Richard Hamming: "The purpose of computation is insight, not numbers."
Below we list the partitions of the first 25 numbers for dimensions in the range 1 ≤ d ≤ 10. Unless indicated otherwise, these were generated using Knuth's algorithm for topological sequences. These were generated mainly to have an independent check on numbers generated using a modified version of the Bratley-McKay algorithm.
N | 1d | 2d | 3d | 4d | 5d | 6d | 7d | 8d | 9d | 10d | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 |
3 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 3 |
4 | 5 | 13 | 26 | 45 | 71 | 105 | 148 | 201 | 265 | 341 | 4 |
5 | 7 | 24 | 59 | 120 | 216 | 357 | 554 | 819 | 1165 | 1606 | 5 |
6 | 11 | 48 | 140 | 326 | 657 | 1197 | 2024 | 3231 | 4927 | 7238 | 6 |
7 | 15 | 86 | 307 | 835 | 1907 | 3857 | 7134 | 12321 | 20155 | 31548 | 7 |
8 | 22 | 160 | 684 | 2145 | 5507 | 12300 | 24796 | 46209 | 80920 | 134728 | 8 |
9 | 30 | 282 | 1464 | 5345 | 15522 | 38430 | 84625 | 170370 | 319555 | 565983 | 9 |
10 | 42 | 500 | 3122 | 13220 | 43352 | 118874 | 285784 | 621316 | 1247780 | 2350183 | 10 |
11 | 56 | 859 | 6500 | 32068 | 119140 | 362670 | 953430 | 2240838 | 4821737 | 9661465 | 11 |
12 | 77 | 1479 | 13426 | 76965 | 323946 | 1095430 | 3151332 | 8011584 | 18478640 | 39401792 | 12 |
13 | 101 | 2485 | 27248 | 181975 | 869476 | 3271751 | 10314257 | 28395213 | 70261505 | 159527302 | 13 |
14 | 135 | 4167 | 54804 | 425490 | 2308071 | 9673993 | 33457972 | 99845553 | 265266530 | 641733862 | 14 |
15 | 176 | 6879 | 108802 | 982615 | 6056581 | 28310881 | 107557792 | 348333411 | 994606250 | 2565774277 | 15 |
16 | 231 | 11297 | 214071 | 2245444 | 15724170 | 82033609 | 342732670 | 1205925033 | 3704360354 | 10198601886 | 16 |
17 | 297 | 18334 | 416849 | 5077090 | 40393693 | 235359901 | 1082509680 | 4142850423 | 13705110470 | 40305279454 | 17 |
18 | 385 | 29601 | 805124 | 11371250 | 102736274 | 668779076 | 3389190112 | 14122999548 | 50367905030 | 158376907546 | 18 |
19 | 490 | 47330 | 1541637 | 25235790 | 258790004 | 1882412994 | 10518508294 | 47772540002 | 183864216415 | 618742851276 | 19 |
20 | 627 | 75278 | 2930329 | 55536870 | 645968054 | 5249817573 | 32361863632 | 160336300356 | 666612686420 | 2403142436321 | 20 |
21 | 792 | 118794 | 5528733 | 121250185 | 1598460229 | 14510628853 | 98711666690 | 533909133114 | 2400146830007 | 9277907267838@ | 21 |
22 | 1002 | 186475 | 10362312 | 262769080 | 3923114261 | 39762851345 | 298546248070 | 1763901729589 | 8581152930795 | 35601295047120@ | 22 |
23 | 1255 | 290783 | 19295226 | 565502405 | 9554122089 | 108058883583 | 895425789360 | 5781672744441* | 30461884866225* | 135758936765513* | 23 |
24 | 1575 | 451194 | 35713454 | 1209096875 | 23098084695 | 291331215952 | 2663818308506 | 18802643601531* | 107358976330035# | 514399682236550# | 24 |
25 | 1958 | 696033 | 65715094 | 2569270050 | 55458417125 | 779492325689 | 7861971702653 | 60673478894826# | 375635994281175# | 1936463184206210# | 25 |
N | 1d | 2d | 3d | 4d | 5d | 6d | 7d | 8d | 9d | 10d | N |
* obtained using the A-matrix
@ obtained using the A-matrix and the C-matrix
# obtained using Bratley's code for the A-matrix