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Abstract

These lectures are a brief introduction to Topological field theories.
Many technical details have been omitted with the hope of providing the
reader a flavour of the results rather than the details. In the first lecture we
discuss how supersymmetric quantum mechanics provides connections with
the Atiyah-Singer Index theorems as well as topological invariants such as
Euler classes of vector bundles. In the second lecture, we show how one can
construct supersymmetric field theories whose observables are topological
invariants on some moduli space. These topological field theories can be
constructed using a standard procedure due to Witten called twisting of
N = 2 supersymmetric field theories.

I have organised the two lectures to follow the historical sequence. The appli-
cation of supersymmetry to probe topology has occured in two distinct phases.
The first phase occurred in the early 80’s starting from the work of Witten on
supersymmetry breaking and Morse theory[1, 2]. Witten’s work was extended
by Alvarez-Gaumé[3] and independently by Friedan and Windey[4] to provide
“proofs” of the Atiyah-Singer Index theorem for various elliptic complexes. The
second phase occurred in the late 80’s and early 90’s and is still not over.

Unlike the first phase, where supersymmetry provided a different way of un-
derstanding well known mathematical results, the second phase has led to new
results which were not known earlier to mathematicians. It has led to this brand
of physics to be labelled as experimental Mathematics by some mathematicians.
It is experimental because the methodology employed is not standard (as yet!)
in Mathematics and needs to be substantiated by “proofs” in the conventional
sense. Of course, it is possible that the use of quantum field theory in mathe-
matics might become legitimate in the future. Some of the major advances in
the second phase has been the quantum field theoretic understanding of Jones’
polynomial invariants for knots[5] and Donaldson’s invariants for four manifolds
[6]. The quantum field theory approach provided rich generalisations of Jones’
invariants right away. However, this was not the case with Donaldson invariants
until recently.

This changed towards the end of 1994 when Seiberg and Witten[7] succeeded
in describing N=2 supersymmetric SU(2) gauge theory in its strong coupling
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limit. Using a version of electric-magnetic duality, they were able to construct a
theory whose weak coupling limit was the strong coupling limit of SU(2) gauge
theories. Putting it differently, supersymmetric QCD could be solved! As we shall
see later, given a N=2 supersymmetric theory, we can construct a topological field
theory from it. Donaldson theory is the topological field theory obtained from the
weak coupling limit of N=2 supersymmetric Yang-Mills. Seiberg and Witten’s
result implied that we could also study the theory in its strong coupling limit
too[8]. It turns out that this theory is a lot simpler because one ends up dealing
with abelian gauge fields rather than something non-abelian like SU(2). From
the mathematical viewpoint, this implies that a lot of proofs of Donaldson, which
are very long and difficult to follow (even for an accomplished mathematician)
become simple enough for graduate students to understand.

In lecture one, we will discuss how to use supersymmetric quantum mechanics
to obtain topological invariants using the Euler characteristic as an example.
In addition, we will briefly discuss how one can prove the Atiyah-Singer Index
theorem using supersymmetric quantum mechanics.

In lecture two, we will discuss cohomological topological field theories (TFT)
of which Donaldson theory is the prototype. We will not be able to discuss topo-
logical field theories of the Schwarz type of which Chern-Simons theory is the
prototype[5]. It is interesting to note that cohomological field theories naturally
occur in even dimensions while TFT’s of the Schwarz type occur in odd dimen-
sions. (This is not true rigorously, since one can always use dimensional reduction
to obtain cohomological TFT’s in odd dimensions.) A TFT is defined to be a
quantum field theory which is independent of the metric and whose observables
are also independent of the metric. In Chern-Simons theory, the observables are
Wilson loops which are gauge invariant and are independent of the metric (since
they are obtained from one-forms integrated over one-cycles).

Lecture 1

1.1 Supersymmetry: Basics

Particles are distinguished by their statistics. In d > 2, they come in two types:
Bosons and Fermions. The spin-statistics theorem relates the spin of the particle
to its statistics (unitarity being assumed). Thus, in four dimensions, particles
with half-integer spin are Fermions and particles with integer spin are Bosons.
Supersymmetry is a symmetry which maps Fermions to Bosons and Bosons to
Fermions.

Bosons
Supersymmetry←− −→ Fermions

In its simplest form, supersymmetry can be written as

[Q, φ] = ψ , (1.1)
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where φ is a scalar field (boson) and ψ is a spinor (fermion). Lorentz invari-
ance of eqn. (1.1) implies that Q should transform like a spinor. Further, it
should be an anti-commuting variable (Grassmann). Thus, supersymmetry in-
troduces new conserved charges which are spinorial and anti-commuting. In even
dimensions, fermions have definite chirality (as given by γ5 in 4d). Thus, the
supersymmetry generators also can have definite chirality. The Lorentz group
in 4d is SO(4) ∼ SU(2)L × SU(2)R. Thus finite dimensional representations
of the Lorentz group can be classified by the spin quantum numbers associated
with each of the SU(2)’s. Let us label them by (jL, jR). The quantum numbers
associated with usual particles/fields are

