of nature. We uncover these
laws via the dialectics between theories, simulations and experiments, and we use them on a daily basis
which spans from applications in engineering or financial engineering to basic research in for example
biology, chemistry, mechanics, physics, ecological models or medicine.

We have already met the differential equation for radioactive decay in nuclear physics. Other famous
differential equations are Newton’s law of cooling in thermodynamics. the wave equation, Maxwell’s
equations in electromagnetism, the heat equation in thermodynamic, Laplace’s equation and Poisson’s
equation, Einstein’s field equation in general relativity, Schrodinger equation in quantum mechanics,
the Navier-Stokes equations in fluid dynamics, the Lotka-Volterra equation in population dynamics, the
Cauchy-Riemann equations in complex analysis and the Black-Scholes equation in finance, just to men-
tion a few. An excellent text on differential equations and computations is the text of Eriksson, Estep,
Hansbo and Johnson [65].

There are five main types of differential equations,

— ordinary differential equations (ODEs), discussed in this chapter for initial value problems only.
They contain functions of one independent variable, and derivatives in that variable. The next
chapter deals with ODEs and boundary value problems.

— Partial differential equations with functions of multiple independent variables and their partial
derivatives, covered in chapter 15.

'Newton had most of the relations for his laws ready 22 years earlier, when according to legend he was contemplating falling
apples. However, it took more than two decades before he published his theories, chiefly because he was lacking an essential
mathematical tool, differential calculus.
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Differential equations

— So-called delay differential equations that involve functions of one dependent variable, derivatives

in that variable, and depend on previous states of the dependent variables.

— Stochastic differential equations (SDEs) are differential equations in which one or more of the

terms is a stochastic process, thus resulting in a solution which is itself a stochastic process.

— Finally we have so-called differential algebraic equations (DAEs). These are differential equation

comprising differential and algebraic terms, given in implicit form.

In this chapter we restrict the attention to ordinary differential equations. We focus on initial value

problems and present some of the more commonly used methods for solving such problems numerically.
The physical systems which are discussed range from the classical pendulum with non-linear terms to
the physics of a neutron star or a white dwarf.

13.2  Ordinary differential equations

In this section we will mainly deal with ordinary differential equations and numerical methods suitable
for dealing with them. However, before we proceed, a brief remainder on differential equations may be
appropriate.
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— The order of the ODE refers to the order of the derivative on the left-hand side in the equation

dy
W _ ft.). (131

This equation is of first order and f is an arbitrary function. A second-order equation goes typically
like

d’y dy
— = f(t,—,y). 13.2
A well-known second-order equation is Newton’s second law
d*x

where £k is the force constant. ODE depend only on one variable, whereas

partial differential equations like the time-dependent Schrédinger equation

L OY(x,t) R (0%h(r,t) (e t) | 9PP(rt)
lhT%( Ox? + Oy? + 022 >+V(x)w(x,t), (134

may depend on several variables. In certain cases, like the above equation, the wave function can be
factorized in functions of the separate variables, so that the Schrédinger equation can be rewritten
in terms of sets of ordinary differential equations.

— We distinguish also between linear and non-linear differential equation where e.g.,

dy 3
— =g"(t)y(t 13.5
Y g, (135)
is an example of a linear equation, while
d
== g O(t) - g (1), (13.6)



13.3 - Finite difference methods

is a non-linear ODE. Another concept which dictates the numerical method chosen for solving an
ODE, is that of initial and boundary conditions. To give an example, in our study of neutron stars
below, we will need to solve two coupled first-order differential equations, one for the total mass
m and one for the pressure P as functions of p

dm

_ 2 2
= drrep(r)/c,
and P Gm(r)
_ Gm(r 9
d?‘ - 7'2 p(r)/c ‘

where p is the mass-energy density. The initial conditions are dictated by the mass being zero at the
center of the star, i.e., when r = 0, yielding m(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at the point where we have P = 0 in the solution
of the integral equations, we have the total radius R of the star and the total mass m(r = R). These
two conditions dictate the solution of the equations. Since the differential equations are solved by
stepping the radius from » = 0 to » = R, so-called one-step methods (see the next section) or
Runge-Kutta methods may yield stable solutions.

In the solution of the Schrodinger equation for a particle in a potential, we may need to apply
boundary conditions as well, such as demanding continuity of the wave function and its derivative.

— In many cases it is possible to rewrite a second-order differential equation in terms of two first-
order differential equations. Consider again the case of Newton’s second law in Eq. (13.3). If we
define the position z(t) = y(!) (¢) and the velocity v(t) = y?)(t) as its derivative

dyD(t) _ du(t)

)

we can rewrite Newton’s second law as two coupled first-order differential equations

dy® (t)
dt

m = —ka(t) = —kyM(t), (13.8)

and
dy"(t)

— @
=y . (13.9)

13.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather simple. Suppose
we have an initial value for the function y(t) given by

yo = y(t = to). (13.10)

We are interested in solving a differential equation in a region in space [a,b]. We define a step h by
splitting the interval in IV sub intervals, so that we have
b—a

h=— (13.11)
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Differential equations

With this step and the derivative of y we can construct the next value of the function y at
y1 =y(t1 =to+h), (13.12)

and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on fixed-step methods only. Let us try to generalize
the above procedure by writing the step y;1 in terms of the previous step y;

Yir1 = y(t = t; + h) = y(t;) + hA(t, i () + O(hPT), (13.13)

where O(hPT1) represents the truncation error. To determine A, we Taylor expand our function ¥

hP—1
yirr = y(t =t k) = y(t) + A (1) + -+ 4P () =) + O, (13.14)
where we will associate the derivatives in the parenthesis with
/ hr!
At yilt) = /() + -+ + () —). (13.15)
We define
y'(ti) = f(ti,yi) (13.16)
and if we truncate A at the first derivative, we have
Yir1 = y(t:) + hf (i, yi) + O(h?), (13.17)

which when complemented with t;1 = t; + h forms the algorithm for the well-known Euler method.
Note that at every step we make an approximation error of the order of O(h?), however the total error is
the sum over all steps N = (b — a)/h, yielding thus a global error which goes like NO(h?) ~ O(h).
To make Euler’s method more precise we can obviously decrease h (increase /N). However, if we are
computing the derivative f numerically by e.g., the two-steps formula

fle+h) - fz)
h

fae(x) = +O(h),
we can enter into roundoff error problems when we subtract two almost equal numbers f(z+h)— f(z) ~
0. Euler’s method is not recommended for precision calculation, although it is handy to use in order to
get a first view on how a solution may look like. As an example, consider Newton’s equation rewritten
in Eqgs. (13.8) and (13.9). We define yo = y(I)(t = 0) an vy = 3® (¢t = 0). The first steps in Newton’s
equations are then

s = yo + hvg + O(h?) (13.18)

and
g% = vy — hyok/m + O(h2). (13.19)

The Euler method is asymmetric in time, since it uses information about the derivative at the beginning

of the time interval. This means that we evaluate the position at yg) using the velocity at y(()2) =19. A

simple variation is to determine ygll using the velocity at yﬁl, that is (in a slightly more generalized
form)
1 2
yily = o + byl + O?) (13.20)
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13.3 - Finite difference methods

and
v =42 + ha, +O(h?). (13.21)
The acceleration a,, is a function of an(yg), y7(12) ,1) and needs to be evaluated as well. This is the Euler-

Cromer method.
Let us then include the second derivative in our Taylor expansion. We have then

3
s o). (13.22)

A(ti, yiti)) = f(t:) +
The second derivative can be rewritten as

_df _of ofoy _of Of

1/ — / _ v _ 24 ~J I _ 24 —J 1 ‘2
e R T TR i TR TR (13.23)
and we can rewrite Eq. (13.14) as
h? [0 0 )
Yir1 =yt =t; +h) = y(t:;) + hf(t:) + > (6_{ + 3—5 ) +O(h%), (13.24)

which has a local approximation error O(h?) and a global error O(h?). These approximations can be
generalized by using the derivative f to arbitrary order so that we have

—1
it = 0t = 1 ) = (8 + A7)+ SO D)) O, 1329

These methods, based on higher-order derivatives, are in general not used in numerical computation,
since they rely on evaluating derivatives several times. Unless one has analytical expressions for these,
the risk of roundoff errors is large.

