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1. Introduction

Two-dimensional topological gravity remains a fascinating and enigmatic subject, due

to its conjectured link with ordinary Liouville gravity and matrix models [1][2]1. Since two-

dimensional supergravity is the basis for more interesting string theories than ordinary

gravity, it is of some interest to see whether a similar link exists between topological

supergravity and super Liouville theory, or super-KDV flows [4]. It has not been entirely

clear how to construct the required topological theory, however. For example the nature of

the moduli space in question has been elusive [4][5]. Moreover, the case of ordinary gravity

has also proved more subtle than originally appeared; certain inhomogeneous terms in

the supercurrent used to integrate odd moduli, as well as modifications to the operator

insertions themselves, are needed [6][7]. Clearly what is needed is a fundamental definition

of the theory starting from some principle.

Such a principle was given in ref. [8]. One begins with the observation that the

matter systems coupled to topological gravity should be coordinate-invariant even prior

to introducing gravity. In particular [9] they should have an algebra of symmetries with

a stress tensor T and a nilpotent charge Qs such that T = {Qs, G} for some operator G.

Moreover T must be anomaly-free in order to generate true symmetries. In two dimensions

we can satisfy these requirements by beginning with local N = 2 susy, because the N = 2

superconformal algebra contains a subalgebra of the type requested above. In particular

this “twisted” subalgebra is always anomaly-free, regardless of the central extension of the

full N = 2 algebra on the matter system.

One can now simply gauge the twisted subalgebra. In the process the full (matter

plus ghost) stress tensor becomes a brst-commutator. This ensures that T decouples and

the theory becomes truly topological. Other total commutators decouple as well, provided

they obey a certain “equivariance” condition [1][10]. Rather than gauging the subalgebra

one can gauge the full N = 2 symmetry and impose a constraint to reduce the symmetry;

this was the approach used in [8]. One ends up with a completely explicit prescription for

computing amplitudes as integrals of ordinary CFT correlations over a supermoduli space.

The latter is then a reduction of the N = 2 supermoduli space consisting of those N = 2

SRS whose patching functions respect the topological constraint. Such surfaces are called

semirigid SRS, or “SSRS.” We will also write “TN = 0” to denote these surfaces, since

they arise in describing ordinary topological gravity.

1 For the status of this conjecture see ref. [3].
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It is not hard to guess a generalization of this program to get topological supergravities.

We must find anomaly-free subalgebras of the N > 2 superconformal algebras [11] and

gauge them. By identical reasoning to the above, we then obtain topological theories with

TN > 0 susy. We will carry out this program below. Since the construction follows from

a very explicit principle we will find directly the various ingredients needed in the path

integral, including the full inhomogeneous supercurrents. Moreover the resulting moduli

space for N = 3, say, has a natural projection π : M̂TN=1 → M̂N=1. Integrating over the

fibers of π one can in principle reduce the amplitudes of topological N = 1 supergravity to

integrals over M̂N=1, just as in the TN = 0 case [6][8]. To describe a full N = 1 topological

supergravity theory, one couples a topological matter system such as the N = 1 topological

superconformal field theory recently constructed [12].

Other approaches to topological supergravity exist [4][13][14][5]. Some of these begin

with a different principle, namely the quantization of flat OSp(2|1,R) gauge connections

[13][5] or with brst gauge-fixing of diffeomorphisms [14] along the lines of [15]. As men-

tioned in [8], we find the semirigid approach gives a clearer understanding of why the final

CFT is free, and generally simplifies the construction. Finally it will become clear in the

sequel that to end up with N = 1 we only need to start with N = 3 (not N = 4 [5]). We

will simply verify that our constrained symmetry closes without extension to N = 4. One

could of course begin with N = 4 symmetry. In this case we will show that the resulting

theory is extended, or TN = 2, topological supergravity.

2. Unbroken geometry

We first recall some facts about extended superconformal geometry [16][17][18] [19][20].

An N -superconformal surface may be regarded as a complex supermanifold Σ of di-

mension 1|N equipped with an extra structure. The structure can be conveniently specified

by describing those coordinate transformations which leave it fixed. Take Σ = C1|N and

define

Di =
∂

∂θi
+ gijθ

j ∂

∂z

where gij = δij . Then the allowed coordinate transformations will take z ≡ (z, ~θ ) to z′

with
(
∂/∂z
~D

)
=




a2 ~ω

~0 a
↔
M




(
∂/∂z′

~D′

)
. (2.1)
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Here a is a nowhere-vanishing even function, ~ω are odd functions, and
↔
M is a matrix of even

functions obeying M tgM ≡ g. Since matrix functions of the form (2.1) form a group, the

corresponding set of coordinate transformations forms a group: the “N -superconformal

transformations.” We will sometimes write

Di = F j
i D′

j ; F j
i = aM j

i . (2.2)

An N -superconformal surface is then just a supermanifold patched together from pieces of

C1|N by N -superconformal transition functions. There is a more intrinsic description of

such a space as possessing an integrable reduction of its structure group [20][21], but we

will not need this level of refinement here.

