Integration

In this chapter we show you how to carry out numerical integrations. We
will derive the Simpson and trapezoid rules becanse they are so easy and give
a good idea of how integration algorithms work, but we will just sketch the
other zlgorithms and quote some error estimates.

4.1 PROBLEM: INTEGRATING A SPECTRUM

An experiment has measured dN(t]/dt, the number of particles entering a
counter, per unit time, as a function of time. Your prablem is to integrate
this spectrum to obtain the number of particles N(1) that entered the counter
in the first second:

LaN
N1 =[ —{t)dt. 4.1
m=[ o (1)

As an explicit assessment, in §4.8 we integrate an exponential spectrum.
Nonetheless, the methods work equally well for integrating a table of numbers.

4.2 MODEL: QUADRATURE, SUMMING BOXES

The integration of a function may require some cleverness to do analytically,
but it is relatively straightforward on a computer. The Riemann definition
of an integral is the limit of the sum over boxes as the width A of the box
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Table 4.1 Llementary weights for walformentep intagration rulon
Name Degree Elementary Weights
Trapezoid 1 (h)2,h/2)
Simpson’s 2 (h/3,4h/3,h/3)
3 3 (3h/8,9h/8,9h/8, 3h/8)
Milne 4 (14h /45,640 45, 24h/45,64h/45,14h{45)

approaches zero:

b (b—a)/h
/ﬂ flahde = lim | Zl fz| (4.2)

For our problem, the function f is the spectrum as a function of time, f(z) =
dN(t)/dt.

A traditional way to measure the area numerically is to take a piece of
graph paper and count the number of boxes or quadrilaterals lying below the
curve of the function. For this reason numerical integration is also called
numerical quadrature, even when it gets beyond the box-counting stage.

The integral of a function f(z) is approximated numerically by the equiv-
alent of a sum over boxes:

b N
[ s =Y sy (4.3
@ i=l

In this example, f is evaluated at N points in the interval [a,b], and the
function f; = f(r;) are summed with each term in the sum weighted by w;.
While, in general, the sum in (4.3) will give the exact integral only when
N — =0, for certain classes of functions it may be exact for finite N.

The different integration algorithms amount to different ways of choos-
ing the points and weights. Generally, the precision increases as N gets
larger, with roundoff error eventually limiting the increase. Because the “best”
approximation depends on the specific behavior of the function f(z), there is
no universally best approximation. In fact, some of the antomated integration
schemes found in subroutine libraries will switch from one method to ancther
until they find one that works well.

In the simplest integration schemes, the integrand is approximated by a
few terms in the Taylor series expansion of f, and the terms are integrated.
Unless the integrand has some very unnsual behaviors in each interval, suc-
cessive terms should yield higher and higher precision. In these so-called
Newton-Cotes methods, the total interval is divided into equal subintervals as

fix)

Fig. 4.1 Theinegral f: Fla)da ‘s the area under the graph of f(z) from a to b. Here
we break up the area into four regions of equal widths.

shown in Fig. 4.1, with the integrand evaluated at equally spaced points ;.
These algorithms include the trapezoid rule (first-order) and the Simpson rule
(second-order). The corresponding weights are given in Table 4.1. These rules
are easy to apply and are the Jogical choice if the integrand is tabulated along
evenly spaced points {or if it is tabulated along points that can be mapped
onto equally spaced points).

More accurate integration rules are possible if the points are not constrained
to be equally spaced. Geussian quadrature methods have the ingenious ability
to exactly! integrate the product of a function times a (2N - 1) degree poly-
nomial, with only N function evaluations. This is no harder than evaluating
the sum (4.3}, and explains why so many computasional scientists carry their
Gaussian quadrature routines with them wherever they go.

In general, results with Gaussian quadrature will be superior to results with
equally spaced points as long as there are no singularities in the integrand or
its derivative. In the latter cases, the use of Simpson’s rule may help avoid a
catastrophe, but

you would be better off to remove sinjuiarsties anclytically jrom your
integration before attemnpling any numerical quadrelure.