13.3.1 Improvements to Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addition the need
for computing a second derivative, is the so-called midpoint method. We have then

h
v =+ 5 (W2 + ) +00?) (13.26)
and
v =y 4 ha, +O(h?), (13.27)
yielding
h2 f
v = o+ by + a0 (13.28)

implying that the local truncation error in the position is now O(h?), whereas Euler’s or Euler-Cromer’s
methods have a local error of O(h?). Thus, the midpoint method yields a global error with second-order
accuracy for the position and first-order accuracy for the velocity. However, although these methods yield
exact results for constant accelerations, the error increases in general with each time step.

One method that avoids this is the so-called half-step method. Here we define

Uity = U2 o B + O(R?), (13.29)
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and
=+ w0, (13.30)
Note that this method needs the calculation of yg)Q This is done using e.g., Euler’s method
@ _, @, h 2
Yip =Y *+ 500 + O(h?). (13.31)

As this method is numerically stable, it is often used instead of Euler’s method. Another method which
one may encounter is the Euler-Richardson method with

v = 9@ + hapyjp + O, (13.32)
and
=+ hy) 02, (13.33)

13.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy
a - f(t>y)7

which solved with Euler’s algorithm results in the following algorithm
Yit1 = y(t:) + hf (i vi)

with t;41 = t; + h. This means geometrically that we compute the slope at y; and use it to predict y;+1
at a later time ¢;41. We introduce k1 = f(¢;,y;) and rewrite our prediction for ;1 as

Yir1 ~ y(t;) + hky.

We can then use the prediction y;41 to compute a new slope at ¢,11 by defining ko = f(t;41,yi+1). We
define the new value of y; 1 by taking the average of the two slopes, resulting in

Yir1 = y(ti) + g(k‘l + k2).
The algorithm is very simple,namely
1. Compute the slope at ¢;, that is define the quantity k1 = f(¢;,v;).
2. Make a predicition for the solution by computing y;+1 =~ y(t;) + hk1 by Euler’s method.
3. Use the predicition y;11 to compute a new slope at ;11 defining the quantity ko = f(¢;11,yit1)-
4. Correct the value of y; 1 by taking the average of the two slopes yielding y;11 = y(¢;)+ % (k1+k2).

It can be shown [29] that this procedure results in a mathematical truncation which goes like O(h?),
to be contrasted with Euler’s method which runs as O(h). One additional function evaluation yields a
better error estimate.
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13.4 — More on finite difference methods, Runge-Kutta methods

This simple algorithm conveys the philosophy of a large class of methods called predictor-corrector
methods, see chapter 15 of Ref. [22] for additional algorithms. A simple extension is obviously to use
Simpson’s method to approximate the integral

tit1
Yir1 = Yi +/ f(t,y)dt,
t;

when we solve the differential equation by successive integrations. The next section deals with a partic-

ular class of efficient methods for solving ordinary differential equations, namely various Runge-Kutta
methods.

13.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general better algo-
rithms for solutions of an ODE. The basic philosophy is that it provides an intermediate step in the
computation of 4/;41.

To see this, consider first the following definitions

dy
gl f(ty), (13.34)
and
y(t) = /f(t,y)dt, (13.35)
and
tit1
Yit1 = Vi +/ f(t,y)dt. (13.36)
t;

To demonstrate the philosophy behind RK methods, let us consider the second-order RK method, RK?2.
The first approximation consists in Taylor expanding f(¢,y) around the center of the integration interval
ti to ti11, i.e., at t; + h/2, h being the step. Using the midpoint formula for an integral, defining
y(ti +h/2) = yiy1/2 and t; + h/2 = t; 4 /5, we obtain

tit1
/ F(ty)dt = hf(tig1/2, yip1/2) + O(RP). (13.37)

ti
This means in turn that we have
Yi1 = Ui + hf (tiy1/2:Yir1/2) + O(RP). (13.38)

However, we do not know the value of y; /5. Here comes thus the next approximation, namely, we use
Euler’s method to approximate y;1/2. We have then

h dy h
Yavi/2) = Yi T Sd y(tl) + §f<tu yz)~ (13.39)

This means that we can define the following algorithm for the second-order Runge-Kutta method, RK2.
ki =hf(ti,y), (13.40)
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ko = hf(tiy1/2,yi +k1/2), (13.41)

with the final value
Yiri ~ Yi + ka2 + O(h3). (13.42)

The difference between the previous one-step methods is that we now need an intermediate step in
our evaluation, namely ¢, + h/2 = t(i+1/2) Where we evaluate the derivative f. This involves more
operations, but the gain is a better stability in the solution. The fourth-order Runge-Kutta, RK4, which
we will employ in the solution of various differential equations below, is easily derived. The steps are as
follows. We start again with the equation

tiv1
Yir1 = Yi + / f(t,y)dt,
t;

but instead of approximating the integral with the midpoint rule, we use now Simpsons’ rule at t; + h/2,
h being the step. Using Simpson’s formula for an integral, defining y(t; +h/2) = y; 112 and t; +h/2 =
ti11/2, We obtain

tit1 h
/t Syt~ [fts ) + 4 (i Yiere) + f i vin)] + O, (13.43)

This means in turn that we have

h
il =Yt & [f(tiyi) + 4f (L1 /2 Yit1y2) + [ (tisr, yig1)] + O(RP). (13.44)

However, we do not know the values of y; 1 /2 and y;+1. The fourth-order Runge-Kutta method splits the
midpoint evaluations in two steps, that is we have

h
Yir1 R Yi + 5 [f (i) +2f (b1 2, Yirry2) + 2f (b1 2, Yierj2) + Fti1, vis1)] s

since we want to approximate the slope at y; 13 in two steps. The first two function evaluations are as
for the second order Runge-Kutta method. The algorithm is as follows

1. We compute first
ki = hf(ti, i), (13.45)

which is nothing but the slope at ¢;.If we stop here we have Euler’s method.

2. Then we compute the slope at the midpoint using Euler’s method to predict y;, 1 /2, as in the second-
order Runge-Kutta method. This leads to the computation of

ko = hf(ti+h/2,y; + k1/2). (13.46)
3. The improved slope at the midpoint is used to further improve the slope of y;, 1 /o by computing

ks = hf(t; + h/2,yi + ka/2). (13.47)

4. With the latter slope we can in turn predict the value of y; via the computation of

ky =hf(t; + h,y; + k3). (13.48)
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13.5 — Adaptive Runge-Kutta and multistep methods

5. The final algorithm becomes then

1
Yi+1 = Yi + 6 (k1 4 2ka + 2k3 + kq) . (13.49)

Thus, the algorithm consists in first calculating k1 with ¢;, y; and f as inputs. Thereafter, we increase
the step size by h/2 and calculate ko, then k3 and finally k4. With this caveat, we can then obtain the
new value for the variable y. It results in four function evaluations, but the accuracy is increased by
two orders compared with the second-order Runge-Kutta method. The fourth order Runge-Kutta method
has a global truncation error which goes like O(h*). Fig. 13.1 gives a geometrical interpretation of the
fourth-order Runge-Kutta method.

Yi+1/2 and ]6‘2 _____ @--"""

Yit+1 and k’4

y-i;l/g and ]{?3

t; ti+h/2 ti+h t

Figure 13.1: Geometrical interpretation of the fourth-order Runge-Kutta method. The derivative is
evaluated at four points, once at the intial point, twice at the trial midpoint and once at the trial end-
point. These four derivatives constitute one Runge-Kutta step resulting in the final value for y;1; =
yi + 1/6(k1 + 2kg + 2ks + ky).

13.5 Adaptive Runge-Kutta and multistep methods

In preparation.
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Figure 13.2: Block tied to a wall with a spring tension acting on it.

13.6 Physics examples

13.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding on a
horizontal frictionless surface. The block is tied to a wall with a spring, portrayed in e.g., Fig. 13.2. If
the spring is not compressed or stretched too far, the force on the block at a given position x is

F = —kz. (13.50)

The negative sign means that the force acts to restore the object to an equilibrium position. Newton’s
equation of motion for this idealized system is then

d2
m—s = —ke, (13.51)
or we could rephrase it as
d? k
d—tf = ——1 = —wix, (13.52)
m

with the angular frequency w% =k/m.
The above differential equation has the advantage that it can be solved analytically with solutions on
the form
x(t) = Acos(wot + v),

where A is the amplitude and v the phase constant. This provides in turn an important test for the
numerical solution and the development of a program for more complicated cases which cannot be solved
analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential equation as
two coupled first-order differential equations. With the position x(t) and the velocity v(t) = dx/dt we
can reformulate Newton’s equation in the following way

dx(t)
dt

= o(t), (13.53)
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13.6 — Physics examples

and
W) _ _2a). (13.54)
dt

We are now going to solve these equations using the Runge-Kutta method to fourth order discussed
previously. Before proceeding however, it is important to note that in addition to the exact solution, we
have at least two further tests which can be used to check our solution.

