
3.2 Numerical Interpolation and Extrapolation 59

3.2.1 Interpolation

Let us assume that we have a set of N + 1 points y0 = f (x0),y1 = f (x1), . . . ,yN = f (xN) where

none of the xi values are equal. We wish to determine a polynomial of degree n so that

PN(xi) = f (xi) = yi, i = 0,1, . . . ,N (3.7)

for our data points. If we then write PN on the form

PN(x) = a0 + a1(x− x0)+ a2(x− x0)(x− x1)+ · · ·+ aN(x− x0) . . . (x− xN−1), (3.8)

then Eq. (3.7) results in a triangular system of equations

a0 = f (x0)

a0+ a1(x1− x0) = f (x1)

a0+ a1(x2− x0)+ a2(x2− x0)(x2− x1) = f (x2)

.

.

The coefficients a0, . . . ,aN are then determined in a recursive way, starting with a0,a1,

The classic of interpolation formulae was created by Lagrange and is given by

PN(x) =
N

∑
i=0

∏
k 6=i

x− xk

xi− xk
yi. (3.9)

If we have just two points (a straight line) we get

P1(x) =
x− x0

x1− x0
y1 +

x− x1

x0− x1
y0,

and with three points (a parabolic approximation) we have

P3(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2 +

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1 +

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0

and so forth. It is easy to see from the above equations that when x = xi we have that f (x) =
f (xi) It is also possible to show that the approximation error (or rest term) is given by the

second term on the right hand side of

f (x) = PN(x)+
ωN+1(x) f (N+1)(ξ)

(N + 1)!
. (3.10)

The function ωN+1(x) is given by

ωN+1(x) = aN(x− x0) . . . (x− xN),

and ξ = ξ (x) is a point in the smallest interval containing all interpolation points x j and x.
The program we provide below is however based on divided differences. The recipe is quite

simple. If we take x = x0 in Eq. (3.8), we then have obviously that a0 = f (x0) = y0. Moving a0

over to the left-hand side and dividing by x− x0 we have

f (x)− f (x0)

x− x0
= a1 + a2(x− x1)+ · · ·+ aN(x− x1)(x− x2) . . . (x− xN−1),

where we hereafter omit the rest term

60 3 Numerical differentiation and interpolation

f (N+1)(ξ)
(N + 1)!

(x− x1)(x− x2) . . . (x− xN).

The quantity

f0x =
f (x)− f (x0)

x− x0
,

is a divided difference of first order. If we then take x = x1, we have that a1 = f01. Moving a1

to the left again and dividing by x− x1 we obtain

f0x− f01

x− x1
= a2 + · · ·+ aN(x− x2) . . . (x− xN−1).

and the quantity

f01x =
f0x− f01

x− x1
,

is a divided difference of second order. We note that the coefficient

a1 = f01,

is determined from f0x by setting x= x1. We can continue along this line and define the divided

difference of order k+ 1 as

f01...kx =
f01...(k−1)x− f01...(k−1)k

x− xk
, (3.11)

meaning that the corresponding coefficient ak is given by

ak = f01...(k−1)k.

With these definitions we see that Eq. (3.10) can be rewritten as

f (x) = a0 + ∑
k=1

N f01...k(x− x0) . . . (x− xk−1)+
ωN+1(x) f (N+1)(ξ)

(N + 1)!
.

If we replace x0,x1, . . . ,xk in Eq. (3.11) with xi+1,xi+2, . . . ,xk, that is we count from i+ 1 to k
instead of counting from 0 to k and replace x with xi, we can then construct the following

recursive algorithm for the calculation of divided differences

fxixi+1...xk =
fxi+1...xk − fxixi+1...xk−1

xk− xi
.

Assuming that we have a table with function values (x j, f (x j) = y j) and need to construct the

coefficients for the polynomial PN(x). We can then view the last equation by constructing the

following table for the case where N = 3.

x0 y0

fx0x1

x1 y1 fx0x1x2

fx1x2 fx0x1x2x3

x2 y2 fx1x2x3

fx2x3

x3 y3

.

The coefficients we are searching for will then be the elements along the main diagonal.

We can understand this algorithm by considering the following. First we construct the unique

polynomial of order zero which passes through the point x0,y0. This is just a0 discussed above.

3.2 Numerical Interpolation and Extrapolation 61

Therafter we construct the unique polynomial of order one which passes through both x0y0

and x1y1. This corresponds to the coefficient a1 and the tabulated value fx0x1 and together with

a0 results in the polynomial for a straight line. Likewise we define polynomial coefficients for

all other couples of points such as fx1x2 and fx2x3 . Furthermore, a coefficient like a2 = fx0x1x2

spans now three points, and adding together fx0x1 we obtain a polynomial which represents

three points, a parabola. In this fashion we can continue till we have all coefficients. The

function we provide below included is based on an extension of this algorithm, knowns as

Neville’s algorithm. The error provided by Neville’s algorithm is based on the truncation

error in Eq. (3.10).

