
1

I. C-TUTORIAL 1

The goal of the tutorial is to pick up C along the way. Therefore, this tutorial will not be exhaustive, but will teach

you stuff you need to pick up for the sessions. There are excellent references for C, both online and books. O’Reilly

C book is definitely a great reference. A useful online referece is at www.cprogramming.com - this site offers C and

C++ tutorial and will be a quick reference guide.

We begin by looking at area.c

1 /∗FILE : area . c

2

3 Programer ; Sunethra Ramanan suna@physics . i i tm . ac . in

4

5 Date : 22 Dec 2011

6

7 Version : Or ig ina l

8

9 Revision−History :

10

11 Comments :

12 22 Dec 2011: This code c a l c u l a t e s the area o f a c i r c l e . The input rad ius i s ob ta ined

13 as a user input .

14

15 NOTES:

16 Compile using gcc −o area area . c This generat e s an e x e cu t ab l e c a l l e d area . Run t h i s

17 e x e cu t ab l e using ./ area at the prompt .

18

19 Todo :

20 1. Hard code rad ius ins t ead of an i n t e r a c t i v e input

21 2. Change the code such t ha t r i s now a g r i d s t a r t i n g from some r min to r max f o r

22 example 0 . to 5 . wi th a s t ep s i z e o f 0 . 1 . Generate the r g r i d . Using a f o r loop , loop

23 through a l l va lue s o f r and c a l c u l a t e the area . Print the output to screen .

24 3. Now dec l a r e a f i l e pointer , open a f i l e c a l l e d area . dat and wr i t e the output to

25 f i l e .

26 ∗/

27

28 #include <s td i o . h>

29 #include <math . h>

30 #include <s t d l i b . h>

31

32 /∗ ∗∗ ∗/

33 int

34 main (void)

35 {

36 const double pi = 4 . ∗ atan (1 .) ; /∗ de f i n i ng p i ∗/

37 double r ; /∗ rad ius o f t he c i r c l e ∗/

38 double area ; /∗ s t o r e s the va lue o f area ∗/

39

40 /∗ g e t t i n g input ∗/

41 p r i n t f (”Enter rad ius o f the c i r c l e : ”) ;

42 scan f (”%l f ” , &r) ;

43

44 /∗ ca l c u l a t e area∗/

45 area = pi ∗ r ∗ r ;

46

47 /∗ pr i n t output ∗/

48 p r i n t f (” area o f c i r c l e i s :% f \n” , area) ;

49

50 return (0) ;

51 }

1. Headers: Notice that there are several include statements before the code even begins, stdlib.h, math.h etc.

These are called header files. They contain function prototypes. The files included here with the 〈· · · 〉 are

2

standard C headers and are kept in /usr/include directory. You can of course define your own header files. If

this file is in your current working directory, for example my header.h, then this is included within quotes:

#inc l ude ”my header . h”

Stuff declared with a # mark are called preprocessor directives. The processor sees this first.

2. The main code: This part of the code is the first that the compiler calls. It has a specific function prototype:

int main (void)

or

int main (int argc , char ∗ argv [])

In the first case, nothing is passed to the main code. In the second case, one can pass command line inputs,

which are also called standard inputs to the code. For instance, if the executable for the area.c code is called

area and it requires an input file such as a list of radii for which the are should be calculated, then these could

be stored in an input file and passed to the code as follows:

area ar ea input . inp

where the suffix “.inp” is a suggestion to the user that the file contains input data. argc counts the number of

command line strings. In this example we have two strings: area and area input.inp - the first input is always

the name of the executable. If no input file is passed, then argc = 1. In this example, argc = 2.

3. Inputs: Almost all calculation will require some sort of input. This could be interactive, where the user types

a choice or a value of a parameter at the terminal (command line input) or it could taken in through an input

file, which is a non-interactive input. In this example, we use an interactive input. If you try compiling and

running the code with the following commands:

gcc −o area area . c /∗ compi la t i on ∗/

. / area /∗ running e x e cu t ab l e ∗/

then we get the following message on screen (try it!):

Enter rad ius o f the c i r c l e :

In response we enter a number at the colon and hit enter. The code will take the input and store it in the

variable called “r”. The scanf statement does this. Note that the value of r is stored in its address (r is preceeded

by &). This is just one way of doing an interactive input. In fact this way has a flaw. For example, instead

of entering a number, if we enter an alphabet, which is stored as a character, or a blank space, the code will

collapse. We need another way that takes care of such errors. Look that the following piece of code that should

replace the scanf statement:

char l i n e [1 0 0] ; /∗Dec larat ion of a charac t e r array o f s i z e 100 ∗/

double r ad ius ; /∗ de c l a ra t i on of a v a r i a b l e c a l l e d rad ius ∗/

p r i n t f (”Enter rad ius o f c i r c l e : \n”) ;

f g e t s (l i n e , s izeof (l i n e) , s td i n) ;

s s can f (l i n e , ”%l f ” , &rad ius) ;

The declaration of a character array called line is done first. Of course we have already declared the radius in

our code. Now we ask the user to enter the value of “r”. The fgets statement reads the entire string and stores

it in the character array called line. sizeof(line) tells the computer how big the array is, so that the appropriate

amount of memory is allocated. We could of course replace sizeof(line) by the actual number which is 100,

but this is very dangerous because if we change the size of array in the declaration in order to read a more

descriptive line, we need to make sure we change the dimension in the fgets statement. Using the sizeof function

takes care of this automatically. “stdin” means standard input, which is from the terminal. Therefore we tell

the computer to read the line along with the value of r from the terminal and store it in “line”. Next the sscanf

statement reads this line and looks for a real (double) data type. If there is no such data, which would happen

if the user enters nothing or a character, the return from sscanf would be ’0’. If the user hits enter by mistake,