Since functions like cos are periodic with a period 27, then the solution x(¢) has also to be periodic.
This means that

2(t+T) = a(t), (13.55)

with 7" the period defined as
_ 2w 2m

= . (13.56)
wo  \/k/m
Observe that T' depends only on k/m and not on the amplitude of the solution or the constant v.
In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

z(t=0)=1m v(t=0) =0m/s, (13.57)

meaning that block is at rest at ¢ = 0 but with a potential energy
1 5 1
Ey = §kx(t =0)" = 51{:. (13.58)

The total energy at any time ¢ has however to be conserved, meaning that our solution has to fulfil the
condition

1 1
Ey = ikzx(t)z + Emv(t)z. (13.59)

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choice v(¢ = 0) = 0 and some fixed
value for the position. Since we are going to test our results against the periodicity requirement, it
is convenient to set the final time equal ¢ty = 27, where we choose k/m = 1. The initial time is
set equal to ¢; = 0. You could alternatively read in the ratio k/m.

2. Choose the method you wish to employ in solving the problem. In the enclosed program we have
chosen the fourth-order Runge-Kutta method. Subdivide the time interval [t;, ] into a grid with
step size

_ byt

h N

where NN is the number of mesh points.

3. Calculate now the total energy given by
1 1
Ey = ka(t = 0)? = —k.
0=75 a( ) 5

and use this when checking the numerically calculated energy from the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtain z;41 and v;4; starting from the previous values x; and
Vi..
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5. When we have computed x(v),11 we upgrade ;11 = t; + h.

6. This iterative process continues till we reach the maximum time ¢y = 2.

7. The results are checked against the exact solution. Furthermore, one has to check the stability of

the numerical solution against the chosen number of mesh points N.

Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here, with a corresponding Fortran

90/95 code at programs/chapter13/program1.f90

http://folk.uio.no/mhjensen/fys3150/2005/programs/chapter13/programl.cpp

/* This program solves Newton’s equation for a block
sliding on a horizontal frictionless surface. The block
is tied to a wall with a spring, and Newton’s equation
takes the form

m d"2x/dtr2 =—kx

with k the spring tension and m the mass of the block.
The angular frequency is omega”2 = k/m and we set it equal
1 in this example program.

Newton’s equation is rewritten as two coupled differential
equations , one for the position x and one for the velocity v
dx/dt = v and
dv/dt = —x when we set k/m=1

We use therefore a two—dimensional array to represent x and v
as functions of t

y[0] == x

yll] == v

dy[0]/dt = v

dy[1]/dt —X

The derivatives are calculated by the user defined function
derivatives .

The user has to specify the initial velocity (usually v_0=0)
the number of steps and the initial position. In the programme
below we fix the time interval [a,b] to [0,2xpi].

*/

#include <cmath>

#include <iostream >

#include <fstream >

#include <iomanip>

#include "1lib.h"

using namespace std;

// output file as global variable
ofstream ofile;

// function declarations

void derivatives (double, double *x, double x);
void initialise ( double&, double&, int&);
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void output( double, double x, double);
void runge_kutta_4(double *, double *, int, double, double,
double *, void (%) (double, double x, double x));

int main(int argc, charx argv][])
{
//  declarations of variables
double xy, xdydt, xyout, t, h, tmax, EO;
double initial_x , initial_v;
int i, number_of_steps, n;
char xoutfilename;
// Read in output file , abort if there are too few command—line
arguments
if ( arge <=1 ){
cout << "Bad Usage: " << argv|[0] <<
" read also output file on same line" << endl;
exit(1);
}
else {
outfilename=argv[1];
}
ofile .open(outfilename);
// this is the number of differential equations
n = 2;
//  allocate space in memory for the arrays containing the derivatives
dydt = new double[n];
y = new double[n];
yout = new double[n];
// read in the initial position, velocity and number of steps
initialise (initial_x , initial_v , number_of_steps);
//  setting initial values, step size and max time tmax

h = 4.xacos(—1.)/( (double) number_of_steps); /] the step size
tmax = hxnumber_of_steps; // the final time

y[0] = initial_x; // initial position

y[1] = initial_v; // initial velocity

t=0.; // initial time

EO = 0.5xy[0]*y[0]+0.5xy[1]xy[1]; // the initial total energy

/!l now we start solving the differential equations using the RK4 method
while (t <= tmax){

derivatives (t, y, dydt); // initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i = 0; i < n; i++) {

ylil = yout[il:
1
t += h;
output(t, y, EO); /! write to file

}
delete [] y; delete [] dydt; delete [] yout;

ofile.close(); // close output file
return O;
} //  End of main function
// Read in from screen the number of steps,
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dydt[0]=y[1]; // derivative of x
dydt[1]=—y[0]; // derivative of v
} // end of function derivatives

/1
void output(double t,

{

function to write out the final
double xy,

<<
<<
<<
<<

ofile
ofile
ofile
ofile

setiosflags (ios ::showpoint |
setw (15) << setprecision (8)
setw (15) setprecision (8)
setw (15) setprecision (8)
ofile << setw(15) setprecision (8)
ofile << setw(15) setprecision (8)
0.5xy[0]xy[0]+0.

} // end of function output

/%
the result yout,
are declared as

and returns
these variables
input the
dydx. It receives also
number of differential
the initial value of x.
function xderivs where

equations ,
It receive

*/
void runge_kutta_4(double xy,
double xyout,

*))
{

int i;
double xh ,hh, ho6;
double xdym, *xdyt, *yt;
/1 allocate space for local vectors
dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = hx*0.5;
h6é = h/6.;

336

i0s

<<

<<

S

double xdydx,
void (xderivs) (double ,

/1! initial position and initial speed
void initialise (double& initial_x , double& initial_v , int&
number_of_steps)

{

cout << "Initial position = ";

cin >> initial_x;

cout << "Initial speed = ";

cin >> initial_v;

cout << "Number of steps = ";

cin >> number_of_steps;

}// end of function initialise

/1! this function sets up the derivatives for this special case
void derivatives (double t, double xy, double xdydt)

{

results
double EO)

:ruppercase);
t]

y[0];

yI11;

cos(t);

S5xy[1]xy[l1]—EO0 << endl;

This function upgrades a function y (input as a pointer)
also as a pointer.
arrays.
starting value for the derivatives
the variable n which represents
the
also
the given derivative

Note that
also receives as
in the pointer
the

It

step size h and
the name of the
is computed

double x, double h,
double x, double

int n,
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xh = x+hh;
for (i = 0; 1 < n; i++) {
yt[i] = y[i]+hhxdydx[i];
!
(xderivs)(xh,yt,dyt); // computation of k2, eq. 3.60
for (i = 0; 1 < n; i++) {
yt[i] = y[i]+hhxdyt[i];
}
(xderivs)(xh,yt,dym); // computation of k3, eq. 3.61
for (i=0; i < n; i++) {
yt[i] = y[i]+hxdym[i];
dym[i] += dyt[i];
}

(xderivs) (x+h,yt,dyt); /!l computation of k4, eq. 3.62
/1 now we upgrade y in the array yout
for (i = 0; i < n; i++){

yout[i] = y[i]+h6x(dydx[i]+dyt[i]+2.0xdym[i]);
1
delete []dym;
delete [] dyt;
delete [] yt;
} /! end of function Runge—kutta 4

In Fig. 13.3 we exhibit the development of the difference between the calculated energy and the exact
energy at t = 0 after two periods and with N = 1000 and N = 10000 mesh points. This figure
demonstrates clearly the need of developing tests for checking the algorithm used. We see that even for
N = 1000 there is an increasing difference between the computed energy and the exact energy after only
two periods.