We should note an important difference between N = 1, 2 and N > 2. For N = 1 the

sole operator D never mixes with ∂z, by (2.1). For N = 2 the operators D1,2 do mix with

each other, but when M ∈ SO(2,C) the combinations D± ≡ 1√
2
(D1 ±D2) do not. This

is simply because in this basis g =

(
0 1
1 0

)
, and the matrix M must be diagonal. For

N > 2 however, the Di will in general mix across patch boundaries; only the O(N,C)×C×

structure is global. In the case of N = 2 it was essential to forbid “twisting,” i.e. one must

in fact require [8] M ∈ SO(2,C). We will see that for N > 2 twisting will be possible and

desirable.

As on ordinary SRS one can easily translate (2.1) into a condition on z′:

Diz
′ = gjkθ

′jDiθ
′k .

Moreover, as in N = 1 the most general infinitesimal superconformal transformation can

be specified by a single even function: if v = v(z, ~θ ) then we let

Vv ≡ v ∂z + 1
2 g

ij(Div)Dj , (2.3)

which gives for (2.1), (2.2)

F j
i = δj

i + 1
2
DiD

jv , a = 1 + 1
2
∂zv . (2.4)

The function v is not a scalar. Writing (2.3) out in another coordinate system (z ′, ~θ′)

shows that Vv = v′∂z′ + 1
2 g

ij(D′
iv

′)D′
j with

v′(z′, ~θ′) = a2(z, ~θ )v(z, ~θ ) . (2.5)
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Since the basis vector ∂
∂z′

= a−2 ∂
∂z

(modulo E), we see that v should be regarded as

a section of the line bundle T = TΣ/E . We will remind ourselves of this by writing

v = vz(z, ~θ ), but note that this does not mean v is the z component of a true tangent vector;

eqn. (2.5) shows that v transforms homogeneously under superconformal transformations.

We will need the formula for the Lie bracket of two infinitesimal transformations. One

finds [Vv, Vw] = V[v,w] where

[v, w]z ≡ vz∂zw
z − wz∂zv

z + 1
2
(Div

z)(Diwz) ≡ £vw
z . (2.6)

The reader can show using (2.4) that (2.6) is the infinitesimal version of (2.5):

v′(z) = v(z) + [v, w](z) ≡ (1 −£w)v .

Taking the superdeterminant of (2.4) shows that the Berezin differential dz =

[dz|dθ1 . . . dθN ] transforms as a section of T ( N

2
−1), or in other words as a (1 − N

2 )-

differential. Thus we get a natural dual pairing between p-differentials and (1 − N
2 − p)-

differentials, the analog of Serre duality (which is the case N = 0). For example the stress

tensor in CFT is paired with the generator v, a (−1)-differential:

T[v] =

∫
dz T(z)v(z) .

Thus T is a (2− N
2 )-differential. We can define the Lie derivative £wT by requiring T[v]

to be invariant and using (2.6). In fact for any p-differential one has

£wT = w∂T + pT∂w + 1
2
DiwD

iT . (2.7)

We close this section by recalling central extensions to the various superconformal al-

gebras. A central extension is defined by a cocycle, a bilinear form C(v1, v2) = −C(v2, v1).

It was shown that the unique generators for N = 3 and for untwisted and twisted N = 4

are [18][19]

C3(v1, v2) =

∮
dz vz

1ε
ijkDiDjDkv

z
2 (2.8)

C4(v1, v2) =

∮
dz vz

1ε
ijklDiDjDkD

−1
l vz

2

C̃4(v1, v2) =

∮
dz vz

1∂zv
z
2 .

(2.9)
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3. Broken N = 3

We now specialize to N = 3 geometry. To break the full symmetry we must supply

Σ with a choice of some further additional structure. Again we specify this structure by

giving the group of allowed coordinate transformations preserving it. Namely, in (2.1) we

require M to live in a subgroup G ⊆ O(3,C). Choose the standard basis {D+, D3, D−}

for E , in which gij =




1
1

1


. Then we require that M gives D− ∝ D′

−, without

mixing into D′
+, D′

3. Since M must still be orthogonal we find



∂z

~D


 =




a2 · · ·

0 1 x −x2/2
0 a −xa
0 a2






∂z′

~D′


 . (3.1)

The ellipsis denotes odd functions; x, a are even functions. Since matrices of the form

(3.1) form a group, we again get a group of coordinate transformations, smaller than the

3-superconformal transformations.

