
I. INTRODUCTION

Welcome to Numerical Methods and Programing course! This is a 5 credit course and nothing is assumed! We

will have about 3 theory classes, where some techniques will be introduced to you (this could either be a blackboard

lecture or a presentation - depending on the material) and a hands-on session. We will have a lab every week between

2:00 pm and 5:00 pm in DKC. The class has been divided into two groups and one session will be on Tuesday (TA:

Swetambar Das) and another will run on Thursdays (TA: Raj Manna). The labs will be graded and there will be

assignments once in 15 days that will count towards your final grades.

There are excellent books available on computational physics: I will be mostly following:

1. Computational Physics Problem solving with computers by Rubin H. Landau and Manuel J. Paes

2. Computation Physics lecture notes by Hjorth-Jensen (on-line notes).

Other references include:

• Numerical Recipes in C (There is also a web version)

• Numerical Mathematical Analysis, J.B. Scarborough, John Hopkins

• Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India

• Numerical Methods for Engineering, S.C. Chapra and R.C. Canale, McGraw-Hill (1989).

• Electromagnetics and Calculation of Fields, Nathan P-Ida and J.P.A Bastos, Springer-Verlag (1992).

• M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation,

Wiley Eastern (1992).

The main goal of these lectures is to give a general idea of the tools required to solve problems on a computer. Why

do we need computers in Physics? Very often we encounter problems in physics which cannot be done analytically.

For example, we could come across a function, which is a solution of a differential equation that does not have a simple

analytic form, and is therefore defined on a grid with N points i.e.. f(x) ≈ fi defined on We would be required to

either find its roots, integrate it over some interval, differentiate it etc. Sometimes we might have to solve equations

which are very complex. Then the tool for handling such problems is a computer.

How does a computer work? The computer does what it is told! If these instructions are clear and precise, the

result is what one would expect. It needs codes to start up, to use its hardware and in general for everything! The

codes are nothing but a set of instructions to the computer and should be in a language that it can understand, i.e.,

machine language. The heart of a computer is the operating system and its nucleus is the kernel. The operating

system (OS) is a set of instructions for the computer to use its hardware and also communicate with the user. The

operating system has several shells and the user interacts with the computer/OS through these shells and most of the

time, a user does not talk to the kernel. There are lots of OS available: UNIX, DOS, VMS etc. We of course will be

using Linux which is based on UNIX and is a free OS.

Most of the programs we come across in Physics are not written in machine language, but rather a high-level

language such as FORTRAN, C, C++ etc. These languages then need to be translated to the machine language and

this translation is provided by a compiler. For this reason, they are also called compiled languages. There are also

other softwares such as Mathematica, Maple, Matlab etc which are called Interpreted languages and do not require a

compiler. In these softwares, the “instructions” written in some specific syntax is usually translated to the machine

language line by line, whereas programs written in C, C++, FORTRAN are translated all at once using the compiler

and are usually faster. In this course, for the most part we will use C.

The compiler translates a code written in a high-level ’human-readable’ form into machine language by going through

the code several times and understanding the logic. Therefore, it is essential before writing a code, or discussing a

particular language syntax, to come up with a clear logic as far as possible. Here are some guidelines that help us

attack a problem:

• Begin by understanding what needs to be done, what parameters are required etc.
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• Plan how to execute the code even before you start typing in a language of your choice.

• Try a flow chart! It helps!

Once you have a clear logic in mind, we can proceed to writing out a code in any language of your choice. Here is

an example: If we wish to calculate area of a circle how do we plan the code?

• We need the formula: πr2 where r is the radius of the circle.

• We need to input r.

• We need to define π as accurately as possible.

• Write out the result.

Here is a sample C code:

1 /∗FILE : area . c

2

3 Programer : Sunethra Ramanan suna@physics . i i tm . ac . in

4

5 Date : 22 Dec 2011

6

7 Version : Or ig ina l

8

9 Revision−History :

10

11 Comments :

12 22 Dec 2011: This code c a l c u l a t e s the area o f a c i r c l e . The input rad ius i s ob ta ined

13 as a user input .

