DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH5100 Quantum Mechanics I Problem Set 3 17 Sept 2012 due: 24 Sept 2012

- 1. Let \hat{K} be an operator defined by: $\hat{K} = |\phi\rangle\langle\psi|$ where $|\phi\rangle$ and $|\psi\rangle$ are two vectors of the state space.
 - (a) Under what condition in \widehat{K} Hermitian?
 - (b) Calculate \hat{K}^2 . Under what condition is \hat{K} a projector?
 - (c) Show that \hat{K} can always be written in the form $\hat{K} = \lambda \hat{P}_1 \hat{P}_2$ where λ is a constant to be calculated and \hat{P}_1 and \hat{P}_2 are projectors.
- 2. Consider the Hamiltonian of a particle in a one-dimensional problem defined by:

$$\widehat{H} = \frac{1}{2m}\widehat{P}^2 + V(\widehat{X})$$

where \widehat{X} and \widehat{P} are operators that satisfy $[\widehat{X}, \widehat{P}] = i\hbar$. The eigenvectors of \widehat{H} are denoted by $|\phi_n\rangle$ and the eigenvalues are E_n where n is a discrete index.

(a) Show that:

$$\langle \phi_n | \widehat{P} | \phi_{n'} \rangle = \alpha \langle \phi_n | \widehat{X} | \phi_{n'} \rangle$$

where α is a coefficient that depends on the difference between E_n and $E_{n'}$. Calculate α . (Hint: consider the commutator: $[\widehat{X}, \widehat{H}]$)

(b) From the above exercise, deduce the following using closure relation:

$$\sum_{n} (E_n - E_{n'})^2 |\langle \phi_n | \widehat{X} | \phi_{n'} \rangle|^2 = \frac{\hbar^2}{m^2} \langle \phi_n | \widehat{P} | \phi_n \rangle.$$

3. Consider the three-dimensional wave function

$$\psi(x, y, z) = Ne^{-\left[\frac{|x|}{2a} + \frac{|y|}{2b} + \frac{|z|}{2c}\right]}$$

where a, b, c are three positive lengths.

- (a) Calculate N such that ψ is normalized.
- (b) Calculate the probability that a measurement of X will yield a result included between 0 and a.

- (c) Calculate the probability that simultaneous measurements of Y and Z will yield results included repectively between -b and b, and -c and c.
- (d) Calculate the probability that a measurement of the momentum will yield a result included in the element $dp_x dp_y dp_z$ centered at the point $p_x = p_y = 0$ and $p_z = \hbar/c$.
- 4. Consider a particle of mass m in a potential:

$$V(x) = 0$$
 if $0 \le x \le a$
 $V(x) = \infty$ otherwise

Let $|\phi_n\rangle$ be the eigenstates of the Hamiltonian and the eigenvalues are given by $E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$. The state of the particle at the instant t = 0 is:

$$|\psi(0)\rangle = a_1|\phi_1\rangle + a_2|\phi_2\rangle + a_3|\phi_3\rangle + a_4|\phi_4\rangle$$

- (a) What is the probability, when the energy of the particle in the state $|\psi(0)\rangle$ is measured, of finding a value smaller than $\frac{3\pi^2\hbar^2}{ma^2}$?
- (b) What is the mean value of the energy in the state $|\psi(0)\rangle$?
- (c) Calculate the state $|\psi(t)\rangle$ at a later time t. How does it compare to the results calculated in the first two parts of this problem?
- (d) When the energy is measured, the result $\frac{8\pi^2\hbar^2}{ma^2}$ is found. After this measurement, what is the state of the system and what happens if the energy is measured again?