Field (jL, jR) dim. of rep.
Scalar φ (0, 0) 0
Weyl Fermion ψα or ψα̇ (1

2
, 0) or (0, 1

2
) 2

Dirac Fermion (ψα, ψα̇) (1
2
, 0)⊕ (0, 1

2
) 4

Gauge Field Aµ (1
2
, 1

2
) 4

Antisymmetric Tensor Bµν (1, 0)⊕ (0, 1) 6

Thus, we see that the supersymmetry charge comes in two types: Qα which
transforms as a (1

2
, 0) and Qα̇ which transforms as a (0, 1

2
) under the Lorentz

group. Eqn. (1.1) can be rewritten as

[Qα, φ] = ψα ,

[Qα̇, φ] = ψα̇ . (1.2)

In an abstract fashion, one can ask how the usual Poincaré algebra can be
extended to include the supersymmetry generators. This leads to the follow-
ing super-Lie algebra (which satisfies graded Jacobi identities since it involves
both commutators and anti-commutators). This leads to the following symmetry
algebra

{QI
α, Q̄α̇J} = δIJσ

µ
αα̇Pµ , (1.3)

{QI
α, Q

J
β} = 0 , (1.4)

[QI
α, Pµ] = 0 , (1.5)

where I, J = 1, . . . , N are the number of supersymmetries, σµ = (1, ~σ) and
Q̄α̇I = (QI

α)†. We have left out the obvious part of the algebra and not included
central charges. The interested reader is referred to [9] for more details.

In particular, we see that Tr{Q, Q̄} ∝ H, where we have used H = P 0 and
the trace is in “spin space”. Consider a theory which is supersymmetric and we
are interested in finding out whether supersymmetry is spontaneously broken or
not. Unbroken supersymmetry implies that

Q|0〉 = 0 , Q̄|0〉 = 0 ,
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where |0〉 is the ground state of the theory. Using Tr{Q, Q̄} ∝ H, we see that
unbroken supersymmetry implies that E = 0 for the ground state. One can also
show that E ≥ 0 for a generic state. In addition, one can see that E = 0 implies
that

P i|0〉 = 0 .

(Use det[Q, Q̄] ∝ (H2−P 2) ≥ 0 for any state.) Thus for the purpose of supersym-
metry breaking it is sufficient to consider states with P i = 0. The supersymmetry
algebra simplifies in the subspace of such states. One obtains an effective 0 + 1
dimensional theory where the supersymmetry algebra is

{QI , QJ} = δIJH , (1.6)

for I, J = 1, . . . , 4N . Note that the above equation is obtained from the four
dimensional supersymmetric algebra after a suitable redefinition of the super-
symmetry generators. The number of generators in the 0 + 1 dimensional theory
reflects the fact that it has originated from a 4 dimensional theory with N super-
symmetries.

We seem to have used the words fields and states in an interchangeable way.
For a generic field theory, the Hilbert space is infinite dimensional. Thus to fa-
cilitate counting of states (below a certain cut-off) one puts the system in a box
with periodic boundary conditions on both the bosons and fermions. The bound-
ary condition on fermions is fixed by supersymmetry and is different from the
conventional anti-periodic boundary conditions used in finite temperature field
theory. In finite volume, one does not usually talk of particles since they are sort
of ill-defined. We shall instead talk of states which are bosonic or fermionic.
This is fixed by their eigenvalue for the operator exp (2πJz). Thus one has
exp (2πJz)|b〉 = |b〉 and exp (2πJz)|f〉 = −|f〉 for bosonic and fermionic states
respectively. This operator can be represented as

(−)F ≡ exp (2πJz) ,

where F = 0 on bosonic states and F = 1 on fermionic states.
Returning to the earlier issue as to whether supersymmetry is spontaneously

broken or not, one can see that states with E > 0 come in pairs. Restricting
our attention to one supersymmetry generator Q ≡ Q1 with Q2 = H, given a
bosonic state |b〉 with E > 0, one can construct a corresponding fermionic state
(normalised)

|f〉 ≡ 1√
E
Q|b〉 ,

where we assume that the bosonic state is normalised. It is clear that this pairing
is broken when E = 0. Then one either has Q|b〉 = 0 or Q|f〉 = 0. Thus, the
states with E = 0 are not paired by supersymmetry. Let nE=0

B (nE=0
F ) be the

number of bosonic (fermionic) states with E = 0.
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One can see that if the parameters in the Hamiltonian such as mass, gauge
couplings, volume etc. are slowly varied, states with E > 0 might simultaneously
attain E = 0 or two states with E = 0 might pair up and form a E > 0 state1.
This implies that the difference

(nE=0
B − nE=0

F ) ,

is independent of changes in the various parameters of the theory. Thus this is an
object which one can calculate in a reliable fashion. Further, if (nE=0

B −nE=0
F ) 6= 0,

supersymmetry is unbroken, because there exists atleast one state with E = 0.
One can easily see that

Tr(−)F = (nE=0
B − nE=0

F ) , (1.7)

where the trace is over all states in the Hilbert space. It is easy to see that states
with E > 0 cancel out since they come in pairs of fermions and bosons. This
object is called the Witten Index. In addition, due to the exact cancellation of
the E > 0 states, one can replace Tr(−)F by Tr(−)F exp(−βH). It is clear that
both will give the same result. However, the second version can be thought of as
a regularised version of the first one. As we shall see later, the β = 0 and β 6= 0
computations give rise to different looking formulae for the same object.