3

File mode What they do

r Read-only mode - file should exist

w Write only - if file does not exist, it is created

if file exists, it is re-written

a Append - a file that exists is opened and data is appended

if file does not exist, it is created

b data in binary mode

r+ open for reading and writing (start at the beginning)

w+ open for reading and writing (file is overwritten)

a+ open for reading and writing

TABLE I: File opening modes

index Radius

1 0.5

2 1.0

3 1.5

TABLE II: Sample data file

the return from sscanf would be EOF (End of file character). We can catch this easily by the following lines of

code:

i f (s s can f == 0 | s s can f == EOF)

{

p r i n t f (”You must enter a r e a l number f o r the rad ius ! \n”) ;

e x i t (1) ;

}

As you can see, these lines make sure that the code runs only if the correct value of the radius which should be

a real number is given by the user. Otherwise the code exits.

Another way to get inputs is to read from a file. Usually this means we need to declare file pointer. We do that

as follows:

/∗This de c l a ra t i on w i l l be the f i r s t l i n e in the main code ∗/

FILE ∗ i npu t p t r ; /∗Declar ing a f i l e po in t e r ∗/

We then need to open the file and read from it. This can appear anywhere we need in the code once all the

variable declarations are over. Here is how we open a file, let us call it radius.dat:

i npu t p t r = fopen (” rad ius . dat ” , ” r ”) ;

The general format for opening a file is

fopen (name of f i l e , mode) ;

Here “r′′ stands for the mode in which the file should be opened, which is in the read-only mode. In order to

open a file to write we need to replace “r′′ by “w′′. Here is a list of file opening options. Once the file is opened,

we can read the data in it using the fgets and sscanf statements. Here is a sample data file which lists the radii

for which the area should be calculated: The file in table II is read using the following lines of code which should

come after the file is opened.

f g e t s (l i n e , s izeof (l i n e) , i npu t p t r) ;

while (f g e t s (l i n e , s izeof (l i n e) , i npu t p t r) != NULL)

{

s s can f (l i n e , ”%d %l f ” , &index , &rad ius) ;

4

Symbols Arithmetic Operations

+ Addition

- Subraction

/ Division

* Multiplication

% Remainder of a division

TABLE III: Mathematical operators in C

/∗perform ca l c u l a t i o n here ∗/

/∗ d i s p l ay r e s u l t s on screen or wr i t e in to f i l e ∗/

}

Here the first fgets statement reads the first line, which is a comment in the data file. The while statement

continues to read the file line by line until the NULL character which is the end of file is reached. The symbol

“! =′′ means not equal to. Therefore the code reads a value of the radius which is stored in the location of the

variable radius, which could be used to calculate the area, display the result or write the result into another file

and proceed to read the next line. This continues until the end of file is reached.

4. Calculations: In our example we calculate the area of a circle. The standard mathematical functions in C are

defined as follows:

5. Output: The final step in the code is the output. Here the output which is the area of the circle is printed on

the screen. Can you modify the code such that the output is written into a file?

6. Return value: C code treats every .c file as a function that does something and returns a value to some other

function that calls it. The main function since it is the one calling other functions, should return 0. If the radius

part was moved into a subroutine, then the return value would not be 0 but the value of the area. For example

the following code tells you how such a subroutine could look:

double a r e a c a l c (double r)

{

const double pi = 4 . ∗ atan (1 .) ;

double a ; /∗ v a r i a b l e to s t o r e the rad ius o f a c i r c l e ∗/

/∗ c a l c u l a t i n g area ∗/

a = pi ∗ r ∗ r ;

return (a) ;

}

The function called area, which returns a double data type and takes in a double data type called r calculates

the area which is stores in the variable called a and returns it at the end of the code to the calling code.

Here is a summary of the general structure of a C code:

/∗ preamble wi th in the comments : This should have the f i l e name , the programer

d e t a i l s , date o f wr i t i n g the code , r e v i s i on h i s t o r y and what the code does ∗/

header f i l e s i nc luded through the p r ep r o c e s s o r d i r e c t i v e s .

Function Dec l a r a t i on s : example :

double a r e a c a l c (double r) ; /∗ note the semi−colon at the end of the

de c l a ra t i on ∗/

main code

{

5

FILE de c l a r a t i o n s

i n t e g e r d e c l a r a t i o n s

r e a l d e c l a r a t i o n s

character d e c l a r a t i o n s

i n i t i a l i z a t i o n s o f var i ous v a r i a b l e s

opening f i l e s and read ing data

execut i on o f something

wr i t i ng output

return (0) ;

}

subrout ines

Compiling and executing the code: Once a code is written, we need to compile the code, where the compiler

translates the lines of code into an object file in machine language. This is done by the following piece of code typed

at the terminal:

gcc area . c

This command compiles the code called area.c and generates an executale called a.out. In order to run the executable

the following command can be used.

. / a . out

While this will work, it is often useful to have separate names for the executable instead of the standard name a.out.

We can do this by the following command:

gcc −o area area . c

This generates an executable called “area” and the executable can be run using:

. / area

If there are libraries to be used they are added after name of the code. For example:

gcc −o area area . c −lm

where a math library which is not a part of the standard C menu is added. We will see examples, where you will add

libraries to the code while compiling.

Sometimes we could have more than one code to compile and one code could call another. In such cases, it is very

very useful to use makefiles which contain all the commands in a single file. A makefile in general captures more

errors than the simple compilation seen here. We will see more examples and discuss this in detail soon.

