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A tale of two superpotentials
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Abstract. We compute the superpotential on the worldvolume theory of D-branes in the topological
Landau-Ginzburg model associated with the cubic torus. An extended version of mirror symmetry
relates this superpotential to the one on the mirror D-brane. We discuss the equivalence of these two
superpotentials by explicitly constructing the open-string mirror map.
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The worldvolume theories of D-branes in the `s → 0 limit is typically an effective
(quantum) field theory. The effective action for the field theory is obtained by computing
open-string correlators involving vertex operators for the various modes that survive
the `s → 0 limit. Closed string moduli appear as deformations of these open-string
correlators[1]. A well-known example is that of the constant B-field – this leads to the
non-commutative deformation of Yang-Mills theory[2].

Thus the effective action may be first computing open-string correlators without
closed-string vertex operators inserted. The closed-string deformations are then realised
by computing correlators with arbitrary closed-string insertions. In some examples, it
may happen that all correlators with closed-string insertions may vanish. Closed-string
moduli can nevertheless appear as non-perturbative deformations[3]. (c.f. M. Cvetic’s
talk at this conference)

In this talk, we report work done in collaboration with Hans Jockers[4].

The storyline

In type II compactifications of string theory, mirror symmetry relates compactifica-
tions involving two different manifolds. These two manifolds are called a mirror pair[5].
Adding D-branes to the picture, an extension of mirror symmetry leads to an even richer
story[1, 6]. Focusing on the effective field theory associated with D-branes, mirror sym-
metry implies a map between two seemingly different effective theories. This talk is
about perturbatively computing a superpotential in the topological B-model and compar-
ing it with the non-perturbative superpotential on the corresponding brane in the mirror
A-model.
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Motivation

A nice intermediate step to obtaining the standard model from string theory is to look
for N = 1 compactifications of string theory in four dimensions. The effective field
theory at low energies is specified by the following functions

• The Kähler potential, K(φ , φ̄),
• The superpotential W (φ), and
• The (complexified) gauge coupling constants, fa(φ).

The last two objects are holomorphic (in the chiral superfields) and can be computed in
topological string theory. We will focus on computing W (φ) in this talk.

Superpotentials can arise by turning on fluxes through compact cycles – usually these
are computed using the Gukov-Vafa-Witten formula[7]. They can also arise from the
worldvolume theory of branes that may be added to cancel tadpoles – say in orientifold
theories. This is sometimes called the brane superpotential. The brane superpotential W

has been computed for non-compact examples. Is there a systematic method to compute
it in compact examples? Finally, the superpotential also appears as an obstruction to
matrix factorizations[8, 9, 10].

For type II compactifications with N = 2 supersymmetry, mirror symmetry has
proved useful in summing up non-perturbative contributions coming from worldsheet
instantons[5]. One important ingredient in mirror symmetry is the closed-string mirror
map. This is a highly non-trivial change of variables. An important ingredient in this
computation is the observation of Candelas et. al. that the change of variables is given by
a solution of a Picard-Fuchs differential equation. Is there an analogue for open-strings?
Yes, for some non-compact examples[11, 12, 13]. Is there a differential equation for
compact examples as well? (see [14] for a special example.)

LANDAU-GINZBURG MODELS

The computation discussed in this talk is carried out in the topological Landau-Ginzburg
(LG) model. Landau-Ginzburg models are useful as they flow to non-trivial CFT’s in the
infrared limit. In this description one has a better handle on complex structure moduli
appearing in the compactification. The main motivation in using this method is that the
computation for a Calabi-Yau threefold is not different from that of a minimal model.

Two-dimensional LG models with (2,2) supersymmetry are constructed from chiral
and anti-chiral superfields. Chiral superfields have the following expansion (α = ±):

Φi = φ i +
√

2θ α ψ i
α +θ α θαF i . (1)

The most general renormalizable action for such a theory has an action (see for instance
[15])

S = SK +SW

=
∫

d2x

(

∫

d4θK(Φ,Φ̄)−λ
∫

d2θ W (Φ)− λ̄
∫

d2θ̄ W̄ (Φ̄)

)

(2)
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where K is the worldsheet Kähler potential and W is the worldsheet superpotential (not
to be confused with similar objects in spacetime!). We will find it useful to define the
following combinations of fermions: τ = (ψ+−ψ−)/

√
2 and ξ = (ψ+ +ψ−)/

√
2.