Eqn. (3.1) is a natural generalization of the corresponding N = 2 reduction [8]:



∂z

D+

D−


 =




a2 · · ·

0 1 0
0 0 a2






∂z′

D′
+

D′
−


 . (3.2)

Both are more transparent when examined infinitesimally. From (2.4) we see that (3.2)

requires D+D−v ≡ 0, which in turns means D−v = ε ≡ const. But the N = 2 cocycle

vanishes identically on such generators:

C(v1, v2) =

∮
vz
1(D+D− −D−D+)vz

2

=

∮
(vz

1D+ε2 − ε1D+v
z
2)

= 0 ,

and so we have found the desired anomaly-free subalgebra. In exactly the same way, for

N = 3 the requirement (3.1) implies D3D−v = D+D−v = 0, or D−v = const. One can

readily verify using (2.6) that these indeed form a closed algebra, and using (2.8) that this

3-semirigid algebra is anomaly-free. This means in particular that in any matter system

with N = 3 local susy we can gauge the semirigid symmetries regardless of the central

charge — a hallmark of topological theories.
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The generator vz(z) of an unbroken N = 3 superconformal transformation has an

expansion in θi with eight terms, four even functions corresponding to Virasoro and SO(3)

current algebra plus four odd functions corresponding to an isotriplet of supercurrents plus

one abelian generator. The restricted generator contains only four independent currents,

plus one additional charge. We will write the solution to D−v = const as

v = (v0 + θ3λ) + θ+(ν + θ3`) + θ+θ−∂z(v0 + θ3λ) + θ−ε (3.3)

where v0, ` are even functions of z while ν, λ are odd functions; ε is an odd constant.

We have grouped the generators in pairs in (3.3) to emphasize that our semirigid

algebra contains the N = 1 susy algebras, with generators corresponding to v0, λ, together

with same-spin partners corresponding to ν, `. Thus in particular we have N = 1 susy as

desired. The isolated parameter ε corresponds to a single generator Qs mixing the usual

generators with their topological partners.

There are various ways to “twist” theN = 3 algebra in the sense of imposing boundary

conditions between z = 1 and z = ei2π. The original N = 3 superconformal transformation

group has an O(3) global automorphism group that acts on θ±, θ3. Its global conjugacy

classes are known [11] to be Z2 × U(1), in which the U(1) may be taken to rotate θ± into

each other. However, the symmetry breaking D−v = const requires θ+ to be global and so

explicitly breaks the above U(1). (The local automorphism group works similarly.) Thus,

only Z2 survives, leaving only Neveu-Schwarz and Ramond sectors corresponding to those

of N = 1 susy as desired.

Clearly we would like to identify θ3 with the usual spin- 1
2

coordinate on N = 1

superspace and θ+ with the usual scalar odd coordinate found in ordinary topological

gravity [8], but this does not quite make sense yet; (2.3) shows that under (3.3) we have

θ+ → θ+ + ε

θ3 → θ3 + λ+ θ3∂zv0 − θ+(`+ θ3∂zν) + θ+θ−∂z(λ+ θ3∂zv0) .
(3.4)

To deal with the first of these we simply require that patching functions lie in the subgroup

with ε = 0.2 A tedious but straightforward verification then shows that the general allowed

2 Later we will find another reason for this restriction.
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transition function is z 7→ z′

z′ = f0 + θ+ρ− + θ3n0ν0 − θ+θ−ν0∂zν0 − θ3θ+ν0α− + θ+θ−θ3((∂zn0)ν0 − n0∂zν0)

θ+′ = θ+

θ3′ = ν0 + θ+n− + θ3n0 + θ+θ−∂zν0 + θ3θ+α− + θ+θ−θ3 ∂zn0

θ−′ = (ρ− − n−ν0) −
1
2
θ+(n−)2 + θ−(n0)

2 − θ3n0n−

+ θ+θ−(−∂zρ− + ∂zn−ν0 − n−∂zν0) + 2θ−θ3n0∂zν0

− θ3θ+n−α− + θ+θ−θ3(−2(∂zν0)α− + n0∂zn− − (∂zn0)n−) .

(3.5)

Here f0, ρ−, n0, ν0, α−, n− are six functions of z subject to two conditions:

∂zf0 = (n0)
2 − ν0∂zν0

∂zρ− = n0α− + ∂zn−ν0 .
(3.6)

Eqn. (3.5) is the general local solution to the semirigid condition (3.1). Expanding about

f0 = z, n0 = 1, n− = ν0 = ρ− = α− = 0, we recover the transformations generated by

(2.3) with D−v = 0. We can now deal with the inhomogeneous transformation law (3.4).

As in the TN = 0 case we can simplify (3.5) considerably, and at the same time deal

with the inhomogeneous transformation. Note that according to (3.1), D− does transform

homogeneously. Hence the line bundle D ⊆ E ⊆ TΣ which it spans is the same in every

coordinate patch of an N = 3 SSRS. Since [D−, D−] ≡ 0 this line bundle is integrable and

hence defines a flow. We can thus define a reduced supermanifold Σ of dimension 1|2 as the

quotient of Σ by this flow [20][8].3 Furthermore, since [D3, D−] = 0 we see that D3 projects

to a well-defined vector field D3 on Σ, one which moreover transforms homogeneously.