13.6.2  Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call such a
motion for damped and the system is said to be dissipative rather than conservative. Considering again
the simple block sliding on a plane, we could try to implement such a dissipative behavior through a drag
force which is proportional to the first derivative of z, i.e., the velocity. We can then expand Eq. (13.52)

to )

d°x 9 dz

3 = Wi — v (13.60)
where v is the damping coefficient, being a measure of the magnitude of the drag term.

We could however counteract the dissipative mechanism by applying e.g., a periodic external force

F(t) = Beos(wt), (13.61)
and we rewrite Eq. (13.60) as
d*x 9 dz

Although we have specialized to a block sliding on a surface, the above equations are rather general
for quite many physical systems.

If we replace x by the charge (), v with the resistance R, the velocity with the current /, the inductance
L with the mass m, the spring constant with the inverse capacitance C' and the force F with the voltage
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Figure 13.3: Plot of AE(t) = Ey — Ecomputed for N = 1000 and N = 10000 time steps up to two
periods. The initial position z(o = 1 m and initial velocity vo = 0 m/s. The mass and spring tension are
settok =m = 1.
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L

Figure 13.4: Simple RLC circuit with a voltage source V.

drop V', we rewrite Eq. (13.62) as

A S e ) (13.63)

The circuit is shown in Fig. 13.4.

How did we get there? We have defined an electric circuit which consists of a resistance R with
voltage drop IR, a capacitor with voltage drop @)/C' and an inductor L with voltage drop LdI/dt. The
circuit is powered by an alternating voltage source and using Kirchhoff’s law, which is a consequence of
energy conservation, we have

V(t)=IR+ LdI/dt+ Q/C, (13.64)

and using 40
I1=— 13.65
7R ( )

we arrive at Eq. (13.63).

This section was meant to give you a feeling of the wide range of applicability of the methods we have
discussed. However, before leaving this topic entirely, we’ll dwelve into the problems of the pendulum,
from almost harmonic oscillations to chaotic motion!

13.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with mass m at the end of a rigid rod of length [ attached to say a fixed frictionless
pivot which allows the pendulum to move freely under gravity in the vertical plane as illustrated in
Fig. 13.5.

The angular equation of motion of the pendulum is again given by Newton’s equation, but now as a
nonlinear differential equation

ld29 + n(f) =0 (13.66)
ml—; + mgsin(0) = .
dt2 g )
with an angular velocity and acceleration given by
db
=[— 13.67
v=Ia ( )
and )
d-0
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pivot

length 1

mass m

mg

Figure 13.5: A simple pendulum.

For small angles, we can use the approximation
sin(0) =~ 0.
and rewrite the above differential equation as

d’o g

— =—-=0 13.69

e 70 ( )
which is exactly of the same form as Eq. (13.52). We can thus check our solutions for small values of 6
against an analytical solution. The period is now

T= . (13.70)

We do however expect that the motion will gradually come to an end due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes
2
mlj—tg + I/% + mgsin(0) = 0, (13.71)
where v is now a positive constant parameterizing the viscosity of the medium in question. In order
to maintain the motion against viscosity, it is necessary to add some external driving force. We choose
here, in analogy with the discussion about the electric circuit, a periodic driving force. The last equation
becomes then
mlﬁ + Vﬁ + mgsin(0) = Acos(wt) (13.72)
az " Va7 - ’ '
with A and w two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.
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If we now define the natural frequency
wo =Vg/l, (13.73)

the so-called natural frequency and the new dimensionless quantities

t = wot, (13.74)
with the dimensionless driving frequency
o= (13.75)
wo

and introducing the quantity @, called the quality factor,

mg

= ) (13.76)
wolV
and the dimensionless amplitude
i-A (13.77)
mg
we can rewrite Eq. (13.72) as
d’0  1d6 N R
— + —=— + sin(f) = Acos(wt). 13.78
Tt Ggp +ein(0) = Acos(oi) (1378)

This equation can in turn be recast in terms of two coupled first-order differential equations as follows

= =4, 13.79
ai (13.79)
and

do S

d—g = —% — sin(0) + Acos (). (13.80)

These are the equations to be solved. The factor () represents the number of oscillations of the
undriven system that must occur before its energy is significantly reduced due to the viscous drag. The
amplitude A is measured in units of the maximum possible gravitational torque while w is the angular
frequency of the external torque measured in units of the pendulum’s natural frequency.

13.6.4 Spinning magnet

Another simple example is that of e.g., a compass needle that is free to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. The equation is then

d*0 u ‘
o= —YBocos(wt)sm(G), (13.81)

where 0 is the angle of the needle with respect to a fixed axis along the field, i is the magnetic moment
of the needle, I its moment of inertia and By and w the amplitude and angular frequency of the magnetic
field respectively.
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13.7 Physics Project: the pendulum

13.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through numerical efforts,
it is always useful to check our numerical code against analytic solutions. For small angles 6, we have
sinf =~ 6 and our equations become

df

— =1, 13.82
ikl ( )

and
do b
d Q
These equations are linear in the angle 6 and are similar to those of the sliding block or the RLC circuit.
With given initial conditions 7y and g they can be solved analytically to yield

e 1
0(t) = |00 — iSESgr | e /P cos(\/1 - 7 (13.84)

. A(1_222 _ . A(1—&2)cos () +2 sin(@T)
+ [”0 + 36~ (f‘_(—éZ)sz%Q/%?} ¢ TﬂQSZ”(\/ l- e+ —a e

0 + Acos(if). (13.83)

i~2
W(t) - [@0 - %} e/ cos(, /1~ hu7) (13.85)
- Al(1—02)—02 /02 _r . GA[-(1-02)sin(oT)+ L cos(@r
— |60+ 3 — FEIE | e sin( 1 - o) + O Gsir  feonon),

with @ > 1/2. The first two terms depend on the initial conditions and decay exponentially in time. If
we wait long enough for these terms to vanish, the solutions become independent of the initial conditions
and the motion of the pendulum settles down to the following simple orbit in phase space

A(1 — &?)cos(@T) + %sin(dm-)
(1— @22 +a2/Q? ’

o(t) = (13.86)

and ) X
5() — QA[-(1 — @?)sin(@T) + Geos(wr)]
o(t) = (1—02)2 +02%/Q? ’

tracing the closed phase-space curve
0\ 2 5 \2
= + =] =1 13.88
(3) + () w3

A=

(13.87)

with

(13.89)

VIS
This curve forms an ellipse whose principal axes are § and v. This curve is closed, as we will see from
the examples below, implying that the motion is periodic in time, the solution repeats itself exactly after
each period 7' = 27 /@. Before we discuss results for various frequencies, quality factors and amplitudes,
it is instructive to compare different numerical methods. In Fig. 13.6 we show the angle ¢ as function
of time 7 for the case with Q = 2, © = 2/3 and A =0.5. The length is set equal to 1 m and mass of
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the pendulum is set equal to 1 kg. The inital velocity is 09 = 0 and 6y = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), Euler-Richardson’s method in
Egs. (13.32)-(13.33) and finally the fourth-order Runge-Kutta scheme RK4. We note that after few time
steps, we obtain the classical harmonic motion. We would have obtained a similar picture if we were
to switch off the external force, A = 0 and set the frictional damping to zero, i.e., Q = 0. Then, the
qualitative picture is that of an idealized harmonic oscillation without damping. However, we see that
Euler’s method performs poorly and after a few steps its algorithmic simplicity leads to results which
deviate considerably from the other methods. In the discussion hereafter we will thus limit ourselves to

3 T
RK4 ——
oo o Euler -
2+ : g : ; Halfstep —
: : : . Euler-Richardson:---- -+
N o |
9 |
1k _
92+ _
-3 1 1 \ 1 1 1
0 5 10 15 20 25 30 35

t/2m

Figure 13.6: Plot of € as function of time 7 with Q = 2, © = 2/3 and A = 0.5. The mass and length
of the pendulum are set equal to 1. The initial velocity is 99 = 0 and 6y = 0.01. Four different methods
have been used to solve the equations, Euler’s method from Eq. (13.17), the half-step method, Euler-
Richardson’s method in Egs. (13.32)-(13.33) and finally the fourth-order Runge-Kutta scheme RK4. Only
N = 100 integration points have been used for a time interval ¢ € [0, 107].

present results obtained with the fourth-order Runge-Kutta method.