We will assume that the worldsheet superpotential W is quasi-homogeneous, i.e.,

W (λ αi/2Φi) = λ W (Φi) . (3)

There is a lot of evidence that such LG models flow in the IR to CFT’s with central
charge ĉ = ∑i(1−αi). In models with several fields, we will be interested in LG orbifolds
with projections onto states with (half-)integral R-charge.

Our working example: It involves three chiral superfields and a cubic superpotential
W = ci jkφ iφ jφ k and a Z3 orbifolding. The CFT has ĉ = 1 and is the 13 Gepner model.
Geometrically, this LG model is associated with the cubic torus.

Topological LG models

These are topologically twisted versions of the (2,2) models[16, 15]. We will consider
the topological B-twist. This has two BRST charges which we will denote by Q±. In
LG models with boundary, we will assume that one linear combination, Q, is preserved
by the boundary conditions. Observables in the topological model are then given by the
cohomology of Q.

In the action, only the holomorphic part of SW is non-trivial. SK for instance, is Q-
exact. Thus, the topological partition function is independent of the Kähler potential and
depends holomorphically on the parameters(moduli) in W .

The topological partition function is formally defined by the following path-integral:

Ztop ≡
∫

disk
[dΦ]e−SK−SW P

(

e−S∂
)

(4)

with S∂ representing the boundary perturbations and P indicating path-ordering of the
boundary perturbation. We will treat SW and S∂ perturbatively. Let 〈〈· · ·〉〉 denote corre-
lation functions in the free-theory i.e., with W = 0. Then,

Ztop =
∞

∑
m,n=0

〈〈 1
n! (SW )n 1

m!P(S∂ )m
〉〉

, (5)

is formally equivalent to the the path-integral.

W = Ztop in the topological LG model

It is known that the open-superstring partition function on a disk gives the open-
string field theory action[17, 18, 19, 20]. For instance, this has been used by Kutasov,
Marino and Moore to compute the exact action for the tachyons in order to verify
Sen’s conjectures on tachyon condensation. (see also [21]) For N = 1 supersymmetric
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compactifications, Ztop can be identified with the the brane superpotential, W . For non-
geometric examples such as those that appear in matrix factorizations, Ztop can be
identified with the obstruction superpotential – these encode higher order obstructions
to marginality or obstructions to the existence of matrix factorizations[10].

Our goal is to compute W ≡ Ztop in the topological LG model as a function of
both closed string moduli and open-string deformations. Such a computation was
first done for the quintic(!), where the first correction from closed-string moduli was
computed[22]. As we will see, the surprise is that the computation of W can be carried
out to all orders in our example[4].

The cubic torus

The LG description involves three chiral superfields Φi with a superpotential

W = ci jkφ iφ jφ k = g0
[

(φ 1)3 +(φ 2)3 +(φ 3)3
]

+g1 φ 1φ 2φ 3 (6)

There is an orbifold action:

φ i → ωφ i where ω = e2πi/3 . (7)

So one is dealing with an orbifold of a LG model. The IR fixed point of the LG model
is the 13 Gepner model. Without the superpotential, one has a C3/Z3 orbifold.

Geometrically, the torus T is given by the hypersurface W = 0 in P2 with complex
structure modulus (and flat coordinate) τ implicitly given by g1

g0
= −3a(τ). The relation-

ship between a and τ is given through the j-function

j(τ) =
(

3a(a3+8)
a3−1

)3
.

While the precise value of g0 does not have any special meaning, in obtaining the
differential equation for the periods, one chooses g0 to be[23]

(g0)
−1 =

√

1−a3(τ)
3a′(τ) = 1

3
√

2πi
η(τ)

η3(3τ)
. (8)

We will find that this choice is natural in the context of the open-string mirror map!
The mirror torus T̂ is one with complex structure τ̂ = e2πi/3 and (complexified)

Kähler modulus ρ̂ = τ . We shall focus on the situation where one imposes Dirichlet
boundary conditions on all fields: φ i = τ i = 0. In the Gepner model, this boundary
condition gets mapped to the Li = 0 Recknagel-Schomerus states[24, 25, 26]. Figure
1 describes the equivalences between different descriptions.

