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Why study?

1. D-branes wrapping cycles of Calabi-Yau man-

ifolds provide non-trivial examples of curved

branes.

2. Can study small CY’s i.e., regimes where

α′ effects are important.

3. One can interpolates betweens various phases

– dependence on both Kähler and complex

moduli is manifest. Can answer questions

such as “What do six-branes look like non-

geometric phases?”

4. Walls of marginal stability: Where does a

D-brane wrapped on some cycle of a CY

decay? What are its end-products? Re-

lated questions: what is the worldvolume

superpotential of a given D-brane?
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Plan of Talk

1. Introduction

(a) D-brane basics

(b) The Gauged Linear Sigma Model

2. The D6-brane in the GLSM with boundary

3. Implementing the monad construction in

the GLSM

4. Examples

5. Complexes of arbitrary length

6. Summary and Conclusion
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What is a D-brane?

It is a conformally invariant boundary condition

for an open-string.

Consequences of Conformal Invariance

Closed String β(gµν) ∝ Rµν = 0

Open String β(ui) ∝ habKi
ab = 0

where

gµν – metric in spacetime M

hab – induced metric on a submanifold C ∈M

Ki
ab – extrinsic curvature of C

ui – normal deformations of C in M

Thus, a vanishing beta function implies that

M: Ricci Flat

C: Minimal submanifold of M
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Incorporating (2,2) worldsheet supersym-

metry

Supersymmetry implies M: Kähler manifold.

In six dimensions, a Ricci-flat Kähler manifold
is a Calabi-Yau manifold.

Consider boundary conditions (D-branes) that
preserve half of the four supersymmetries. There
are two inequivalent possibilities:

A-branes G+ = Ḡ−
Mirror l Symmetry

B-branes G+ = G−

where

G± and Ḡ±: supersymmetry generators.

±: left and right-movers.

A-branes wrap special Lagrangian submanifolds
on CY threefolds while B-branes wrap holo-
morphic cycles.
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Metrics on Calabi-Yau manifolds are not known.

The non-linear sigma model is thus impossible

to work with. Is there a way out?

The strategy

Construct a simpler model (with the right amount

of supersymmetry) whose IR fixed point is the

correct conformally invariant model. In some

limit, one should recover atleast some of the

characteristics of the Calabi-Yau manifold.

This model is the Gauged Linear Sigma Model
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The Gauged Linear Sigma Model

Ingredients:

• It has (2,2) worldsheet supersymmetry (can

be obtained by dimensional reduction of

d = 4, N = 1 supersymmetry)

• Chiral Multiplets with charges Qai :

Φi = (φi, ψ±, ψ̄±, Fi)

• Vector Multiplets:

Va = (vaµ, σ
a, σ̄a, λa±, λ̄

a
±, D

a)

• Twisted Chiral Multiplets (‘Field Strength’):

Σa = (σa, λa±, D
a + iva01)

• The “Calabi-Yau condition”:
∑
iQ

a
i = 0
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The Lagrangian

The action is the sum of four terms:

S = Sch + Sgauge + SW + SFI

where

Sch =

∫
d2xd4θ Φ̄iΦi

SW =

∫
d2xd2θ W (Φ) + h.c.

Sgauge =
1

e2

∫
d2xd4θ Σ̄aΣa

SFI = −ra
∫
d2x Da +

θa

2π

∫
d2x va01 .

Fi and Da are auxiliary fields and their equa-

tions of motion are

Da = −e2

∑

i

Qai |φi|2 − ra




F ∗
i =

∂W

∂φi
,
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The GLSM for the quintic is obtained by con-

sidering

• Five chiral superfields Φi of U(1) charge

+1 and one chiral superfield P of U(1)

charge −5

• A superpotential W = PG(Φ), where G is a

homogeneous fifth-order polynomial in Φi

which is degenerate when all Φi simultane-

ously vanish.

The bosonic potential is

U =
∑

i

∣∣∣∣∣p
∂G

∂φi

∣∣∣∣∣

2

+ |G|2 +

(
∑

i

|φi|2 − 5|p|2 − r)2 +

2|σ|2
(
|φi|2 + 25|p|2

)
.
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The Calabi-Yau Phase

Consider r � 0. The ground state condition is

given by

• p = σ = 0

• ∑
i |φi|2 = r: implies φi are coordinates on

CP4.