We can make this prescription very concrete. On the z|θ+θ3 plane C1|2 consider the

transformations
z′ = F + θ3GN

θ+′ = θ+

θ3′ = G + θ3N

(3.7)

where F , G, N are functions of z, θ+ subject to the condition

∂zF = N 2 − G∂zG . (3.8)

3 In the N = 2 case we had the alternative option of quotient by the flow of D+. In the present

case this does not work, since by (3.1) D+ mixes into D3, D−
and so does not define a line bundle.
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Eqns (3.7)–(3.8) define exactly the usual N = 1 superconformal transformations with an

extra nonparticipating odd variable θ+. Thus we call them “augmented N = 1 transfor-

mations.”

We promised that the augmented N = 1 surface Σ would have a distinguished line

bundle spanned by D3. This is clearly the case, since by construction (3.7)–(3.8) preserve

D3 = ∂
∂θ3 + θ3 ∂

∂z
up to a multiplier. What is not so clear is what such surfaces have to

do with the desired TN = 1 semirigid surfaces.

What we claim is that the group of transformations (3.7)–(3.8) is in fact isomorphic

to the group of TN = 1 semirigid transformations defined by (3.5)–(3.6). This is exactly

the same situation as in ordinary topological gravity [8], where we found that the TN = 0

transformation group was the same as the augmented N = 0 conformal transformations.

To prove the isomorphism we need only examine the corresponding Lie algebras. Sub-

stituting (3.3) with ε = 0 into (2.6) immediately yields the same algebra as the infinitesimal

form of (3.7)–(3.8). Either way we get a doubled form of the Ramond or Neveu-Schwarz

algebra, with each generator paired with a same-spin partner.

We can also display the finite form of this correspondence. The augmented transfor-

mation (3.7) corresponds to the semirigid transformation (3.5) when

F = f0 + θ+(2ρ− − n−ν0)

G = ν0 + θ+n−

N = n0 + θ+α− .

(3.9)

One checks that F , G, N obey (3.8) whenever f0, . . . , n− obey (3.6), and that (3.9) is a

homomorphism.

Just as in TN = 0, we thus see that any family of N = 1 SRS can be promoted

to a family of TN = 1 surfaces as follows. We first write the surface by giving patching

functions
zα = Fαβ(zβ ; ~m, ~ζ ) + θ3

βGαβ(zβ ; ~m, ~ζ )Nαβ(zβ ; ~m, ~ζ )

θ3
α = Gαβ(zβ ; ~m, ~ζ ) + θ3

βNαβ(zβ; ~m, ~ζ )
(3.10)

where ~m are 3g− 3 even moduli and ~ζ are 2g− 2 odd moduli. Next we promote (3.10) to

a family of augmented N = 1 SRS (3.7) by introducing 3g− 3 odd m̂a and 2g− 2 even ζ̂µ

and substituting

ma 7→ ma + θ+m̂a

ζµ 7→ ζµ + θ+ζ̂µ
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into (3.10), along with

θ+
α = θ+

β .

Finally we solve (3.9) for (f0)αβ, . . . (n−)αβ to define a family of TN = 1 semirigid surfaces

depending on 5g − 5|5g − 5 moduli. Since (3.9) is an isomorphism, we see at once that

replacing (3.10) by an equivalent presentation of the same family of N = 1 SRS we get an

equivalent family of SSRS.

Using the above construction thus yields not only the moduli space of TN = 1 surfaces,

but also the projection down to the usual N = 1 supermoduli space: we simply project

the point with coordinates (~m, ~̂ζ, ~ζ, ~̂m) to the point with coordinates (~m, ~ζ ). Just as in [8],

ordinary conformal field theory techniques will yield a density on M̂TN=1, once we have

studied the BC system in the next section. This density can then be integrated over ~̂m, ~̂ζ

to get a density on M̂N=1. The rest of the integration then parallels the fermionic string.

Before closing this long section we need some physical mechanism for breaking the

full N = 3 symmetry of section two down to the present TN = 1 subgroup. As in [8] we

will propose a constraint on the fields which does not respect (2.1) but does respect (3.1).

An immediate candidate is thus

D−Cz = q . (3.11)

Here q is a constant and Cz is the brst ghost field present whenever we gauge supercon-

formal symmetry. We will eventually adopt the convention that q = −2, but we do not

expect the final results to depend on the choice of q. The ghost Cz is always a tensor of the

same type as the generator vz, eqn. (2.5). Since the lhs of (3.11) is not a scalar, it certainly

breaks the symmetry. In fact it breaks N = 3 susy down to the subgroup preserving the

line bundle spanned by D−. But this was precisely our definition of the TN = 1 subgroup

at the start of this section. We then saw (eqn. (3.1)) that under these transformations

the line bundle D− ⊗ T was trivial, as required by (3.11). (Recall that C is a section of

T ≡ TΣ/E .)

One may object that the lhs of (3.11) is not tensorial, since we have no covariant

derivative. But consider an infinitesimal semirigid transformation. We find using (3.1),

(2.4), (2.5) that

D′
−(Cz′) = (1 − ∂zv)D−((1 + ∂zv)C

z) = D−Cz

since D−v = 0. Hence (3.11) really does leave unbroken the desired semirigid group of

transformations.
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4. Ghost System

We have just seen that the constraint D−Cz = q, where q is a constant, reduces the

symmetry of the N = 3 ghost system down to an anomaly-free group of transformations.