Boundary deformations

On the boundary now there are several Q-closed operators. The obvious one is ξ̄i

(R-charge 1/3). There are two more – ξ̄iξ̄ j and ξ̄1ξ̄2ξ̄3 with R-charges 2/3 and 1,
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L=0 Recknagel-Schomerus states
 in the 1   Gepner model

 Dirichlet boundary 
condition on all fields

in the LG orbifold

4x4 equivariant 
matrix  factorizations 

in the LG orbifold

3

FIGURE 1. The relationship between the different constructions of the ‘long’ branes on the torus, T ,
at the Gepner point in the Kähler moduli space.

respectively. We will focus on two boundary perturbations(corresponding to bosonic
fields):

Ψ(0) = X i ξ̄i , Ψ(1) = X i ∂yφ̄i ,

Ω(0) = Uε i jkξ̄iξ̄ jξ̄k , Ω(1) = 3Uε i jkξ̄iξ̄ j∂yφ̄k , (9)

where the superscript indicates the form number of the operator. Using the R-charge
assignments, we see that the X -perturbation is a relevant one while the Ω-perturbation
is a marginal one.

However, since the free theory (i.e., when the worldsheet superpotential is set to zero)
is an orbifold, there are three boundary states corresponding to fractional zero-branes.
This is incorporated by using Chan-Paton factors which take into account the spectrum
of open-strings connecting the various fractional zero-branes.

X i =





0 xi
12 0

0 0 xi
23

xi
31 0 0



 , U =





u1 0 0
0 u2 0
0 0 u3



 . (10)

Thus the X i are boundary condition changing operators while U is a boundary condition
preserving operator.

The topological partition function

There are a few issues to fix before actually carrying out the computation of the par-
tition function. The worldsheet is taken to be the upper-half plane with the coordinates
(x,y) and x > 0.

• We fix SL(2,R) invariance by choosing one bulk operator as a zero-form located at
the point (x0,y0) and one boundary operator as a zero-form located at x = +∞. All
other operators are chosen to be integrated ones. In the absence of a bulk insertion,
we choose three boundary operators as zero-forms.
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• R-charge selection rule The only non-vanishing correlators 〈〈· · ·〉〉 occur when the
sum of the R-charges of all operators equals 1.

• Fermion zero-modes: There is one fermion zero-mode coming from every ξ̄ i

which we indicate by ξ̄ i. The bulk topological theory has more zero-modes which
are removed by the boundary conditions.

• All the fields must be contracted with some other field.
It is useful to separate the partition function by the number of bulk insertions:

W =
∞

∑
n=0

Wn .

R-charge considerations imply that Wn (for n 6= 0) equals

〈〈 1
n!V (0)

W

(

∫

V (2)
W

)n−1 P
n!3!

[

(

∫

Ω(1)

)n (

∫

Ψ(1)

)3
]

Ω(0)(∞)
〉〉

.

When there are no bulk insertions, one has

W0 =
〈〈

Ψ(0)(0)Ψ(0)(1)Ψ(0)(∞)
〉〉

= Tr(X iX jX k)
〈〈

ξ̄iξ̄jξ̄k

〉〉

= εi jkTr(X iX jX k) .

This is known to be the C
3/Z3 superpotential. We now move on to the situations with

one or more insertions of the bulk operators, VW . The Wn can be written as

Wn = In Cn gn
0(u1 +u2 +u3)

n ,

where
• In includes the contribution from the integrals,
• Cn contains the contractions of the n copies of the totally symmetric tensor of

SU(3), ci jk, with the boundary X ’s and the antisymmetric tensor ε i jk from the Ω’s.
• One can show that only the combination g0u ≡ g0(u1 +u2 +u3) appears.

The integrals that appear simplify in the limit when we take the bulk zero-form operator
close to the boundary. For W1, we obtain

C1 = 3ci jkTr
(

X iX jX k
)

,

W1 = 3I0

(

3κ111 −
3
2a(κ123 +κ132)

)

g0u (11)

where we define the following useful combinations:

κ111 =
1
3 ∑

i
Tr

(

X iX iX i) , κ123 = Tr
(

X1X2X3) , κ132 = Tr
(

X1X3X2) .

The next term, i.e., W2 vanishes since C2 vanishes.
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L̂1 L̂2

L̂3
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31

x̂
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x̂
1
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FIGURE 2. For the D1-branes, L̂1, L̂2 and L̂3, the non-trivial correlators
〈

x̂1
31x̂1

12x̂1
23

〉

,
〈

x̂1
31x̂2

12x̂3
23

〉

and
〈

x̂1
12x̂3

23x̂2
31

〉

arise from disk instantons. The figures show the disk instantons (k = 0) for these three
correlation functions respectively.