14

15 NOTES:

16 Compile using gcc −o area area . c This generat e s an e x e cu t ab l e c a l l e d area . Run t h i s

17 e x e cu t ab l e using ./ area at the prompt . You could a l s o use a make f i l e .

18

19 Todo :

20 1. Hard code rad ius ins t ead of an i n t e r a c t i v e input

21 2. Change the code such t ha t r i s now a g r i d s t a r t i n g from some r min to r max f o r

22 example 0 . to 5 . wi th a s t ep s i z e o f 0 . 1 . Generate the r g r i d . Using a f o r loop , loop

23 through a l l va lue s o f r and c a l c u l a t e the area . Print the output to screen .

24 3. Now dec l a r e a f i l e pointer , open a f i l e c a l l e d area . dat and wr i t e the output to

25 f i l e .

26 ∗/

27

28 #include <s td i o . h>

29 #include <math . h>

30 #include <s t d l i b . h>

31

32 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

33 int

34 main (void )

35 {

36 const double pi = 4 . ∗ atan ( 1 . ) ; /∗ de f i n i ng p i ∗/

37 double r ; /∗ rad ius o f t he c i r c l e ∗/

38 double area ; /∗ s t o r e s the va lue o f area ∗/

39

40 /∗ g e t t i n g input ∗/

41 p r i n t f ( ”Enter rad ius o f the c i r c l e : ” ) ;

42 scan f ( ”%l f ” , &r ) ;

43

44 /∗ ca l c u l a t e area∗/

45 area = pi ∗ r ∗ r ;

46

47 /∗ pr i n t output ∗/
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48 p r i n t f ( ” area o f c i r c l e i s :% f \n” , area ) ;

49

50 return ( 0 ) ;

51 }

The code inputs area from the user, calculates the area and prints out the output on screen. Notice that there

are sufficient comments throughout the code. Although commenting a code might seem irrelevant for such simple

examples, one needs to consider the fact that human memory is very fallible and it is easy to loose track of what a

variable stores and as a result the code will rapidly become unusable by others and very soon by the programmer

himself/herself. Hence good coding ethics involves commenting the code and also documenting the programmer

details, revision history, version and the modifications.

Clearly the logic that is implemented above is just one way of doing it. There are several modifications that one

can think of for this code. For example: One can avoid an interactive entry of the radius and code the value in, have

an array for radii and calculate area as a function of the radius, push the part of the code that calculates the area

into a sub-routine and the main code calls this sub-routine etc. The advantage with the last point is that the code is

now modular and hence re-usable. We will see several instances where this re-usability will be a boon!

Before all the fancy sophistications of the code, it is important to check the code against an analytic result. What

would be the simplest check that requires minimum effort from the user? If we set r = 1, then the area is π. This is

of course the most basic check. Checking a code is mandatory and picking out simple enough examples is essential.

Here are some golden rules while writing a code:

1. Keep the logic very simple.

2. While defining variables use obvious labels. For example: if you need a variable for potential, you are better off

calling it potential, pot, or v instead of x or y. This way by just looking at the variable it is obvious what it

stands for.

3. Never use goto or computed goto in a code. The goto statements asks the code to go back to a particular line

number and this can definitely change if you modify something before it. YOU WILL NEVER BE ABLE TO

KEEP TRACK. Plus it is not a good thing for the compiler to go back and forth through goto’s.

4. Always document a code! Never rely on your memory! From personal experience, I still use codes from my

graduate school days and it is re-usable only because it is documented.

5. Make the code as modular as possible. The main code should ideally take inputs, perform some code specific

stuff and any general calculation, such as integrations, matrix inversion etc, should be called, where each of

these sub-routines are individual codes that are separately compiled and linked.