But this constraint by itself is inconsistent with the canonical commutation relations for

the components of B, C. As usual in constrained systems we must also require that this

inconsistency not matter, by restricting the observables of the theory to be independent

of the components of B conjugate to the constrained components of C. In fact we must

ask this not only of the observables (physical states) but also of the other ingredients

entering the string measure, namely the ghost insertions B[v] corresponding to moduli

and the unbroken components of the stress tensor. We will make this decoupling clear by

expanding B in an unconventional manner.

First consider the unbroken N = 3 ghost system. The ghost Cz is related to the

generator of superconformal transformations vz and is a (-1)-differential. The antighost

Bθ and the stress tensor Tθ are always dual to vz and are ( 1
2)-differentials for N=3. We

have written Tθ and Bθ with the subscript θ to remind us of their weights. The ghost

propagator on the plane is

Bθ(z1)C
z(z2) =

θ+
12θ

−
12θ

3
12

z12

= Cz(z2)Bθ(z1)

where
z12 ≡ z1 − z2 − θi

1θ
j
2gij ,

θi
12 ≡ θi

1 − θi
2 .

The ghost stress tensor is obtained by the method of ref. [22]. We demand that Tθ consists

of bilinears in Bθ and Cz with weight ( 1
2 ) and is neutral with respect to SO(3). Further, we

require that [T(v), φ] = £vφ for φ = Bθ,C
z and £v as defined in (2.7). This determines

the stress tensor uniquely to be

Tθ = −Cz∂zBθ −
1
2∂zC

zBθ + 1
2DiC

zDjBθg
ij . (4.1)

We expand the fields in components as follows

Cz ≡ C + θ+Γ− + θ−Γ+ + θ+θ−Ξ

Bθ ≡ Λ + θ+Ω− + θ−Ω+ + θ+θ−(B + ∂zΛ)

Tθ ≡ 1
2
Ψ + θ+J− + θ−J+ + θ+θ−(GB + 1

2
∂zΨ)

= ( 1
2ψ + θ3 1

2j
3) + θ+( 1

2j
− + θ3G−) + θ−( 1

2j
+ + θ3G+)

+ θ+θ−{(G3 + θ3TB) + 1
2∂z(ψ + θ3j3)} .

(4.2)
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In the first three lines of (4.2) the fields C, Γ, etc. are functions of z, θ3. In the last line we

have expanded Ψ, J±, and GB in an evident notation. Thus ji are the SO(3) generators,

Gi the supersymmetry generators, TB the Virasoro generator and ψ an abelian, spin 1/2

generator.

The constraint D−Cz = q implies that

Γ+ = q; Ξ = ∂zC . (4.3)

This constraint breaks the N = 3 superconformal transformations down to the semirigid

transformation given in (3.5). After this breaking is done one can attribute spin 0 to θ+

and spin 1 to θ− ; θ3 continues to have spin 1
2 , as we can see from (3.1). The virtue of

the unusual expansion for B in (4.2) is that to be compatible with the constraints (4.3) an

observable need only be independent of Λ and Ω−. In particular B[v] will be of this form

when D−v = 0. The virtue of the expansion for T in (4.2) is that the generators of the

semirigid transformations are simply TB, G3, G+ and j+.

The unbroken generators are given by the following expressions which are obtained

by substituting (4.3) into (4.1) and using (4.2) to define them.

GB = −C∂zB + 1
2
D3CD3B − 3

2
∂zCB − Γ−∂zΩ

+ − 1
2
D3Γ

−D3Ω
+ − 3

2
∂zΓ

−Ω+

J+ = C∂zΩ
+ − 1

2D3CD3Ω
+ + 3

2C∂zΩ
+ +

q

2
B

Qs = −q

∮

N=1

J− =
q

2

∮

N=1

Γ−B .

(4.4)

In the last line the measure is [dz]N=1 ≡ [dz|dθ3]. Notice that the generators do not

contain any terms involving Λ and Ω−. This satisfies the requirement dual to D−Cz =

q. As promised, inhomogeneous terms in G+ and j+ occur naturally in the semirigid

formalism. We choose q = −2 just as in the case of TN = 0 [8]. This gives the following

commutation relations.

{Qs, Qs} = 0; [Qs, J
+] = GB .

However, Qs does not define a global nilpotent charge, since it has a non-zero commutation

relations with some of the unbroken generators as we have shown. The global charge is

obtained from the brst generator of the complete N = 3 system after substituting the

constraint. The brst charge is given by

Qbrst = 1
2

∮

N=3

CzTθ .
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Here the measure is [dz]N=3 ≡ [dz|dθ3dθ+dθ−]. On imposing the constraint, we obtain

QT ≡ Qbrst|D−C=−2

≡ Qs +Qv

(4.5)

where

Qv = 1
2

∮

N=1

[CGB + Γ−Ĵ+]

and Ĵ+ is the generator J+ without the inhomogeneous term. Further, Qv corresponds to

the brst generator of the unbroken algebra. Now we have

{QT , QT } = 0; {QT , G
B} = 0; [QT , J

+] = 0 .