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program4.cpp

/*

** The function

** polint()

** takes as input xa[0,..,n-1] and ya[0,..,n-1] together with a given value

** of x and returns a value y and an error estimate dy. If P(x) is a polynomial

** of degree N - 1 such that P(xa_i) = ya_i, i = 0,..,n-1, then the returned

** value is y = P(x).

*/

void polint(double xa[], double ya[], int n, double x, double *y, double *dy)

{

int i, m, ns = 1;

double den,dif,dift,ho,hp,w;

double *c,*d;

dif = fabs(x - xa[0]);

c = new double [n];

d = new double [n];

for(i = 0; i < n; i++) {

if((dift = fabs(x - xa[i])) < dif) {

ns = i;

dif = dift;

}

c[i] = ya[i];

d[i] = ya[i];

}

*y = ya[ns--];

for(m = 0; m < (n - 1); m++) {

for(i = 0; i < n - m; i++) {

ho = xa[i] - x;

hp = xa[i + m] - x;

w = c[i + 1] - d[i];

if((den = ho - hp) < ZERO) {

printf("\n\n Error in function polint(): ");

printf("\nden = ho - hp = %4.1E -- too small\n",den);

exit(1);

}

den = w/den;

d[i] = hp * den;

c[i] = ho * den;

}

*y += (*dy = (2 * ns < (n - m) ? c[ns + 1] : d[ns--]));

}

delete [] d;

delete [] c;

} // End: function polint()

When using this function, you need obviously to declare the function itself.

188 6 Linear Algebra

fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an| and

|bk| ≥ |ak|+ |ck| for k = 2,3, . . . ,n−1. This is a relevant but not sufficient condition to guarantee

that the matrix A yields a solution to a linear equation problem. The matrix needs also to

be irreducible. A tridiagonal irreducible matrix means that all the elements ai and ci are

non-zero. If these two conditions are present, then A is nonsingular and has a unique LU

decomposition.

We can obviously extend our boundary value problem to include a first derivative as well

−
d2u(x)

dx2 + g(x)
du(x)

dx
+ h(x)u(x) = f (x),

with x ∈ [a,b] and with boundary conditions u(a) = u(b) = 0. We assume that f , g and h are

continuous functions in the domain x ∈ [a,b] and that h(x)≥ 0. Then the differential equation

has a unique solution. We subdivide our interval x ∈ [a,b] into n subintervals by setting xi =

a+ ih, with i = 0,1, . . . ,n+ 1. The step size is then given by h = (b− a)/(n+ 1) with n ∈ N. For

the internal grid points i = 1,2, . . .n we replace the differential operators with

u
′′

i ≈
ui+1− 2ui+ ui−i

h2 .

for the second derivative while the first derivative is given by

u
′

i ≈
ui+1− ui−i

2h
.

We rewrite our original differential equation in terms of a discretized equation as

−
ui+1− 2ui+ ui−i

h2 + gi
ui+1− ui−i

2h
+ hiui = fi,

with i = 1,2, . . . ,n. We need to add to this system the two boundary conditions u(a) = u0 and

u(b) = un+1. This equation can again be rewritten as a tridiagonal matrix problem. We leave it

as an exercise to the reader to find the matrix elements, find the conditions for having weakly

dominant diagonal elements and that the matrix is irreducible.

6.5 Spline Interpolation

Cubic spline interpolation is among one of the most used methods for interpolating between

data points where the arguments are organized as ascending series. In the library program

we supply such a function, based on the so-called cubic spline method to be described below.

The linear equation solver we developed in the previous section for tridiagonal matrices can

be reused for spline interpolation.

A spline function consists of polynomial pieces defined on subintervals. The different subin-

tervals are connected via various continuity relations.

Assume we have at our disposal n+ 1 points x0,x1, . . .xn arranged so that x0 < x1 < x2 <

.. .xn−1 < xn (such points are called knots). A spline function s of degree k with n+ 1 knots is

defined as follows

• On every subinterval [xi−1,xi) s is a polynomial of degree ≤ k.
• s has k− 1 continuous derivatives in the whole interval [x0,xn].