6. Once a code is written, do a dry run. You could use a de-bugger to step through the code. You will see examples

in your lab sessions.

II. PRECISION AND ACCURACY

A. Number Representation

A computer stores everything as either 0 or 1, which is called a bit. A string of 8 bits is called a byte and 1KB

= 1024 bytes. Although we have powerful computers, they are still finite when it comes to how much data it can

store and process. Since a computer stores data in the form of bits, one can ask how many integers can be stored

with N bits. The answer is 2N integers. The sign of the integer usually occupies one bit, therefore integers on an

N bit machine are in the range [0, 2N−1]. Therefore a 32 bit machine can store a maximum value of 231 = 2 × 109

integers and for unsigned integers 232 ≈ 4× 109. This is indeed small when we know that we can have 1023 molecules

in a room! What are the largest integer limits for a 64 bit machine?

Real numbers are usually represented in the following general way (in base 10 representation):

x10 = ±r × 10n, 1/10 ≤ r < 1 (1)
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where r is the mantissa and n is the exponent. For example a number −4.333 is represented as

−4.333 = (−1)1 × 0.4333× 101 (2)

The analogous notation in base 2 is:

x2 = (−1)sign ×mantissa2 × 2expfld−bias (3)

The bias is introduced so that the exponent is always positive and we do not have to give a bit to store the sign. In

base 2 the mantissa is written as:

mantissa2 = m1 × 2−1 +m2 × 2−2 +m3 × 2−3 + · · ·mn × 2−n (4)

For single precision, n is usually 23 and mi can be either 0 or 1. With the exponent of 8 bits and a bias of

12710 = 011111112 and a bit for the sign, the computer uses 32 bits to store a number in single precision. Note that

the mantissa in Eq. 4 is a choice and in fact in the IEEE standards, which is what most of the current computers

follow, Eq. 4 becomes:

mantissa2 = m1 × 20 +m2 × 2−1 +m3 × 2−2 + · · ·mn × 2−n (5)

and this form is called the normalized form. The size of the number stored depends on the form for the mantissa.

Let us look at an example. A base 10 number like 0.5 is represented as:

0.5 ≡ 0 0111 1111 1000 0000 0000 0000 0000 000 (6)

where the first place is the sign, the next eight digits are the exponent, which is the binary equivalent of 12710 and

the remaining digits are for the base 2 mantissa. Note that 0.5 can be written in two ways: (1× 2−1)20 or (1× 2−2)21

where the terms in brackets is the mantissa. In order to have a unique representation, m1 is normalized to 1.

Thefore for a 32 bit machine in single precision, which usually assigns 1 bit for the sign, 8 for the exponent and 23

for the mantissa, the largest number is:

0 1111 1111 1111 1111 1111 1111 1111 111 (7)

and the smallest is:

0 0000 0000 1000 0000 0000 0000 0000 000 (8)

In base 10 the largest real number is:

2128 = 3.4× 1038 (9)

and the smallest number is:

2−128 = 2.9× 10−39 (10)

Let us do an example to see how a computer stores a number (single precision). Consider the following binary sequence

1 0111 1101 1110 1000 0000 0000 0000 000 (11)

What number does this represent? We see that the first bit on the left is 1, which means it is a negative number.

The mantissa is:

mantissa2 = 1/2 + 1/22 + 1/23 + 0/24 + 1/25 + 0/26 + 0/27 + 0/28 + · · · = 0.90625 (12)

The exponent is expfld - bias. For a bias is 12710 and the decimal equivalent for the binary expfld is 125. Therefore

the exponent is 125− 127 = −2. Therefore the base 10 number is −0.90625× 10−2.