Thus QT defines a global nilpotent charge and hence the theory is topological. We can

assign ghost numbers to all the fields in the theory by means of the following ghost number

charge

UT =

∮

N=3

−BθC
z = Uv + Us

Uv =

∮

N=1

−BC

Us =

∮

N=1

−Ψ =

∮

N=1

Ω+Γ−

. (4.6)

The ghost number assignments for the fields (C,B,Γ−,Ω+) are then (1,−1, 2,−2). We

would like to compare our results with those obtained by Hughes and Li [5]. We find on

making the required identifications4 that their expressions for G+ and TB agree with the

ones we obtain while those for G3 and j+ do not agree. Of course, they do not obtain the

inhomogeneous terms. In addition, certain terms in their expressions disagree with ours

by numerical factors which are important for the closure of the algebra. Since our terms

were derived directly from the N = 3 system, closure is automatic. This non-closure led

Hughes and Li [5] to conclude that one needs to introduce more currents. This led to the

conclusion that TN = 1 is obtained by twisting the N = 4 superconformal algebra. As we

shall show, we instead obtain TN = 2 by starting from N = 4.

4 We make the following identifications: (GB , J+) → (tgh+θ3Γ,B−θ3β) and (C, B,Γ−,Ω+) →

(c + θ3
C,−b + θ3

B,−γ − θ3Γ, B − θ3β).
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To make the discussion more complete, we give the unbroken subalgebra by expanding

the unbroken generators into their modes

TB =
∑

m

z−m−2Lm ,

G3 =
∑

r

1
2z

−r− 3
2G3

r ,

G+ =
∑

m

1
2z

−m−2G+
m ,

j+ =
∑

r

z−r− 3
2 j+r .

(4.7)

The unbroken subalgebra is

[Lm, Ln] = (m− n)Lm+n

[Lm, G
3
r] = ( 1

2m− r)G3
m+r

{G+
m, G

+
n } = 0

{G+
m, G

3
r} = 2( 1

2m− r)j3m+r

[G+
m, j

+
s ] = 0

{G3
r, G

3
s} = 2Lr+s

[Lm, j
3
r ] = ( 1

2m− r)j3m+r

[j+r , j
+
s ] = 0

[G3
r, j

+
s ] = G+

s+r

(4.8)

and
[Qs, j

+
r ] = −G3

r {Qs, G
+
m} = 2Lm ,

{Qs, G
3
r} = 0 [Qs, Lm] = 0 .

(4.9)

Eqns. (4.8)–(4.9) are indeed seen to be anomaly-free. This completes the derivation of a

topological ghost sector directly from the N = 3 system using the semirigid construction

introduced in [8]. It is anomaly free by construction and the algebra closes naturally. The

physical observables are cohomology classes defined by QT , subject to some “equivariance”

conditions. The theory is free from the beginning and so free CFT can be used in calcula-

tions. As in string theory and topological gravity , the ghost system can be used to obtain

a well defined measure on supermoduli space. The observables in this theory presumably

measure the topology of the supermoduli space of N = 1 SRS.

5. Broken N=4

We now extend our construction to N = 4 geometry. Again, we require M to live in a

subgroup G ⊆ O(4,C). We find it convenient to choose complex odd coordinates (ξ, θ̃, θ, ξ̃)

and the basis as {D+, D̃+, D̃−, D−} for E with metric gij =




1
1

1
1


. Here,

D+ = ∂ξ + ξ̃∂z, D− = ∂ξ̃ + ξ∂z, D̃+ = ∂θ + θ̃∂z, D̃− = ∂θ̃ + θ∂z. (5.1)
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Demanding that M preserves D− ∝ D′
− and is orthogonal, we get




∂z

D+

D̃+

D̃−
D−




=




a2 · · ·

0 1 x y −xy
0 0 ab 0 −aby
0 0 0 a/b −ax/b

0 0 0 0 a2







∂z′

D′
+

D̃′
+

D̃′
−

D′
−




. (5.2)

The entries a, b, x, y are even functions. Using (2.4), we find that the above structure (5.2)

of restricted 4-superconformal transformation implies that D̃+D−v = D̃−D−v = 0 and

∂zv = 1
2
D−D+v. These are satisfied if and only if D−v = constant. We see again that

these form a closed algebra, and from (2.9) that the algebra is anomaly-free.

The original unbroken N = 4 superconformal transformation is generated by a

super-diffeomorphism vector v(z). It consists of eight even components and eight odd

components: even components corresponding to a spin two, Virasoro algebra, two

SU l(2) × SU r(2) isovectors plus one U(1) spin one current and odd components corre-

sponding to two SU l(2)×SU r(2) isospinors of spin 3/2 plus two SU l(2)×SU r(2) isospinors

of spin 1/2.

