Richard Hamming: "The purpose of computation is insight, not numbers."


Below we list the partitions of the first 25 numbers for dimensions in the range 1 ≤ d ≤ 10. Unless indicated otherwise, these were generated using Knuth's algorithm for topological sequences. These were generated mainly to have an independent check on numbers generated using a modified version of the Bratley-McKay algorithm.

N 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d N
1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11 2
3 3 6 10 15 21 28 36 45 55 66 3
4 5 13 26 45 71 105 148 201 265 341 4
5 7 24 59 120 216 357 554 819 1165 1606 5
6 11 48 140 326 657 1197 2024 3231 4927 7238 6
7 15 86 307 835 1907 3857 7134 12321 20155 31548 7
8 22 160 684 2145 5507 12300 24796 46209 80920 134728 8
9 30 282 1464 5345 15522 38430 84625 170370 319555 565983 9
10 42 500 3122 13220 43352 118874 285784 621316 1247780 2350183 10
11 56 859 6500 32068 119140 362670 953430 2240838 4821737 9661465 11
12 77 1479 13426 76965 323946 1095430 3151332 8011584 18478640 39401792 12
13 101 2485 27248 181975 869476 3271751 10314257 28395213 70261505 159527302 13
14 135 4167 54804 425490 2308071 9673993 33457972 99845553 265266530 641733862 14
15 176 6879 108802 982615 6056581 28310881 107557792 348333411 994606250 2565774277 15
16 231 11297 214071 2245444 15724170 82033609 342732670 1205925033 3704360354 10198601886 16
17 297 18334 416849 5077090 40393693 235359901 1082509680 4142850423 13705110470 40305279454 17
18 385 29601 805124 11371250 102736274 668779076 3389190112 14122999548 50367905030 158376907546 18
19 490 47330 1541637 25235790 258790004 1882412994 10518508294 47772540002 183864216415 618742851276 19
20 627 75278 2930329 55536870 645968054 5249817573 32361863632 160336300356 666612686420 2403142436321 20
21 792 118794 5528733 121250185 1598460229 14510628853 98711666690 533909133114 2400146830007 9277907267838@ 21
22 1002 186475 10362312 262769080 3923114261 39762851345 298546248070 1763901729589 8581152930795 35601295047120@ 22
23 1255 290783 19295226 565502405 9554122089 108058883583 895425789360 5781672744441* 30461884866225* 135758936765513* 23
24 1575 451194 35713454 1209096875 23098084695 291331215952 2663818308506 18802643601531* 107358976330035# 514399682236550# 24
25 1958 696033 65715094 2569270050 55458417125 779492325689 7861971702653 60673478894826# 375635994281175# 1936463184206210# 25
N 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d N

* obtained using the A-matrix
@ obtained using the A-matrix and the C-matrix
# obtained using Bratley's code for the A-matrix