You may be able to do this by breaking the interval down into several subin-
tervals, so the singularity is at an endpoint where a Gauss point never falls,
or by a change of variable. For example

1 N 1
f_ eyt = [ lf(—x)dr+f0 f(x)dr, (@4

““Fxactly,” except for roundoff error.
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f s = | Wy e, (4.5)
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Likewise, if your integrand has a very slow variation in some reglon, you
can speed up the integration by changing to a variable that compresses that
region and places few points there. Conversely, if your integrand has a very
rapid variation in some region, you may want 1o change to variables that
expand that region to ensure that no oscillations are missed.

4.3 METHOD: TRAPEZOID RULE

The trapezoid and Simpson integration rules use values of f(z) at evenly
spaced values of r. They use N points Ty, (i = 1.N), evenly spaced at
a distance h apart throughout the integration region la,b] and include the
endpoints. This means that there are N —1 intervals of length h:

b—a
h = Vo1 {4.7)
7, = a+{E-1h, 1=1LN (4.8)

Notice that we start our counting at i = 1, and that Simpson’s rule requires
an odd number of points N,

In Fig. 4.2 we sce that in the trapezoid rule we take the integration interval
i and construct a trapezoid of width h in it. This approximates flx) by a
straight line in that interval i, and uses the average heighs (f: + fis1)/2 as
the value for j. The area of a single trapezoid is in this way

zith
' h(fi + fi
f flz)dz ~ —(f—gi+—1) = 1hfi+ 3hfipr (4.9)
In terms of our standard integration formula (4.3), the “rule” in (4.9) is for
N = 2 points with weight w; = 1.

In order to apply the trapezoid rule to the entire region la,b], we add the
contributions from each subinterval:

b
J fle)dr = gfl +hfat+hfs+---hfna -.—ng. (4.10)

You will notice that because each internal point gets counted twice, it has a
weight of h, whereas the endpoints get counted just once and on that account
have weights of only h/2. In terms of our standard integration rule (4.39), we

1(x) ()

Fig. 4.2 (Left) straight-line sections used for the trapezoid rule; (right) the paraboli
used in Simpson’s rule.

have

h h
w.ﬁ{i,h,...,h,g}. (1.11)

44 METHOD: SIMPSON’S RULE

In Simpson’s rule we approximate the function f(z) by a parabola
flz) = ar® + Bz +7. (4.12)

for each interval, still keeping the intervals equally spaced. The area of each
section is then the integral of this parabola

zith 3 2 z+h
f (a2 + Bz + 7)dz = %w%ﬂz . (4.13)

This is equivalent to integrating the Taylor series up to the quadratic term.
In order to relate the parameters a, 3, and 7y to the function, we consider an
intervel from —1 to 41, in which case

1
2
f_l{cr:c2 + Bz +4)dx = —361 + 27. (4.14)
But we notice that
f(_]):a_.s'l"]’! f((]':'}’, f(1}=a+3+% (4]5)
> a=IOHEL_f), 6= 10420 4= ). |




1o this way we ean oxpross the integral os the welghitod s over in valuen
of the function at 3 poinis:

1
f_l(ax2+ﬁx+af)dm=ﬂ'3ﬁ+l§“2+ig—l). (1.16)

Because 3 values of the function are needed, we zeneralize this result to our

problem by evaluating the integral over two adjacent intervals, in which case
we evaluate the function at the two endpoints and the middie:

ai+h zith I
- . T
[ s [ gy [ farte =i gh L

—h
. ‘ (4.17)
Simpson’s rule requires the elementary integration to be over pairs of in-
rervals, and this requires that the total number of intervals be even or the
Tmmber of points N be odd. In order to apply Simpson’s rule to the entire
interval, we add up the contributions from each pair of subintervals, counting
all but the first and last endpoints twice: j

i
h, _4h, 2h . 4h ah h
| /ﬂf{w}dm R §f1 + —:)*fz + ?fs + ?h ot ?wal + ng. (4.18)

In terms of our standard integration rule {4.3), we have

SRR —
i 3,3,3,3,...3,5 . {4.19)
The sum of these weights provides a useful check on your integration:

i

S wi= (N=Dh (4.20)

=1

Remember, N must be odd.

