DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH5100 Quantum Mechanics I Problem Set 4 2 Oct 2012 due: 9 Oct 2012

1. A very useful variant of the Baker-Campbell-Hausdorff formula is the following operator identity. Let A and B be two operators, and λ a scalar. Then

$$e^{\lambda A} B e^{-\lambda A} = B + \lambda [A, B] + \frac{\lambda^2}{2!} [A, [A, B]] + \frac{\lambda^3}{3!} [A, [A, B]] + \cdots$$

- (a) Verify this identity up to order λ^3 by explicitly working out the LHS up to this order in λ .
- (b) Using the formula, show that

$$e^{\lambda A} e^{B} e^{-\lambda A} = \exp\left\{B + \lambda [A, B] + \frac{\lambda^{2}}{2!} [A, [A, B]] + \frac{\lambda^{3}}{3!} [A, [A, [A, B]]] + \cdots\right\}.$$

2. Consider a one dimensional harmonic oscillator where $|\phi_n\rangle$ are the energy eigenstates. The operator U(k) is defined by:

$$\widehat{U}(k) = e^{ik\widehat{\lambda}}$$

where k is real.

- (a) Is $\widehat{U}(k)$ unitary?
- (b) Show that for all n the matrix elements of \widehat{U} satisfy:

$$\sum_{n'} |\langle \phi_n | U(k) | \phi_{n'} \rangle|^2 = 1$$

(c) Express U(k) in terms of \hat{a} and \hat{a}^{\dagger} . Using the following relation:

$$e^A e^B = e^{A+B} e^{[A,B]/2}$$

where A and B are operators obtain $\widehat{U}(k)$ in the form of a product of exponential operators.

(d) Establish the relations:

$$e^{\lambda \hat{a}} |\phi_0\rangle = |\phi_0\rangle$$
$$\langle \phi_n | e^{\lambda \hat{a}^{\dagger}} |\phi_0\rangle = \frac{\lambda^n}{\sqrt{n!}}$$

where λ is an arbitrary complex parameter.

- (e) Find: $\langle \phi_0 | \hat{U}(k) | \phi_n \rangle$
- 3. The evolution operator $\widehat{U}(t,0)$ of a one dimensional harmonic oscillator is written as:

$$\widehat{U}(t,0) = e^{-i\widehat{H}t/\hbar}$$

where
$$\widehat{H} = \hbar \omega \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$
.

(a) Consider the operators:

$$\tilde{a}(t) = U^{\dagger}(t,0)aU(t,0)$$
$$\tilde{a}^{\dagger}(t) = U^{\dagger}(t,0)a^{\dagger}U(t,0)$$

By calculating their action on the eigenkets $|\phi_n\rangle$ of \hat{H} , find the expression for $\tilde{a}(t)$ and $\tilde{a}^{\dagger}(t)$ in terms of a and a^{\dagger} .

(b) Calculate the operators $\tilde{X}(t)$ and $\tilde{P}(t)$ obtained from X and P by the unitary transformation:

$$\tilde{X}(t) = U^{\dagger}(t,0)XU(t,0)$$
$$\tilde{P}(t) = U^{\dagger}(t,0)PU(t,0)$$

- (c) Show that $U(\frac{\pi}{2\omega}, 0)|x\rangle$ is an eigenvector of P and determine its eigenvalue. Similarly show that $U^{\dagger}(\frac{\pi}{2\omega}, 0)|p\rangle$ is an eigenvector of X.
- 4. Anisotropic HO: In a three dimensional problem, consider a particle of mass m and of potential energy:

$$V(X,Y,Z) = \frac{m\omega^2}{2} \left[\left(1 + \frac{2\lambda}{3} \right) (X^2 + Y^2) + \left(1 - \frac{4\lambda}{3} \right) Z^2 \right]$$

where ω and λ are constants which satisfy: $\omega \geq 0$ and $0 \leq \lambda < 3/4$.

- (a) What are the eigenstates of the Hamiltonian and the corresponding energies?
- (b) Discuss for $\lambda = 0$, $\lambda = 1/2$, the energy eigenvalues and the degeneracies of the ground state and the first two excited states. Is Parity a good quantum number? If so, what happens to Parity as a function of λ ?