The precision is determined by the smallest number in the mantissa. Therefore for the single precision number

the precision is 2−23 ≈ 10−7. Real numbers can also be declared as doubles in C. For doubles, 64 bits are used to

represent a number as opposed to 32 bits, which is single precision. Using double precision increases the precision as
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well as the range of numbers that can be stored. In this case, 1 bit is reserved for the sign, 11 for the exponent and 52

for the mantissa. The bias for double precision numbers is set to 102310. What are the largest and smallest numbers

in double precision? What is the precision? How dependent are these results on the way we define the mantissa? -

We will see an illustration of the last question in the hands-on sessions.

If we try to store and use a number larger than the largest number allowed for that machine, then we get an

overflow error. If the number is smaller than the smallest number an underflow error occurs. Usually when there is

an underflow, the answer will be incorrect as the number will be automatically set to zero. Overflows are disastrous!

While representing base 10 numbers in binary form it turns out that some numbers use only a finite number of bits,

while some require infinite bits. Those that can be represented by finite number of bits are called machine numbers.

Obviously there are only finite number of them! For example:

0.2510 = 0.012 (13)

while

0.210 = (0.0011001100110011001101 · · ·)2 (14)

Suppose there is only enough storage to keep only 8 digits, then 0.25 will be accurately stored, while for 0.210, only

0.00110011 is stored which is 0.199219 and therefore deviates from the actual number. The maximum deviation is

called machine precision. Any number z is related to its computer representation zc by,

zc = z(1 + ǫ) (15)

where ǫ . ǫm and ǫm is the machine precision. Machine precision can be formally defined as that value ǫ such that

1 + ǫ = 1 (16)

in a given representation, which could be either a float or a double. Machine precision is not the smallest float

or double that can be represented. It arises because of approximating the mantissa. Repeated operations such as

multiplication, subtraction etc, accumulate the error depending on how the numbers are combined. While combining

two numbers, if either or both is smaller than the machine precision, the answer will be obviously wrong (either equal

to 0 if both are small numbers or equal to the larger number). We will explore these concepts a little more in detail

in the hands-on sessions.

B. Errors

We have already seen that a computer can be limited in several ways although it is very powerful and can perform

complex operations. The finiteness results in a limit on the largest and the smallest number a computer can store

and also on the precision of the number stored. The machine precision, which is the smallest number a computer can

safely store and use is around 10−6 or 10−7 for single precision real numbers, while for double precision, it is around

10−15. For scientific computations, it is customary to use double precision.

While designing and executing a program, there are several errors that a programer should be aware of.

1. Blunders: These are obvious errors that arise due to mistakes while typing an equation, leaving out parts of

syntax etc. If there is an error in the syntax, the compiler will catch it. For run time errors that could arise

from typographical errors the programer should design obvious checks that would help catch these bugs. Use of

a de-bugger such as gdb helps in catching these errors.

2. Random errors: These occur due to random events as the name suggests, such as cosmic rays, someone pulling

out a plug, fluctuation in power etc. While a shorter calculation is usually reliable, codes that take over a day

or week, should be re-run several times before the result can be trusted.

3. Approximation errors: This arises due to simplifications of the mathematics that would allow a problem to

be solved on a computer. For example, infinite series sums are replaced by finite sums, variable functions by

constants. For example:

∞∑

0

xn

n!
= ex (17)
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N∑

0

xn

n!
⋍ ex + ε(x,N) (18)

where ε(x,N) is the absolute error. The more terms retained in the series minimizes this error. This error is

also called truncation error. This error decreases if N ≫ x. If N ∼ x then the error is large.

4. Roundoff errors: These arise due to the finiteness of the machine’s storage. Only machine numbers get stored

exactly. Sometimes in calculations, this error can build up significantly that we start getting garbage from the

computer. For example, if we store a number 112233445566778899 = 1.12233445566778899×1019, the exponent

is stored completely as it is a small number. The mantissa is stored as two words, one has the most significant

part and the second has the least significant part. In this example, the part 1.12233 is stored correctly while the

second part is approximated. It is inevitable that errors get introduced in the least significant part of a number

and it is important that we know how to keep this error under control.