Once restricted to D−v = constant, the super-diffeomorphism vector is reduced to

four even and four odd components in addition to one odd, constant component. It is

v(z) = (v0 +θα+ θ̃α̃+θθ̃w0)+ξ(β+θu+ θ̃ũ+θθ̃γ)+ξξ̃∂z(v0 +θα+ θ̃α̃+θθ̃w0)+ ξ̃ε. (5.3)

Here, v0, w0, u, ũ are even functions of z, α, α̃, β, γ odd functions of z and ε is an odd

constant. The first and the third terms generate an N = 2 susy algebra consisting of

Virasoro, two supercurrents and one U(1) current. The second term generates the same-

spin partners of this multiplet. The global automorphism group of the original N = 4

superconformal transformation is O(4) or SO(4), depending on whether we have a Z2

discrete parity symmetry SU l(2) ↔ SU r(2) or not. We find its local automorphism group

to be SO(4) = SU l(2)× SU r(2) in which the first SU(2) acts on (θ, θ̃) and the second on

(ξ, ξ̃). However, the symmetry breaking condition D−v = q breaks the latter explicitly.

Thus, there remains either a Z2 outer automorphism group for the l ↔ r symmetric case

or none for the l ↔ r asymmetric case. In both cases, Neveu-Schwarz and the Ramond

algebras are continuously connected by a spectral flow. Finally, the last term in (5.3)

corresponds to a global generator Qs ≡ ∂
∂ξ

, mixing between the above two sets of

generators of opposite statistics.
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As in the N = 3 case, the identification of θ, θ̃ as the two odd coordinates of N = 2

superspace and ξ as the usual scalar odd coordinate in topological gravity is not quite con-

sistent yet. We find that the (5.3) generates the following odd-coordinate transformations

ξ′ = ξ + ε,

θ′ = θ + (α̃+ θ(∂zv0 − w0) + θθ̃∂zα̃)

+ ξ(−ũ+ θ(γ − ∂zβ) − θθ̃∂zũ)

+ ξξ̃∂z(α̃+ θ(∂zv0 − w0) + θθ̃∂zα̃)

θ̃′ = θ̃′ + (α+ θ̃(w0 − ∂zv0) + θθ̃∂zα)

+ ξ(−u+ θ̃(∂zβ − γ) − θθ̃∂zu)

+ ξξ̃∂z(α+ θ̃(w0 − ∂zv0) + θθ̃∂zα)

ξ̃′ = ξ̃ + (β + θu+ θ̃ũ+ θθ̃γ)

+ 2ξ̃(v0 + θα+ θ̃α̃+ θθ̃w0)

+ ξξ̃∂z(β + θu+ θ̃ũ+ θθ̃γ) .

(5.4)

As in the previous sections the patching functions for SSRS will be of this form with

ε = 0, so that ξ is global. Also (5.2) has been again constructed so that D− transforms

homogeneously. Therefore, the line bundle D ⊆ E ⊆ TΣ which it spans remains the same

in every coordinate patch of an N = 4 SSRS. Again, [D−, D−] ≡ 0 implies the line

bundle is integrable, and thus gives a well-defined flow. Hence, we can define a reduced

1|3 supermanifold Σ as Σ modded out by the flow. The D̃± project to well-defined vector

fields D̃± on Σ, which transform into each other.

Indeed, let us consider the following transformations on the z|θθ̃ξ plane C1|3

z′ = F + θLJ + θ̃IM + θθ̃∂z(IL)

θ′ = I + θJ + θθ̃∂zI

θ̃′ = L + θ̃M− θθ̃∂zL

ξ′ = ξ .

(5.5)

Here, F ,J ,M and I,L, are even and odd functions of z, ξ subject to the condition

JM = ∂zF + L∂zI + I∂zL . (5.6)

Eqns (5.5)–(5.6) define the usual N = 2 superconformal transformations with an extra odd

variable ξ, and form the N = 2 version of “augmented transformations”. Indeed, the two
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covariant derivatives D̃+ = ∂
∂θ

+ θ̃∂z and D̃− = ∂

∂θ̃
+θ∂z are preserved up to multiplicative

factors.

The group transformations (5.5)–(5.6) are isomorphic to the group of TN = 2

semirigid transformations defined infinitesimally by (5.4), the very same situation as in

TN = 0, 1. The isomorphism can be proven by examining the Lie algebras. From this

way, we find a N = 2 algebra, paired by its brst partner of the same spin contents. In

fact, by choosing

I = α̃− ξũ+ ξξ̃∂zα̃

L = α− ξu+ ξξ̃∂zα

J = 1 + (∂zv0 − w0) + (∂zβ − γ) + ∂z(∂zv0 − w0)

M = 1 − (∂zv0 − w0) − (∂zβ − γ) − ∂z(∂zv0 − w0)

(5.7)

we find (5.5) corresponds to (5.4). This identification (5.7) certainly obeys (5.6). Therefore,

(5.7) is a Lie algebra isomorphism. It is indeed possible to promote N = 2 SRS to a family

of TN = 2 geometries in the same way as in TN = 0, 1.