As an example, consider a spline function of degree k = 1 defined as follows

6.5 Spline Interpolation 189

s(x) =

s0(x) = a0x+ b0 x ∈ [x0,x1)

s1(x) = a1x+ b1 x ∈ [x1,x2)

.

sn−1(x) = an−1x+ bn−1 x ∈ [xn−1,xn]

(6.29)

In this case the polynomial consists of series of straight lines connected to each other at

every endpoint. The number of continuous derivatives is then k− 1 = 0, as expected when

we deal with straight lines. Such a polynomial is quite easy to construct given n+ 1 points

x0,x1, . . .xn and their corresponding function values.

The most commonly used spline function is the one with k = 3, the so-called cubic spline

function. Assume that we have in addition to the n+ 1 knots a series of functions values y0 =

f (x0),y1 = f (x1), . . .yn = f (xn). By definition, the polynomials si−1 and si are thence supposed to

interpolate the same point i, i.e.,
si−1(xi) = yi = si(xi), (6.30)

with 1≤ i≤ n− 1. In total we have n polynomials of the type

si(x) = ai0 + ai1x+ ai2x2 + ai3x3, (6.31)

yielding 4n coefficients to determine. Every subinterval provides in addition two conditions

yi = s(xi), (6.32)

and

yi+1 = s(xi+1), (6.33)

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i(xi), (6.34)

yields n− 1 conditions. Similarly,

s′′i−1(xi) = s′′i (xi), (6.35)

results in additional n− 1 conditions. In total we have 4n coefficients and 4n− 2 equations to

determine them, leaving us with 2 degrees of freedom to be determined.

Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi, (6.36)

and

s′′i (xi+1) = fi+1, (6.37)

and setting up a straight line between fi and fi+1 we have

s′′i (x) =
fi

xi+1− xi
(xi+1− x)+

fi+1

xi+1− xi
(x− xi), (6.38)

and integrating twice one obtains

si(x) =
fi

6(xi+1− xi)
(xi+1− x)3 +

fi+1

6(xi+1− xi)
(x− xi)

3 + c(x− xi)+ d(xi+1− x). (6.39)

Using the conditions si(xi) = yi and si(xi+1) = yi+1 we can in turn determine the constants c and
d resulting in

190 6 Linear Algebra

si(x) =
fi

6(xi+1−xi)
(xi+1− x)3 +

fi+1
6(xi+1−xi)

(x− xi)
3

+ (
yi+1

xi+1−xi
−

fi+1(xi+1−xi)
6)(x− xi)+ (yi

xi+1−xi
−

fi(xi+1−xi)
6)(xi+1− x). (6.40)

How to determine the values of the second derivatives fi and fi+1? We use the continuity

assumption of the first derivatives

s′i−1(xi) = s′i(xi), (6.41)

and set x = xi. Defining hi = xi+1− xi we obtain finally the following expression

hi−1 fi−1 + 2(hi+ hi−1) fi + hi fi+1 =
6
hi
(yi+1− yi)−

6
hi−1

(yi− yi−1), (6.42)

and introducing the shorthands ui = 2(hi + hi−1), vi =
6
hi
(yi+1− yi)−

6
hi−1

(yi− yi−1), we can refor-

mulate the problem as a set of linear equations to be solved through e.g., Gaussian elemina-

tion, namely

u1 h1 0 . . .

h1 u2 h2 0 . . .

0 h2 u3 h3 0 . . .

.

. . . 0 hn−3 un−2 hn−2

0 hn−2 un−1

f1

f2

f3

. . .

fn−2

fn−1

=

v1

v2

v3

. . .

vn−2

vn−1

. (6.43)

Note that this is a set of tridiagonal equations and can be solved through only O(n) operations.
It is easy to write your own program for the cubic spline method when you have written

a slover for tridiagonal equations. We split the program into two tasks, one which finds the

polynomial approximation and one which uses the polynomials approximation to find an in-

terpolated value for a function. These functions are included in the programs of this chapter,

see the codes cubicpsline.cpp and cubicsinterpol.cpp. Alternatively, you can solve exercise

6.4!

6.6 Iterative Methods

Till now we have dealt with so-called direct solvers such as Gaussian elimination and LU de-

composition. Iterative solvers offer another strategy and are much used in partial differential

equations. We start with a guess for the solution and then iterate till the solution does not

change anymore.

6.6.1 Jacobi’s method

It is a simple method for solving

Âx = b,

where Â is a matrix and x and b are vectors. The vector x is the unknown.

It is an iterative scheme where we start with a guess for the unknown, and after k + 1
iterations we have

x(k+1) = D̂−1(b− (L̂+Û)x(k)),

with Â = D̂+Û + L̂ and D̂ being a diagonal matrix, Û an upper triangular matrix and L̂ a lower

triangular matrix.