The corresponding phase space plot is shown in Fig. 13.7, for the same parameters as in Fig. 13.6. We
observe here that the plot moves towards an ellipse with periodic motion. This stable phase-space curve is
called a periodic attractor. It is called attractor because, irrespective of the initial conditions, the trajectory
in phase-space tends asymptotically to such a curve in the limit 7 — oo. It is called periodic, since it
exhibits periodic motion in time, as seen from Fig. 13.6. In addition, we should note that this periodic
motion shows what we call resonant behavior since the the driving frequency of the force approaches the
natural frequency of oscillation of the pendulum. This is essentially due to the fact that we are studying
a linear system, yielding the well-known periodic motion. The non-linear system exhibits a much richer
set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation we change the initial conditions to say
6o = 0.3 but keep the other parameters equal to the previous case. The curve for 6 is shown in Fig. 13.8.
The corresponding phase-space curve is shown in Fig. 13.9. This curve demonstrates that with the above
given sets of parameters, after a certain number of periods, the phase-space curve stabilizes to the same
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-05

Figure 13.7: Phase-space curve of a linear damped pendulum with @ = 2, & = 2/3 and A =0.5. The
inital velocity is 99 = 0 and 6y = 0.01.
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Figure 13.8: Plot of 6 as function of time 7 with Q = 2, @ = 2/3 and A = 0.5. The mass of the
pendulum is set equal to 1 kg and its length to 1 m. The inital velocity is 99 = 0 and 6y = 0.3.
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>

Figure 13.9: Phase-space curve with @ = 2, & = 2/3 and A = 0.5. The mass of the pendulum is set
equal to 1 kg and its length [ = 1 m.. The inital velocity is 09 = 0 and 6y = 0.3.

curve as in the previous case, irrespective of initial conditions. However, it takes more time for the
pendulum to establish a periodic motion and when a stable orbit in phase-space is reached the pendulum
moves in accordance with the driving frequency of the force. The qualitative picture is much the same as
previously. The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude to A = 1.35 we see in Fig. 13.10 that € as function
of time exhibits a rather different behavior from Fig. 13.8, even though the initial conditions and all other
parameters except A are the same. The phase-space curve is shown in Fig. 13.11.

We will explore these topics in more detail in Section 13.10 where we extend our discussion to the
phenomena of period doubling and its link to chaotic motion.

13.7.2  The pendulum code

The program used to obtain the results discussed above is presented here. The enclosed code solves the
pendulum equations for any angle 6 with an external force Acos(wt). It employes several methods for
solving the two coupled differential equations, from Euler’s method to adaptive size methods coupled
with fourth-order Runge-Kutta. It is straightforward to apply this program to other systems which exhibit
harmonic oscillations or change the functional form of the external force.

We have also introduced the class concept, where we define various methods for solving ordinary
and coupled first order differential equations via the . class pendulum. This methods access variables
which belong only to this particular class via the private declaration. As such, the methods we list here
can easily be reused by other types of ordinary differential equations. In the code below, we list only the
fourth order Runge Kutta method, which was used to generate the above figures. For the full code see
programs/chapter13/program?2.cpp.

http://folk.uio.no/mhjensen/fys3150/2005/programs/chapterl3/program2.cpp

#include <stdio .h>
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>

Figure 13.10: Plot of 6 as function of time 7 with Q = 2, @ = 2/3 and A = 1.35. The mass of the
pendulum is set equal to 1 kg and its length to 1 m. The inital velocity is g = 0 and 6y = 0.3. Every time
0 passes the value +7 we reset its value to swing between 6 € [—, pi]. This gives the vertical jumps in
amplitude.
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Figure 13.11: Phase-space curve after 10 periods with @ = 2, © = 2/3 and A = 1.35. The mass of the
pendulum is set equal to 1 kg and its length I = 1 m. The inital velocity is 99 = 0 and 6y = 0.3.
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#include <iostream.h>

#include <math.h>

#include <fstream .h>

/%

Different methods for solving ODEs are presented
We are solving the following eqation:

ms1l*(phi)’’ + viscosity «(phi)’ + mxgx*sin(phi) = Axcos(omegaxt)

If you want to solve similar equations with other values you have to

rewrite the methods ’derivatives’ and ’initialise ’ and change the
variables in the private

part of the class Pendulum

At first we rewrite the equation using the following definitions:
omega_0 = sqrt(gxl)

t_roof = omega_Oxt

omega_roof = omega/omega_0

Q = (mxg)/(omega_Oxreib)

A_roof = A/(mxg)

and we get a dimensionless equation

(phi)’’ + 1/Qx(phi)’ + sin(phi) = A_roofxcos(omega_roofxt_roof)

This equation can be written as two equations of first order:

(phi)” = v
(v)’ = —v/Q — sin(phi) +A_roofxcos(omega_roofxt_roof)

All numerical methods are applied to the last two equations.
The algorithms are taken from the book "An introduction to computer
simulation methods"

*x/

class pendelum

{

private:
double Q, A_roof, omega_0, omega_roof,g; //
double y[2]; //for the initial —values of phi and v
int n; // how many steps

double delta_t ,delta_t_roof;
// Definition of methods to solve ODEs
public:
void derivatives (double ,double x,double %) ;
void initialise ();
void euler () ;
void euler_cromer();
void midpoint();
void euler_richardson () ;
void half_step ();
void rk2(); //runge—kutta—second—order
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void rk4_step(double ,double *,double «,double); // we need it in
function rk4 () and asc ()

void rk4(); //runge—kutta—fourth—order

void asc(); //runge—kutta—fourth—order with adaptive stepsize control

s

/1 This function defines the particular coupled first order ODEs
void pendelum:: derivatives (double t, doublex in, doublex out)
{ /x Here we are calculating the derivatives at (dimensionless) time t
in’ are the values of phi and v, which are used for the calculation
The results are given to ’out’ x/

out[O0]=in[1]; //out[0] = (phi)> =v
if (Q)
out[l]J=—in[1]/((double)Q)—sin(in[0])+A_roofxcos(omega_roofxt); //out
[1] = (phi)”’
else

out[l]J=—sin (in[0])+A_roofxcos(omega_roofxt); //out[1] = (phi)’’
}
// Here we define all input parameters.
void pendelum:: initialise ()
{
double m,1,omega,A, viscosity ,phi_0,v_0,t_end;
cout<<"Solving the differential eqation of the pendulum!\n";
cout<<"We have a pendulum with mass m, length 1. Then we have a
periodic force with amplitude A and omegal\n";
cout<<"Furthermore there is a viscous drag coefficient.\n";
cout<<"The initial conditions at t=0 are phi_O and v_0\n";
cout<<"Mass m: ";
cin>>m;
cout<<"length 1: ";
cin>>1;
cout<<"omega of the force: ";
cin>>omega;
cout<<"amplitude of the force: ";
cin>>A;
cout<<"The value of the viscous drag constant (viscosity): ",
cin>>viscosity ;
cout<<"phi_0: ";
cin>>y[0];
cout<<"v_0: ";
cin>>y|[1];
cout<<"Number of time steps or integration steps:";
cin>>n;
cout<<"Final time steps as multiplum of pi:";
cin>>t_end;
t_end *= acos(—1.);
g=9.81;
// We need the following values:
omega_O=sqrt (g/((double)l)); /! omega of the pendulum
if (viscosity) Q= mxg/((double)omega_Oxviscosity);
else Q=0; //calculating Q
A_roof=A/((double )mxg) ;
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}

omega_roof=omega/((double)omega_0);

delta_t_roof=omega_Oxt_end/((double)n); // delta_t without dimension

delta_t=t_end/((double)n);

// fourth order Run

void pendelum:: rk4_step(double t,double xyin,double xyout,double delta_t)

{

}

/
The function calculates one step of fourth—order—runge—kutta—method
We will need it for the normal fourth—order—Runge—Kutta—method and
for RK—method with adaptive stepsize control

The function calculates the value of y(t + delta_t) using fourth—
order—RK—method

Input: time t and the stepsize delta_t, yin (values of phi and v at
time t)

Output: yout (values of phi and v at time t+delta_t)

*/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

// Calculation of kl

derivatives (t,yin,yout);
kl[1]=yout[1]«xdelta_t;
k1[0]=yout[O]«delta_t;
y_k[0]=yin[0]+k1[0]%0.5;
y_k[1l]=yin[1]+k1[1]%0.5;