Simple considerations show that the combination (κ123 −κ132) appears only in W2n
while (κ123 +κ132) and κ111 appear in W2n+1 alone. This implies that the the full
superpotential defined below

WB = ∆B
111(τ,g0u)κ111(X)+∆B

123(τ,g0u)κ123(X)+∆B
132(τ,g0u)κ132(X) (12)

is such that

∆B
111(τ,−g0u) = −∆B

111(τ,−g0u) and ∆B
123(τ,−g0u) = −∆B

132(τ,−g0u) . (13)

We will see that these properties are compatible with the computation done on the mirror
torus. The ∆B can be viewed as an open-string three-point function deformed by the bulk
and boundary modulus, τ and u.

The topological A-model

Under mirror symmetry, the topological B-model gets mapped to the topological A-
model on the mirror. Superpotentials are classical objects in the B-model while they are
quantum objects in the A-model. All contributions arise from worldsheet instantons[3].
The simplicity of our example enables us to easily write out the disk instanton contribu-
tions and we use it as a check of our computation.

Under the mirror transform, B-branes get mapped to A-branes. The three branes
that we considered thus get mapped to branes that are special Lagrangian one-cycles
(labelled L̂1, L̂2 and L̂3) on the mirror torus T̂ . The boundary changing operators (xi

ab)
are operators located at the intersection points (see Fig. 2) – there are nine of them. The
boundary moduli, ui are the positions of the three branes.

The three-point functions in the topological A-model vanish perturbatively and get
contributions only from worldsheet instantons – these are disk instantons. Schematically,
one finds

∆i jk ∼ ∑
l

e2πA(l)
i jk(β̂ )e2πiW (l)

i jk (α̂)

where û = ∑i ûi = α̂ + ρ̂β is the position modulus, A(l)
i jk is the area of the disk instanton

(see Fig. 2) and W (l)
i jk is the Wilson line contribution. This result has been computed in
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references [27, 28]. We quote the result as adapted by Brunner et. al. in [29].

∆111 = ∑
m∈Z

q
3
2(m− 1

2)
2
e2πi(m− 1

2)(uA− 1
2) ,

∆123 = e
2
3 iπ ∑

m∈Z

q
3
2(− 1

3 +m− 1
2)

2
e2πi(− 1

3 +m− 1
2)(uA− 1

2) ,

∆132 = e−
2
3 iπ ∑

m∈Z

q
3
2(− 2

3 +m− 1
2)

2
e2πi(− 2

3 +m− 1
2)(uA− 1

2) .

These are θ -functions of characteristic three.

Finding the open-string mirror map

We need to figure out the change of variables that is needed to match our computation
to the A-model result. We make the following ansatz

uA = Nu(τ) uB +u0(τ)

XA = NX(τ,uB) XB (14)

The normalizations depend on the closed-string modulus τ . The additivity of the u’s
implies that the change of variable from uA to uB must be linear. R-charge considerations
imply that XA must be proportional to XB – however, its normalization can depend on
uB.

We match the two results by requiring

N
3

X WA(τ,NuuB +u0,XB) = WB(τ,g0uB) . (15)

If g0 is taken to equal the value as given in Eqn. (8), then Nu becomes a τ independent
constant. This implies that uB transforms like a point on the torus.

NX =
3iI0
η(τ)

exp
(

2G2(τ)N 2
u u2/3

)

f (τ,u2) .

where G2k = ∑′
m,n∈Z

(mτ + n)−2k is the Eisenstein series of weight 2k and f (τ,u2) =

1+O(u4) is a modular invariant function that is determined order by order.
The open-string mirror map is highly overdetermined and hence its very existence

is a non-trivial check of the perturbative treatment. From a practical viewpoint, we
have checked terms to several orders. We have also made use of the modular proper-
ties to obtain additional checks. The Eisenstein series G2(τ) is actually not a modular
form. However, Ĝ2 = G2 −π/Im(τ), has nice modular transformation properties but is
not holomorphic. Is this related to the holomorphic anomaly? Using matrix factoriza-
tions, Brunner et. al. have also computed the three-point function which matches our
results[29].
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CONCLUSIONS

These methods are applicable to more realistic examples such as the intersecting brane
models for supersymmetric extensions of standard model. The tricky bit, as always, is
to find the open-string mirror map. The models of Dijkstra et. al. provide us with a rich
set of examples where one can hope to make progress[30]. A much harder problem is to
push these results to the non-topological theory and compute the Kähler potential.

It turns out that the superpotential that we computed is identical to the general Leigh-
Strassler deformations of N = 4 SYM theory. Can we reinterpret our computation in
this context? Does it help in obtaining the gravity dual for the general Leigh-Strassler
deformation?
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