45 ASSESSMENT: INTEGRATION ERROR, ANALYTIC

In general, you want to choose an integration rule that gives an accurate
answer using the least number of integration points. We obtain a feel for
the absolute approzimation or algorithmic error E and the relative error €
})y expanding f(z) in a Taylor series around the midpoint of the integratim;
interval. We then multiply that error by the number of intervals N to estimate
the error for the entire region [a,b]. For the trapezoid and Simpson rules this

ylolde
B o= o("’_.:‘ﬂ) o, (4.21)
E, = O ([-"—;Ff—lb—) M, (4.22)
€, = 5}— (4.23)

We see that the third derivative term in Simpson’s rule cancels (much like the
central difference method in differentiation). The equations (4.21)-(4.22) are
Aluminating by showing how increasing the sophistication of an integration
rule leads to an error thar falls off with a higher inverse power of N, yet that is
also proportional to higher derivatives of f. Consequently, for small intervals
and f(z) functions with well-behaved high derivatives, Simpson’s rule should
converge more rapidly than the trapezoid rule.

To be more specific, we assume that after N steps the relative roundoff
ervor is random and of the form

€10 2 VNER, (4.24)

where €, is the machine precision {~ 107 ‘or single precision and ~ 1078
for double precision ). We want t0 determine an N that minimizes the total
error, that is, the sum of the approximation and roundoff error

€tot = Ero + Eapprox- (425)

This occurs, approximately, when the two relative errors are of equal magni-
tude, which we approximate evern further by assuming that the two errors are

equal
Etrap,simp (4.26)

€ro = Capprox — i

To continue the search for optimum N for a general function f, we set the
scale of function size by assuming

(n)
™y (4.27)

~

and the scale of length by assurning

(4.28)

=\

b—a=1 = h=
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The estimate (4.26), when applied 1o the trapezold rule, yields

(Dfp — aih |
\/_ﬁ!m = L—%%Q_Q_aﬁ‘ (4.29)
1

Because the machine precision ¢y, differs for single- and double-precision
calculations, the optimum number of steps N for the trapezoid rule has the
following two values:

(4.31)

yo L { (1/1077)%/5 = 631, for single precision.

%) (1/1071%)2/5 = 10°,  for double precision.

The corresponding errors are

e o] 3x 1078, for single precision,
o VNen = { 10-12,  for double precision. (432)

The estimate (4.26) when applied to Simpson’s rule yields

Wk )
em = L ;’I\-f) =5 (433
; 1

For single and double precision, this now yields

N= (4.35)

_1_ { (1/10°7)%/9 =36, for single precision,
h

=\ (1/10715)2/ = 2154, for double precision.

The corresponding errors are

- _{ 6x1077, forsingle precision,
% VNew = { 5% 10-1, for double precision. (4.36)

These results are illuminating because they show that

1. Simpson’s rule is an improvement over the trapezoid rule.

2. Itis possible to obtain an error close to machine precision with Simpson’s
rule (and with other higher-order integration algorithms).

3. Obtaining the best numerical approximation toan integral is not obtained
by letting N — oo, but with a relatively small V < 1000.

46 METHOD: GAUSSIAN QUADRATURE

It i aften usoful to rewrite the basie integration formula (4.3) such that we
soparate a welghting fanction W (x) from the integrand:

3 A N
f fiz)dz = f W(a)Flz)de = Y wiF(z)- (4.37)
o o "=1

In the Gaussian quadrature approach to integration, the N weights w; are
chosen to make the approximation error actually vanish if f(z) was a 2N -1
degree polynomial. To obtain this incredible optimization, the points z; end
up having a very specific distribution over [a,8). (If f is only given by an
equally spaced table, then a Simpson or trapezoid rule is simpler, although
any integration algorithm can be used if the table is interpolated.?)