• G = 0: implies that φi are coordinates of

the hypersurface G = 0 in CP4.

• U(1) is completely broken.

• The massless fluctuations are given by a

Non-Linear Sigma Model on M .
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The Conifold Singularity

Let r = 0. In the ground state both p and φi
vanish and σ is unconstrained. The CY mani-

fold has shrunk to zero-size.

The Landau-Ginzburg Phase

Consider r � 0. The ground state condition

implies

• φi = 0.

• σ = 0.

• |p| = |r|/
√

5. The U(1) is broken to Z5.

• Massless fluctuations about the minimum

correspond to a C5/Z5 orbifold – this is an

LG orbifold.
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θ

r= α

Phase
CY

Phase

   LG

αr=-

Kahler moduli space for the Quntic

conifold singularity
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The Six-Brane in the GLSM

One of the simplest B-branes is the six-brane

which wraps the full Calabi-Yau manifold. What

are the boundary conditions that one needs to

choose for this brane?

Natural guess: Since φi are coordinates of the

CY, choose Neumann boundary conditions on

these coordinates.

Issues to consider

However . . . need G = 0 and p = 0

Do boundary conditions close under the unbro-

ken supersymmetry?

What are the boundary conditions on the fields

in the vector multiplet?
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Requirements:

• The bulk equations of motion are not mod-
ified.

• Boundary conditions should form a closed
set under B-type supersymmetry.

• The boundary conditions should have a con-
sistent non-linear sigma model (NLSM) limit
– this fixes boundary conditions on the fields
in the vector multiplet.

• The θ term is dealt with properly – large-

volume monodromy is correctly implemented.

• Require some boundary conditions in the
NLSM be realised in the GLSM as low-

energy conditions – this is one reason to
introduce boundary fermions.
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The Six-Brane (Part I: θ = 0)

Take the worldsheet to be the upper half-plane

with coordinates (x0, x1 ≥ 0)

Neumann boundary conditions (at x1 = 0) on

the φi

ξi ≡ (ψ+i + ψ−i) = 0

D1φi − i(
σ − σ√

2
)φi = 0

Fi = p̄ ∂̄iḠ(φ̄) = 0

Choose p = 0 to take care of the last condi-

tion. Then, one has

p = 0

τp ≡ (ψ+p − ψ−p) = 0

Leave G = 0 to arise from continuity in the

bulk.
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Boundary conditions for the vector multiplet

In the limit e2 → 0, the fields in the vector

multiplet are Lagrange multipliers. Their val-

ues are determined completely in terms of the

fields in chiral multiplets.

We can thus use the boundary conditions on

the chiral multiplets to fix this. One obtains

σ − σ̄ = 0

This gives additional conditions under the ac-

tion of the unbroken supersymmetry. This can

be summarised by

(Σ − Σ) = 0 ,

where the boundary in superspace is given by

x1 = 0 and θ+ = θ−.

Under this set, one can verify that all boundary

terms which arise under the variations of the

action vanish as required.
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The Six-Brane: (Part II θ 6= 0)

The θ-term in the Lagrangian is

Sθ =
θ

2π

∫
d2x v01 .

It corresponds to turning on a B-field in the

NLSM limit given by

Bīj =
iθ

2πr
δīj

In the presence of a B-field, Neumann bound-

ary conditions get modified. Thus one expects

something of the form

D1φi +
iθ

2πr
D0φi = 0

This clearly requires us to expect modified bound-

ary conditions in the GLSM as well.
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In order to make this work, one finds the need

to add contact interactions on the boundary

of the form

Sc =

∫
dx0


 iθ

4πr

∑

i

(φiD̃0φi − φiD̃0φi)

+
σ − σ̄√

2i

D

e2

)

This term can be derived by keeping track of

total derivatives that one usually discards!

When θ = 2πn, for some integer n, this con-

tact term can be rewritten as (in the NLSM

limit where D = 0) as the pull-back of a holo-

morphic connection associated with the line-

bundle O(n) on CP4!