/*« Calculation of k2 =x/

derivatives (t+delta_t*0.5,y_k, yout);
k2[1]=yout[1]«xdelta_t;
k2[0]=yout[O]+delta_t;
y_k[0]=yin[0]+k2[0]%0.5;
y_k[1]=yin[1]+k2[1]%0.5;

/% Calculation of k3 x/

derivatives (t+delta_t*0.5,y_k, yout);
k3[1]=yout[1]«xdelta_t;
k3[0]=yout[O]+delta_t;

y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

/« Calculation of k4 =x/

derivatives (t+delta_t ,y_k,yout);
k4[1]=yout[1]xdelta_t;
k4[0]=yout[O]+delta_t;

/+ Calculation of new values of phi and v x*/
yout[O]=yin[0]+1.0/6.0+(k1[0]+2+xk2[0]+2xk3[0]+k4[0]);
yout[1]=yin[1]+1.0/6.0%(k1[1]+2+xk2[1]+2xk3[1]+k4[1]);

void pendelum :: rk4 ()

{

/«*We are using the fourth—order—Runge—Kutta—algorithm
We have to calculate the parameters kl, k2, k3, k4 for v and phi,
so we use to arrays kl1[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
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k1[1], k2[1] are the parameters for v
*/

int i;
double t_h;
double yout[2],y_h[2]; //k1[2],k2[2],k3[2],k4[2],y_k[2];

t_h=0;

y_h[0]=y[0]; //phi

y_h[1]l=y[1l]; //v

ofstream fout("rk4.out");

fout.setf(ios:: scientific);

fout.precision(20);

for(i=1; i<=n; i++){
rk4_step(t_h,y_h,yout,delta_t_roof);
fout<<ixdelta_t<<"\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t_h+=delta_t_roof;
y_h[0]=yout[0];
y_h[1l]=yout[1];

}

fout.close;

}

int main ()

{
pendelum testcase;
testcase .initialise () ;
testcase .rk4 () ;
return 0;

}  // end of main function

13.8 Physics Project: studies of neutron stars

In the pendulum example we rewrote the equations as two differential equations in terms of so-called
dimensionless variables. One should always do that. There are at least two good reasons for doing this.

— By rewriting the equations as dimensionless ones, the program will most likely be easier to read,
with hopefully a better possibility of spotting eventual errors. In addtion, the various constants
which are pulled out of the equations in the process of rendering the equations dimensionless, are
reintroduced at the end of the calculation. If one of these constants is not correctly defined, it is
easier to spot an eventual error.

— In many physics applications, variables which enter a differential equation, may differ by orders of
magnitude. If we were to insist on not using dimensionless quantities, such differences can cause
serious problems with respect to loss of numerical precision.

An example which demonstrates these features is the set of equations for gravitational equilibrium
of a neutron star. We will not solve these equations numerically here, rather, we will limit ourselves to
merely rewriting these equations in a dimensionless form.
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13.8.1 The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompted Landau to predict the existence of neutron
stars. The birth of such stars in supernovae explosions was suggested by Baade and Zwicky 1934. First
theoretical neutron star calculations were performed by Tolman, Oppenheimer and Volkoff in 1939 and
Wheeler around 1960. Bell and Hewish were the first to discover a neutron star in 1967 as a radio pulsar.
The discovery of the rapidly rotating Crab pulsar ( rapidly rotating neutron star) in the remnant of the
Crab supernova observed by the chinese in 1054 A.D. confirmed the link to supernovae. Radio pulsars
are rapidly rotating with periods in the range 0.033 s < P < 4.0 s. They are believed to be powered by
rotational energy loss and are rapidly spinning down with period derivatives of order P ~10712-10"16,
Their high magnetic field B leads to dipole magnetic braking radiation proportional to the magnetic field
squared. One estimates magnetic fields of the order of B ~ 10! — 102 G. The total number of pulsars
discovered so far has just exceeded 1000 before the turn of the millenium and the number is increasing
rapidly.

The physics of compact objects like neutron stars offers an intriguing interplay between nuclear pro-
cesses and astrophysical observables, see Refs. [66, 67, 68] for further information and references on
the physics of neutron stars. Neutron stars exhibit conditions far from those encountered on earth; typ-
ically, expected densities p of a neutron star interior are of the order of 103 or more times the density
pa ~ 4 - 10" g/cm? at *neutron drip’, the density at which nuclei begin to dissolve and merge together.
Thus, the determination of an equation of state (EoS) for dense matter is essential to calculations of neu-
tron star properties. The EoS determines properties such as the mass range, the mass-radius relationship,
the crust thickness and the cooling rate. The same EoS is also crucial in calculating the energy released
in a supernova explosion.

Clearly, the relevant degrees of freedom will not be the same in the crust region of a neutron star,
where the density is much smaller than the saturation density of nuclear matter, and in the center of the
star, where density is so high that models based solely on interacting nucleons are questionable. Neutron
star models including various so-called realistic equations of state result in the following general picture
of the interior of a neutron star. The surface region, with typical densities p < 105 g/cm?, is a region in
which temperatures and magnetic fields may affect the equation of state. The outer crust for 105 g/cm3
< p < 4-10'"g/cm3 is a solid region where a Coulomb lattice of heavy nuclei coexist in 3-equilibrium
with a relativistic degenerate electron gas. The inner crust for 4 - 10! g/em?® < p < 2 - 104g/cm?
consists of a lattice of neutron-rich nuclei together with a superfluid neutron gas and an electron gas. The
neutron liquid for 2 - 10 g/em® < p < -10'®g/cm? contains mainly superfluid neutrons with a smaller
concentration of superconducting protons and normal electrons. At higher densities, typically 2 — 3 times
nuclear matter saturation density, interesting phase transitions from a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, one may have a mixed phase of quark and
nuclear matter, kaon or pion condensates, hyperonic matter, strong magnetic fields in young stars etc.

13.8.2  Equilibrium equations

If the star is in thermal equilibrium, the gravitational force on every element of volume will be balanced
by a force due to the spacial variation of the pressure P. The pressure is defined by the equation of state
(EoS), recall e.g., the ideal gas P = NkpT'. The gravitational force which acts on an element of volume
at a distance r is given by

G
Forar = ——5-p/*, (13.90)
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where G is the gravitational constant, p(r) is the mass density and m(r) is the total mass inside a radius
r. The latter is given by

4 T
m(r) = —;r / p(r ) dr’ (13.91)
c Jo
which gives rise to a differential equation for mass and density

dm

== 4rr?p(r) /. (13.92)
When the star is in equilibrium we have
dpP Gm(r) 9

The last equations give us two coupled first-order differential equations which determine the structure
of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zero at the center of the star, i.e., when r = 0,
we have m(r = 0) = 0. The other condition is that the pressure vanishes at the surface of the star. This
means that at the point where we have P = 0 in the solution of the differential equations, we get the total
radius R of the star and the total mass m(r = R). The mass-energy density when r = 0 is called the
central density ps. Since both the final mass M and total radius R will depend on pg, a variation of this
quantity will allow us to study stars with different masses and radii.

13.8.3 Dimensionless equations

When we now attempt the numerical solution, we need however to rescale the equations so that we deal
with dimensionless quantities only. To understand why, consider the value of the gravitational constant
G and the possible final mass m(r = R) = Mpg. The latter is normally of the order of some solar masses
M, with Mg = 1.989 x 103° Kg. If we wish to translate the latter into units of MeV/c?, we will have
that Mp ~ 10 MeV/c?. The gravitational constant is in units of G = 6.67 x 10~ x he (MeV/c?) 72,
It is then easy to see that including the relevant values for these quantities in our equations will most
likely yield large numerical roundoff errors when we add a huge number ‘(li—l: to a smaller number P in
order to obtain the new pressure. We list here the units of the various quantities and in case of physical
constants, also their values. A bracketed symbol like [P] stands for the unit of the quantity inside the
brackets.

Quantity Units

[P] MeVfm—3

(] MeVfm 3

[n] fm—3

[m] MeVc—2

Mg, 1.989 x 103 Kg=1.1157467 x 1050 MeVc—2
1Kg =103Y/1.78266270D0 MeVc 2

[r] m

G fic6.67259 x 1074 MeV—2¢~4

he 197.327 MeVfm
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We introduce therefore dimensionless quantities for the radius # = r/ R, mass-energy density p =
p/ps, pressure P = P/p, and mass 7 = m/M.