In general, if f(x) is smooth, or can be made smooth by factoring out
some W(z), Gaussian algorithms produce higher accuracy than lower-order
ones, or conversely, the same accuracy with a fewer number of points. If the
function being integrated is not smooth (for example, if it has some noise in
it), then using a higher-order method such as Gaussian quadrature may well
lead to lower accuracy. Sometimes the funcrion may not be smooth because
it has different behaviors in different regions. In these cases it makes sense
to integrate each region separately with a low-order quadrature rule and then
add the answers together. In fact, some of the “smart” integration subroutines
will decide for themselves how many intervals to use and what rule to use in
each interval.

All the rules indicated in Table 4.2 are Gaussian with the general form
(4.37). We can see that in one case the weighting function is an exponential,
in another a Gaussian, and in several an integrable singularity. In contrast to
the equally-spaced rules, there is never an integration point at the extremes
of the intervals, yet all of the points and weights change as the number of
points N changes.

The values of a and 3 in (4.37) help define each integration scheme. If
the integral you need to evaluate is over the range (a,b) and this differs from
(e, 4), you must map your (a, b) onto (e, 3), possibly using one of the methods
discussed below.

Although we will leave it to the references on numerical methods for the
derivation of the Gauss points and weights, we note here that for ordinary
Gaussian (Gauss-Legendre) integratior, the points z; turn out to be the N

*Interpalation schemes will be described soon.
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Table 4.2 'Types of Gaussian Inbegration rolen

[ntegral Name
1 A
fil flz)dz Gauss
I T_“ dz ' Gauss—Chebyshev (rational)

Jo e = F(x)dx
Jy e = F(z)dx
fom %F({r)d:c

Gauss—Hermite
Gauss-Laguerre
Associated Gauss-Laguerre

Table 4.3 Points and weights for 4-point Gaussian quadrature (points repeated for
negative x)

4, wy
0.33998 10435 84856 0.65214 51548 62546
0.86113 63115 94053 0.34785 48451 37454

zeros of the Legendre polynomials, with the weights related to the derivatives:

2

(4.38)

Subroutines to generate these points and weights are standard in mathermati-
cal function libraries, are found in tables such as those in [A&S 64], or can be
computed. The geuss subroutines we provide on the diskette and the Web also
scales the points to a specified region. As a check that your points are correct,
you may want to compare them to the four-point set we give in Table 4.3.

4,6.1 Scaling with Integration Rules

Our standard convention (4.3) for the general interval [a,b] is
b N
[ v Y s (439)
a i=1

But when the points and weights, (y,-,w:-)., are for a fixed integration range
(such as Gaussian), the programmer mus? scale the Gaussian interval to [a, b
Here are some mappings we have found useful in our work (they are in the
subroutine gouss given on the diskette and Web).

In the scalings below, (y,—,u::) are the elementary Gaussian points and
weights for the interval [—1, 1], and we want to scale to x.

[ 1.1] + A, B3] uniformly, Alju = mldpoint:

B+4A D-A
5 o= 4,40
¥yoo= 3 + 9 i ( )
i B- A i
o i = B [ i )
A -1
= w; = ———B — A‘w; (442)
2
[0 = ], 4 = midpoint:
5 = ALY (4.43)
1—wy
24 !
a—— N 4.44)
uy (1 . y‘_)zwt (
[~oc = oc], scale set by A:
= AP 4.45)
T, = A] vy {
AQ+yP)
Wy = W‘mf (446)
[B — o¢], A+ 2B = midpoint:
[ :’1_'*'2_3142{1 (4.47)
i 1— "
_ AB+A4A) 4.48
[0 = B], AB/(B + A) = midpoint:
n o= —AB0tw) (4.49)
' B+A—(B- Ay
2 r .
w = 248 (4.50)

B+A-(B-Ag) "

You can see, that if your integration range extends out to infinity, there will
be points at large but not infinite z. As you keep increasing the number of
grid points N, the largest z; moves farther and farther out.