O is a six-brane. What we are seeing here is the

action under large-volume monodromy. Under

θ → θ+ 2π,

E → E ⊗O(1)

Thus, the contact term is essential in captur-

ing this non-trivial behaviour.
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Summary of what we have achieved:

• We have been able to construct bound-

ary conditions corresponding to a six-brane

(the line-bundle O) in the GLSM.

• We needed to introduce θ-dependent bound-

ary interactions to obtain the correct large-

volume monodromy.
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There are two problems with the construction

we have done so far.

• We do not quite realise the boundary con-

ditions as low-energy conditions. We just

impose the NSLM conditions directly on

the fields in the chiral multiplet.

• Things get worse, when one tries to con-

struct a four-brane – given by say, setting

φ1 = 0. Then, one is unable to find appro-

priate boundary conditions for the fields in

the vector multiplet that have a nice NLSM

limit.

We find that the introduction of fields living on

the boundary – especially boundary fermions –

enable us to solve both problems.

It also fits in naturally with the general set-

ting of D-branes associated with vector bun-

dles (coherent sheaves).
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Digression: Boundary Fermions for Chan-

Paton factors

P

(
exp

[∫
dx0∂0φ

µArµ(φ)T
r
])

āb

=

∫
[Dπ][Dπ̄]π̄ae

∫
dx0(π̄aD0πa)πb

• A is the connection on a vector bundle E

and T r are in the fundamental representa-

tion.

• D0πa = (∂0 + ∂0φ
µArµ(φ)T

r)π.

• The path-integral is restricted to one-particle

states.

This first appeared in the context of index the-

orems for vector bundles on manifolds and su-

persymmetric quantum mechanics in the early

80’s. (Alvarez-Gaume; Friedan & Windey)
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So if we obtain massless fermions which are

sections of the appropriate bundle, their path-

integral should lead to the right sort of Chan-

Paton factors.

The (0,2) construction of vector bundles for

heterotic compactifications is quite similar to

this.

One considers a set of fermions and impose

gauge invariances as well as holomorphic con-

straints on them.

The remaining massless fermions will be sec-

tions of a bundle given by a particular sequence

– called the monad
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The Monad Construction

Consider the following complex of holomorphic

vector bundles A, B and C

0 → A
a→ B

b→ C → 0 ,

• It is exact at A and C.

• The holomorphic vector bundle

E = ker b/Im a

is the cohomology of the monad.

• chE =chB−chC−chA.

• Chern classes ↔ RR-charges (six-brane charge

= rank)
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Its field-theoretic construction

• Consider fermions πa (a = 1, . . . , rk B)

• The map a is realised as the gauge invari-

ance

πa ∼ πa + Eia(φ)κi ,

where κi are sections of A (i = 1, . . . , rk A).

• This gauge-invariance is fixed by the con-

dition(s)

Eiaπa = 0

.

• The map b is implemented by the holomor-

phic constraint

Jam(φ)πa = 0 (m = 1, . . . , rk C) .
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Multiplets of B-type supersymmetry

Boundary superspace with coordinates

x0 ,
θ√
2

= θ+ = θ− ,
θ̄√
2

= θ̄+ = θ̄−

The bulk multiplets decompose as

• A (2,2) chiral multiplet Φ decomposes into

a scalar chiral multiplet Φ′ = (φ, τ) and a

Fermi chiral multiplet Ξ = (ξ, F ) respec-

tively.

• A twisted chiral multiplet Σ becomes an

unconstrained complex multiplet.

• The singlet combination ṽ0 = v0 + ησ+σ√
2

is

the boundary gauge field.
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Monads in the GLSM

Introduce boundary Fermi multiplets Πa = (πa, la)

satisfying

DΠa =
√

2Σ′
iE

i
a(Φ

′)

where Σ′
i are B-type chiral multiplets. This

takes care of the gauge-invariance associated

with the fermions in a supersymmetric way.

The holomorphic constraint is achieved by the

interaction

SJ = − 1√
2

∫
dx0dθ(ΠaP

′mJam(Φ′))|θ=0
− h.c.

where we P ′m are B-type chiral multiplets.