The constants My and R can be determined from the requirements that the equations for %—T and %
should be dimensionless. This gives

dMym

= AT R27? 13.94
dRo7 TRGTpsp, (13.94)

yielding
‘Z:’ = A7 R3#2p,j/ M. (13.95)

If these equations should be dimensionless we must demand that
4 R3ps /Mo = 1. (13.96)

Correspondingly, we have for the pressure equation

dpsP mpsp
=— —— 13.97
dRy? " R2? (1397
and since this equation should also be dimensionless, we will have
GMy/Ry = 1. (13.98)

This means that the constants Ry and M which will render the equations dimensionless are given by

1
Ry = ——, 13.99
0 oG ( )

and 4
My = ——"Ps (13.100)

(vVpsGim)*

However, since we would like to have the radius expressed in units of 10 km, we should multiply ¢ by
10719, since 1 fm = 10"1° m. Similarly, M, will come in units of MeV/ ¢2, and it is convenient therefore
to divide it by the mass of the sun and express the total mass in terms of solar masses M.

The differential equations read then

AP wmp  din
LU LY 13.101
a2 P (13.101)

In the solution of our problem, we will assume that the mass-energy density is given by a simple
parametrization from Bethe and Johnson [69]. This parametrization gives p as a function of the number
density n = N/V, with N the total number of baryons in a volume V. It reads

p(n) = 236 x n*5* 4 nm,,, (13.102)

where m,, = 938.926MeV/c?, the mass of the neutron (averaged). This means that since [n] =fm 3, we

have that the dimension of p is [p] =MeV/c2fm 3. Through the thermodynamic relation
P=—-—— (13.103)
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where E is the energy in units of MeV/c? we have

dp(n)

P(n)=n o

— p(n) = 363.44 x n>51, (13.104)

We see that the dimension of pressure is the same as that of the mass-energy density, i.e., [P] =MeV/c*fm~3.
Here comes an important point you should observe when solving the two coupled first-order differ-
ential equations. When you obtain the new pressure given by

dP
Prew = % + Pold, (13.105)
this comes as a function of r. However, having obtained the new pressure, you will need to use Eq.
(13.104) in order to find the number density n. This will in turn allow you to find the new value of the
mass-energy density p(n) at the relevant value of r.

In solving the differential equations for neutron star equilibrium, you should proceed as follows
1. Make first a dimensional analysis in order to be sure that all equations are really dimensionless.

2. Define the constants Ry and My in units of 10 km and solar mass M. Find their values. Explain
why it is convenient to insert these constants in the final results and not at each intermediate step.

3. Set up the algorithm for solving these equations and write a main program where the various
variables are defined.

4. Write thereafter a small function which uses the expressions for pressure and mass-energy density
from Eqgs. (13.104) and (13.102).

5. Write then a function which sets up the derivatives
mp

S22 (13.106)

6. Employ now the fourth order Runge-Kutta algorithm to obtain new values for the pressure and the
mass. Play around with different values for the step size and compare the results for mass and
radius.

7. Replace the fourth order Runge-Kutta method with the simple Euler method and compare the
results.

8. Replace the non-relativistic expression for the derivative of the pressure with that from General
Relativity (GR), the so-called Tolman-Oppenheimer-Volkov equation
dP (P +p) (P3P +m)

= 13.107
dr P2 = 2mr ( )

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plotting mass and radius as functions of the
central density.
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13.9 Physics project: studies of white dwarf stars

This project contains a long description of the physics of compact objects such as white dwarfs. It serves
as a background for understanding the final differential equations you need to solve. This project is taken
from the text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heavy nuclei such as SFe, with 26 protons,
30 neutrons and their respective electrons, see for example Ref. [66]. Charge equilibrium results in an
equal quantity of electrons and protons. You can read more about white dwarfs, neutron stars and black
holes at the website of the Joint Institute for Nuclear Astrophysics www.jinaweb.org or NASA’s website
www.nasa.org. These stars are the endpoints of stars with masses of the size or smaller than our sun.
They are the outcome of standard nuclear processes and end their lives as cold objects like white dwarfs
when they have used up all their nuclear fuel.

Where a star ends up at the end of its life depends on the mass, or amount of matter, it was born
with. Stars that have a lot of mass may end their lives as black holes or neutron stars. Low and medium
mass stars will become something called a white dwarf. A typical white dwarf is half as massive as the
Sun, yet only slightly bigger than the Earth. This makes white dwarfs one of the densest forms of matter,
surpassed only by neutron stars.

Medium mass stars, like our Sun, live by burning the hydrogen that dwells within their cores, turning
it into helium. This is what our Sun is doing now. The heat the Sun generates by its nuclear fusion of
hydrogen into helium creates an outward pressure. In another 5 billion years, the Sun will have used up
all the hydrogen in its core.

This situation in a star is similar to a pressure cooker. Heating something in a sealed container causes
a build up in pressure. The same thing happens in the Sun. Although the Sun may not strictly be a sealed
container, gravity causes it to act like one, pulling the star inward, while the pressure created by the hot
gas in the core pushes to get out. The balance between pressure and gravity is very delicate.

Because a white dwarf is no longer able to create internal pressure, gravity unopposedly crushes it
down until even the very electrons that make up a white dwarf’s atoms are mashed together. In normal
circumstances, identical electrons (those with the same "spin") are not allowed to occupy the same energy
level. Since there are only two ways an electron can spin, only two electrons can occupy a single energy
level. This is what’s know in physics as the Pauli Exclusion Principle. And in a normal gas, this isn’t
a problem; there aren’t enough electrons floating around to completely fill up all the energy levels. But
in a white dwarf, all of its electrons are forced close together; soon all the energy levels in its atoms
are filled up with electrons. If all the energy levels are filled, and it is impossible to put more than two
electrons in each level, then our white dwarf has become degenerate. For gravity to compress the white
dwarf anymore, it must force electrons where they cannot go. Once a star is degenerate, gravity cannot
compress it any more because quantum mechanics tells us there is no more available space to be taken
up. So our white dwarf survives, not by internal combustion, but by quantum mechanical principles that
prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth, the atmosphere of a white dwarf is very
strange. The heavier atoms in its atmosphere sink and the lighter ones remain at the surface. Some white
dwarfs have almost pure hydrogen or helium atmospheres, the lightest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thin layer, that, if were it on earth, would be lower
than the tops of our skyscrapers!
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13.9.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exhibits also charge equilibrium, meaning the number
of electrons has to balance the number of protons. The gravitational pull on every element of volume is
balanced by the pressure set up by a degenerate gas of electrons at 7' = 0, since the temperature of
the star is well below the so-called Fermi temperature of the electrons. The electrons are assumed to
be relativistic and since the protons and neutrons have much lower kinetic energy, we assume that the
pressure which balances the gravitational force is mainly set up by the relativistic electrons. The kinetic
energy of the electrons is also much larger than the electron-electron repulsion or the attraction from the
nuclei. This means that we can treat the system as a gas of free degenerate electrons at 7' = 0 moving in
between a lattice of nuclei like iron. This is our ansatz. Based on this we can derive the pressure which
counterbalances the gravitational force given by (for every element of volume in a distance r from the
center of the star)

Gm(r)
Feraw = _TP(T)’
with G being the gravitational constant, p(r) the mass density (mass per volume) of a volume element a
distance r from the center of the star, and m(r) is the integrated mass within a radius 7. The latter reads

m(r) = 47r/ p(r ) dr’
0

which yields a differential equation between the total mass and the mass density

d
d_T = 47 p(r).
In equilibrium, the pressure P balances the gravitational force
dP Gm(r)
ar 2 p(r),

and using dP/dp = (dp/dr)(dP/dp) we obtain

dp__ (4P Gm
dr dp r2 P

Together with ‘il—”j = 4712 p(r) we have now two coupled first-order ordinary differential equations which
determine the structure of the white dwarf given an equation of state P(p). The total radius is given by
the condition p(R) = 0. Similarly, the mass for r = 0 is m = 0. The density at » = 0 is given by the
central density p., a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density profile of the star. The radius R is determined
by the point where the density distribution is p = 0. The mass is then given by M = m(R). Since both
the total mass and the radius R will depend on the central density p., a variation of this parameter will
allow us to study stars with different masses. However, before we can proceed, we need the pressure for
a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermions at 7' = 0. From statistical physics we can then
obtain the particle density as
1

kr
n:N/V:—z/ k*dk =
™ Jo

k-
3n2’
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where kp is the Fermi momentum, here represented by the wave number kr. The wave number is
connected to the momentum via kp = pr/h. The energy density is given by