4.7 IMPLEMENTATION: INTEGRATION, INTEG.F (.C)

Write a program o integrate an arbitrary function numerically using the trape-
z0id rule, the Simpson rule, and Gaussian quadrature. Use single precision in
order to show more quickly the effects of error. (This may not be possible if
your quadrature routines, such as the ones we supply on the diskette and the
Web, are written in only double precision.)

For our problem we assume exponential decay so that there actually is an
analytic answer:

dN {t] -t
— = 4.
di ¢ @3h

1
o N = ]e—‘dt=1—e-1. @.52)
0

4.8 ASSESSMENT: EMPIRICAL ERROR ESTIMATE

Compare the relative error

‘ numeric-exact
fE=l—

T exact (4.53)

1

for the trapezoid rule, Simpson’s rule, and Gaussian quadrature.

1. Make a table of the form

N h T-Rule S-Rule (G-Quad T £

106 01111

Try N values of 2, 10, 20, 40, 80, 160, . ...

2. Make a plot like Fig. 4.3 of log g € versus log; V. Note that the ordinate
is effectively the number of decimal places of precision.

3. Use your plot to determine the power-law dependence of the error on
the number of points N. (Notice that you may not be able (o reach the
roundoff error regime for the trapezaid rule because the approximation
error is so large.)

4. (Optional) If possible, see how your answers change for double preci-
sion,

warTrETE T T Ee mmeaammse e e e m e e -

trapoza-d

Fig. 4.3 Log-log plot of the error in integrasion of exponential decay using trapezoid
rule, Simpson’s rule, and Gaussian quadratire, versus number of integration points
N. Approximately 7 decimal places of precision are attainable with single precision
{shown here) and 15 places with double precision.

4.9 ASSESSMENT: EXPERIMENTATION
Try two integrals for which the answers are less obvious:
in ir
Fl = / sin(100z)dz, Fo = f sin™ (100z}dz. (4.54)
0 0

Explain why the computer may have trouble with these integrals.

4.10 METHOD: ROMBERG EXTRAPOLATION

As in the case of numerical differentiation, we can use the known functional
dependence of the error on interval size A to reduce the error in integration.
For simple rules like the trapezoid and Simpson’s, we have the analytic esti-
mates (4.26), while for others you may have to experiment to determine the
h dependence. For example, if A(h) and A{h/2) are the values of the integral
determined with the trapezoid rule using interval h and h/2, respectively, we
know the integrals have expansicns with a leading error term proportional to
h:

b
Alh) = / f(z)de +ah® + R + ..., (4.55)

[ 2 4
AY) w /f(x)da:+a—:4+-ﬁ%+---. (4.56)
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Consequently, we muke (he /% termy vanish by computing the combinution

1 ahy | ! ant
3A05) — 3 AN ’~“fa fla)de === 4 (4.57)

(learly this particular trick (Romberg’s extrapolation) works only if the h?
term dominates the error, and then only if the derivatives of the function
are well behaved. An analogous extrapolation can also be made for other
algorithms.

4,10.1 Other Closed Newton—Cotes Formulas

In Table 4.1 we gave the weights for several equal-interval rules. Whereas the
Simpson rule used two intervals, the % rule uses three, and the Milne? rule four.
(These are single-interval rules and must be strung together to obtain a rule
extended over the entire integration range. This means that the points that end
one interval and begin the next get weighted twice.) You can easily determine
the number of elementary intervals integrated over, and check whether you
and we have written the weights right, by summing the weights for any rule.
The sum is the integral of f{z) = 1 and must equal & times the number of
intervals (which, in turn, equals b — a).

N
E w; = h x -N‘interva]s =b—a. {458)

e =1

¥There is, not coincidently, a Milne Computer Center at Oregon State University.

Part 11

APPLICATIONS
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