We now briefly indicate the generalization of sect. four to the present case. We find

it convenient to write the B,C ghost fields in terms of N = 2 superfields of z|θθ̃ C1|2

superspace. They are
B = Λ + ξΩ̃ + ξ̃Ω + ξξ̃(B + ∂zΛ)

C = C + ξΓ̃ + ξ̃Γ + ξ ξ̃ Ξ .
(5.8)

Here, Λ, B, C,Ξ are even N = 2 superfields, while Ω, Ω̃,Γ, Γ̃ are odd superfields. Similarly,

the stress tensor is

T = J + ξG̃+ ξ̃G+ ξξ̃(TB + ∂zJ). (5.9)

consisting of U(1) current, two supercurrents and the ordinary bosonic stress tensor.

We expect again that the SSRS symmetry breaking is induced by

D−C = q . (5.10)

Imposing this condition to (5.8), we find Ξ = ∂zC and Γ = q, ∂zq = 0. Therefore, q is a

constant N = 2 supermultiplet in z|θθ̃ superspace. In N = 4 local susy the ghost C and

its antighost B carry conformal dimensions minus one and zero respectively. This fixes the

stress tensor of the B,C ghost system uniquely. We find

T = −C∂zB + 1
2 [D−C ·D+B +D+C ·D−B +DαC ·DαB] . (5.11)
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The indices α run over N = 2 (θ, θ̃) odd-coordinates. Expanding Eqn. (5.11) using (5.8),

J = 1
2
Dα(CDαΛ) + 1

2
Γ̃Ω + 1

2
qΩ̃

G = ∂z(CΩ) − 1
2DαCD

αΩ + 1
2qB

G̃ = − 1
2Dα(CDαΩ̃ + Γ̃DαΛ) − 1

2 Γ̃B

TB = −∂z(CB) + 1
2DαCD

αB − ∂z(Γ̃Ω) + 1
2DαΩDαΓ̃

(5.12)

in which we set Dαq = 0, i.e., q is a constant independent of θ, θ̃ as well as z. Then, we

find that TB and G survive the symmetry breaking (5.10) as unbroken generators, while

J and G̃ are broken due to their linear terms proportional to q.

In the original N = 4 superconformal geometry, the brst charge Qbrst is defined as

Qbrst = 1
2

∮

N=4

CzT

= 1
2

∮

N=2

[CTB + Γ̃G− qG̃]

(5.13)

where we have dropped surface terms. Here, the integration measures are denoted com-

pactly as [dz]N=4 ≡ dzd2θd2ξ and [dz]N=2 ≡ dzd2θ. It is straightforward to see that

the constrained brst charge consists of two pieces QT ≡ Qbrst|D−C=q ≡ Qv + Qs in

which

Qs ≡

∮

N=4

2G̃ =

∮

N=2

1
2
Γ̃B

Qv ≡ 1
2

∮

N=2

[CTB + Γ̃Ĝ]

(5.14)

after fixing q = −2. We denoted Ĝ as the q-independent portion of G in (5.12).

Similarly, the total chiral ghost charge operator UT is calculated

UT ≡

∮

N=4

−BC = Uv + Us

Uv =

∮

N=2

−BC

Us =

∮

N=4

−2U =

∮

N=2

Γ̃Ω .

(5.15)

Again, we have dropped the surface term and a harmless constant term in Us.

Both Qs and Us are not globally well-defined since they do not commute with the

unbroken generators G or TB . However, the total sum operators QT and UT are easily

17



seen to commute with G and TB , and thus are globally well-defined. Indeed, we find they

form an anomaly-free, closed N = 2 superalgebra in which

[U0, C ] = +C, [UT , Γ̃ ] = +Γ̃,

[UT , B ] = −B, [U0,Ω ] = −Ω,

{QT , C} = 0 , [QT , Γ̃] = 0,

{QT , B} = TB , [QT ,Ω] = 0 .

(5.16)

Therefore, the brst commutators of the unbroken generators TB and G vanish identically

due to the nilpotence of Qbrst. This completes the semirigid construction of topological

N = 2 supergravity.

6. Conclusions

The approach to topological gravity advocated in this paper and in [8] seems quite

different from the traditional approach of starting from a lagrangian which is zero or

some other topological invariant. Instead we obtain topological theories as reductions,

or truncations, of larger ordinary field theories. This fits with the view of topological

matter systems advocated in [23] and elsewhere. Furthermore, while the approach to

topological gravity through SL(2,R) gauge theory suggested that higher matrix models

could correspond to SL(n,R) gauge theory, the present approach makes it seem more

natural that they correspond to semirigid geometry coupled to higher N = 2 minimal

matter, as indeed seems to be the case [24][25]. It will be very interesting to see whether

the present framework, possibly in conjunction with matter systems like the one in [12],

will similarly reproduce the amplitudes of Liouville supergravity. Even more interesting

would be to find a simple dynamical origin of the symmetry-breaking reduction which

makes these theories topological in the first place.
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