1 [kr
e=FE/V = —2/ k?dk/(hck)? + m2ch.
™ Jo

This expression is of the form [ y2\/y? + a2. Performing the integration we obtain
E/V = ngmec®z3e(x),
where we have defined

() 3 <£L'(1 +222)V1+ 22 —in(z+ V1 + xz)) ,

= 83

with the variable x defined as
hkp
:L‘ =

MeC

We can rewrite z in terms of the particle density as well

ki

so that

hkp (nh?mQ)l/s

meC mie3

3
where we define ng = S(mc)eg with m. the electron mass. Using the constant ng results finally in

w2 (h)
hkp ( n )1/ i
T = =(— .
mec ng
Since the mass of the protons and neutrons are larger by a factor 103 than the mass of the electrons .,

we can approximate the total mass of the star by the mass density of the nucleons (protons and neutrons).
This mass density is given by

p = Mpny,

with M, being the mass of the proton and n,, the particle density of the nucleons. The mass of the proton
and the neutron are almost equal and we have set them equal here. The particle density n, can be related
to the electron density n, which is the quantity we can calculate. The relation is simple,

np =n/Ye,

where Y, is the number of electrons per nucleon. For °Fe we getY, = % = 0.464, since we need to
have as many electrons as protons in order to obtain a total charge of zero. Inserting numerical values for
the electron mass we get

no = 5.89 x 10%%cm 3.

The mass density is now
P = Mpn/Y:aa
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and with

( n )1 /3 ( p )1 /3
Tr = —_— = —_— s
1o Po
and inserting the numerical value for the proton mass we obtain
M,
po = TP _ g 79 % 109V, 1g em 3.
Ye

Using the parameter Y, we can then study stars with different compositions. The only input parameters
to your code are then p. and Y.

Now we want the equation for the pressure, based on the energy density. Using the thermodynamical

relation
p_ OE_ OEO
oV Ox OV’
we can find the pressure as a function of the mass density p. Thereafter we can find %, which allows us
to determine the mass and the radius of the star.

The term
Ox

v’
can be found using the fact that z o n'/3 o V3. This results in

ox T

av 3V
Taking the derivative with respect to = we obtain

1 d
P= §n0m602x4£.

1/3
We want the derivative of P in terms of the mass density p. Using x = <pﬁo) , we obtain

dP  dPdx
dp ~ dw dp’
With
P 1 dz*de
%:§n0m6< dx >’
and
dx 1,03/3 1
dp — 3pop*  3por?’
we find

dP Mec?
chz e L y(z),
P

where we defined

T =S

This is the equation for the derivative of the pressure to be used to find

dp  (dP\"'Gm
dr dp 2 P

Note that x and v(z) are dimensionless quantities.
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13.9.2 Dimensionless form of the differential equations

In the numerical treatment of the two differential equations we need to rescale our equations in terms of
dimensionless quantities, since several of the involved constants are either extremely large or very small.
Furthermore, the total mass is of the order of the mass of the sun, approximately 2 x 103’kg while the
mass of the electron is 9 x 1073! kg,

We introduce therefore a dimensionless radius 7 = r/ Ry, a dimensionless density p = p/po (recall
that 2% = p/pp) and a dimensionless mass m = m,/Mj.

We determine below the constants M and Ry by requiring that the equations for ‘fi—’;‘ and j—f have to

be dimensionless. We get then
dMom

= 4w RT° pop
dRor  rpop,
resulting in
dm 9 _
E = 47T'Rg’l“2p0p/M0.

If we want this equation to be dimensionless, we must require
4 R3po/ My = 1.

Correspondingly, we have

dpop _ GMOMp m —
dRoF Yemec? ) yR2T? Pop:

with Ry

( Yomec?
0 p—

1/2
—c < = 7.72 x 10%Y,cm.
47Tp()GMp> % o

in order to yield a dimensionless equation. This results in
My = 4w R3py = 5.67 x 1033V g.

The radius of the sun is Ro = 6.95 x 10'° cm and the mass of the sun is Mg, = 1.99 x 1033 g.
Our final differential equations p and ™ read

dﬁ m p dm _2_
= —9» — p-
dr YT dr

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a program which solves the two coupled differential

equations
dp ™D
ar v 7
and
bk
ar P,

using the fourth order Runge-Kutta method by integrating outward from 7 = 0. Choose Y, = 1
and calculate the mass and radius of the star by varying the central density p, ranging from 10~!
to 10%. Check the stability of your solutions by varying the radial step h. Discuss your results.
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b) Compute also the density profiles for the above input parameters and calculate the total kinetic
energy and rest energy of the electrons given by

R (E
U= / 47 (—) r2dr,
0 v

E/V = ngmec®ze(z),

where we have defined

with
= s (o1 2T o T,
T
and the variable x defined as
_ hkp
 mec’

Compute also the gravitational energy

W = /0 Amr=dr.

r

You need to make these equations dimensionless.

Try to discuss your results and trends through simple physical reasoning.

¢) Scale the mass-radius relation you found in a) to the cases corresponding to *’Fe and '2C. Three
white dwarf stars, Sirius B, 40 Eri B and Stein 2051, have masses and radii in units of solar
values determined from observations to be (1.053 + 0.028 M, 0.0074 + 0.0006R), (0.48 +
0.02M¢),0.0124 £+ 0.0005R ), and (0.72 £ 0.08M,,0.0115 + 0.0012R,), respectively. Verify
that these values are consistent with the model you have developed. Can you say something about
the compositions of these stars?

13.10 Physics project: Period doubling and chaos

For this project you can build upon program programs/chapter13/program1.cpp (or the f90 version). The
angular equation of motion of the pendulum is given by Newton’s equation and with no external force it
reads
d*6 )
mlw + mgsin(0) = 0, (13.108)

with an angular velocity and acceleration given by

do
== 13.109
v=I= ( )
and )
d=0
a = l—dt2 . (13.110)

We do however expect that the motion will gradually come to an end due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equation becomes
d*0 de

+v— 4+ mgsin(d) =0, (13.111)

l_
e T
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where v is now a positive constant parameterizing the viscosity of the medium in question. In order to
maintain the motion against viscosity, it is necessary to add some external driving force. We choose here
a periodic driving force. The last equation becomes then

d*0 do

vt mgsin(f) = Asin(wt), (13.112)

ml

with A and w two constants representing the amplitude and the angular frequency respectively. The latter
is called the driving frequency.

a) Rewrite Egs. (13.111) and (13.112) as dimensionless equations.

b) Write then a code which solves Eq. (13.111) using the fourth-order Runge Kutta method. Perform
calculations for at least ten periods with NV = 100, N = 1000 and N = 10000 mesh points and
valuesof v = 1, v =5and v = 10. Set/ =1.0m, g = 1 m/s2andm =1 kg. Choose as initial
conditions #(0) = 0.2 (radians) and v(0) = 0 (radians/s). Make plots of # (in radians) as function
of time and phase space plots of 6 versus the velocity v. Check the stability of your results as
functions of time and number of mesh points. Which case corresponds to damped, underdamped
and overdamped oscillatory motion? Comment your results.

¢) Now we switch to Eq. (13.112) for the rest of the project. Add an external driving force and set
l=g=1,m=1,v=1/2and w = 2/3. Choose as initial conditions §(0) = 0.2 and v(0) = 0
and A = 0.5 and A = 1.2. Make plots of # (in radians) as function of time for at least 300 periods
and phase space plots of 6 versus the velocity v. Choose an appropriate time step. Comment and
explain the results for the different values of A.

d) Keep now the constants from the previous exercise fixed but set now A = 1.35, A = 1.44 and
A = 1.465. Plot 6 (in radians) as function of time for at least 300 periods for these values of A and
comment your results.

e) We want to analyse further these results by making phase space plots of § versus the velocity v
using only the points where we have wt = 2nm where n is an integer. These are normally called
the drive periods. This is an example of what is called a Poincare section and is a very useful way
to plot and analyze the behavior of a dynamical system. Comment your results.
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