By studying the component form of the ac-

tion, one can see that suitable combinations

of fermions pick up masses as required after

eliminating the auxiliary fields la.
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Differences with the heterotic construction

• Need

σ′iE
i
a(φ)p

′mJam(φ) = W = pG(φ)

in order to have closure of boundary con-

ditions under supersymmetry.

• This is taken care of by introducing a single

fermi multiplet Π̂ with E = 1 and J = PG

and no boundary scalar multiplets such as

σ′ and p′.

• The rest of the multiplets satisfy

Eia(φ)J
a
m(φ) = 0

as in the heterotic case.

• Use first-order kinetic terms for the bosonic

multiplets Σ′ and P ′.
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Examples

• The Six-brane: Introduce a single-fermion

with J = P ′P . The fermion has support

where p = 0 and G = 0 is achieved by

continuity from the bulk.

• A four-brane given by the holomorphic equa-

tion f(φ) = 0. Choose J = P ′P + P ′
1f(Φ

′)
for a single-fermion.

• Ω1(1) is given by the sequence

0 → Ω1(1) → O⊕5 → O(1) → 0

Consider five Fermi multiplets Πi with one

holomorphic constraint Ji = P ′Φ′
i. The re-

striction to the hypersurface G = 0 arises

from continuity in the bulk.
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A bound state

The bound state B of the brane associated

with Ω1(1) and the anti-brane O is given by

0 → B → Ω1(1) → O → 0

This is done by considering five Fermi multi-

plets Πi as we did for Ω1(1) and then imposing

an additional constraint of degree zero:

aiπ
i = 0

where ai are five constants. This has four

moduli – the five ai subject to an overall scal-

ing.

This state is the large-volume analogue of a

Recknagel-Schomerus boundary state constructed

in the Gepner model associated with the quin-

tic.
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Implementing large-volume monodromy

In the monad, E → E(n) is achieved by replac-

ing the vector bundles A,B,C with A(n), B(n), C(n).

In the field theory, this is done by shifting the

charges of π (as well as σ′ and p′) by n-units

and adding a θ dependent contact term.

Sc =

∫
dx0




iΘ

2πr

∑

i

(φiD̃0φi − φiD̃0φi)





where

Θ

2πr
≡

[
θf

2πr
+

[θ/2π]

2r

(
πaπa − |σ′|2 + |p′|2

)]
.

Note the we need to use first-order actions for

the bosonic multiplets Σ′ and P ′!
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Complexes of length > 2

Not all vector bundles can be constructed from

monads which are complexes of length two.

How does one deal with such situations?

This appears more or less through nested gauge

invariances. Either, the Σ′ or P ′ multiplets

might have some extra invariances associated

with them.

Ignoring these invariances leads to more mass-

less fermions than necessary. So we gauge fix

them. As an example, consider the monad for

Ω2(2), which is given by

0 → Ω2(2) → O⊕10
Jk
[ij]−→ Ω1(2) → 0

where Jk
[ij]

(φ) = (φiδ
k
j − φjδ

k
i ).
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We introduce ten Fermi multiplets Π[ij] as well

as five scalar multiplets P ′
k with the superpo-

tential

SJ = − 1√
2

∫
dx0dθ

(
Π[ij]Jk[ij](Φ

′)P ′
k

)
|θ=0

− h.c.

The identity φkJ
k
[ij]

(φ) = 0 implies a gauge in-

variance for the superpotential

p′k ∼ p′k + bφk

which we fix by the constraint

DP ′
k =

√
2NΦ′

k

where N is a new Fermi multiplet. Thus, in

the GLSM, one is implementing a complex of

length 3

0 → Ω2(2) → O⊕10 → O⊕5(1) → O(2) → 0
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Summary

We have seen that one can construct D-branes

associated with vector bundles/coherent sheaves

given by as the cohomology of arbitrary com-

plexes in the GLSM with boundary.

Future issues

The examples we have considered are vector

bundles on CP4 which are restricted to the CY

hypersurface. Useful to study other examples.

Are there any restrictions on the vector bundles

that are allowed? (need to study conformal

invariance in the quantum theory)

Applications for the heterotic string: Need to

understand how to deal with first-order actions

here. Are there any conditions beyond the

usual ones involving c1 and c2?

Need to study boundary phases in the GLSM.
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