1.2 Witten Index as the index of an operator

The Witten Index can be interpreted as the index of an operator. This follows
from the following argument. The Hilbert space Hof a quantum field theory
(after appropriately regularising) can be split into bosonic and fermion subspaces
HB and HF respectively. These subspaces are basically the F = 0 and F = 1
subspaces.

H = HB ⊕HF .

Since the supersymmetry operator Q maps one from fermionic states to bosonic
and vice-versa, it can be represented as an off-diagonal operator

Q =
(

0 N∗

N 0

)
, (1.8)

if the states are arranged as
(
B
F

)
. Since Q is Hermitian, the operator N∗ is the

complex conjugate of N as indicated in the above equation. Since H = Q2, the
zero energy bosonic states satisfy Nψ = 0 and the zero energy fermionic states
satisfy N∗ψ = 0. Thus one has

Tr(−)F = dim(kerN)− dim(kerN∗) . (1.9)

1This assumes that no new states emerge in the theory as parameters are varied.
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The RHS of the above equation is the definition of the index of the operator N .
(In the above equation, kerN refers to the kernel of the operator N , i.e., solutions
of the equation Nψ = 0). Atiyah and Singer related the indices of various elliptic
operators to topological invariants. Thus, by suitably choosing N (or Q) in some
theory, one can obtain topological invariants. In some sense, one is “proving”
the Atiyah-Singer index theorems by using supersymmetry with the topological
invariants as a by-product.

For example, one can choose N to be the Dirac operator, (−)F can be iden-
tified with γ5, then the index is related to the well known chiral anomaly which
occurs in even dimensions.

One represent the Witten Index as the partition function at “inverse temper-
ature” β for an ensemble with density matrix ρ = (−)F exp[−βH]. Using the
statistical mechanics - path integral relationship, one can write the Witten Index
as

Tr(−)F e−βH =
∫
PBC

[dφdψ]e−SE(φ,ψ) , (1.10)

where PBC refers to periodic boundary conditions on both fermionic and bosonic
fields and φ and ψ represent bosonic and fermionic fields respectively.

1.3 Witten Index as the Euler characteristic of a manifold

The Euler characteristic for a manifold M can be defined in many ways. It is
one of the simplest topological invariants one can define for a manifold. For
simplicity, consider a two dimensional manifold. The Euler characteristic can be
defined by counting the number of vertices nv, number of edges ne and number
of faces nf and using the following formula

χ(M) = nv − ne + nf , (1.11)

which is clearly something which is topological (does not need the metric). The
above expression can be rewritten as χ(M) =

∑
(−)pbp, where bp are the Betti

numbers of M . However, there is another definition of the Euler characteristic
which is not patently topological.

χ(M) = − 1

8π

∫
M
R (1.12)

where R is the Ricci scalar. The Ricci scalar is constructed from the Riemann
tensor which is obtained from the metric. Thus these two formulae seem quite
different. However, as we will see that the two versions correspond to evaluating
the Witten index with β = 0 and β 6= 0. Since the Witten index is independent of
β as we argued earlier, one can see that the two definitions are in fact equivalent.

We shall now illustrate the above with a concrete example. This example has
two supersymmetry generators. Consider a n-dimensional Riemannian manifold
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M with metric gij. Let φi(t) be maps of R or S1 to M . The bosonic σ- model is
given by

L =
1

2
gij(φ)φ̇iφ̇j , where φ̇ = ∂tφ and i = 1, . . . , n . (1.13)

The supersymmetric generalisation is

L =
1

2
gij(φ)φ̇iφ̇j +

i

2
gij(φ)Ψ̄iγ0DΨj

dt
+

1

12
RijklΨ̄

iΨkΨ̄jΨl , (1.14)

where Rijkl is the Riemann tensor and D
dt

Ψi = d
dt

Ψi + Γijkφ̇
iΨk and Ψ̄i

α = Ψ̄i
βγ

0
βα

with α, β = 1, 2. Ψi is a two component real spinor with γ0 = σ2. The action
(1.14) is invariant under the supersymmetry transformations parametrised by εα.

δφi = ε̄Ψi

δΨi = −iγ0φ̇iε− Γijkε̄Ψ
jΨk . (1.15)

It is easy to see that the above reduces to the usual flat space supersymmetry
transformations by choosing M = R4 and setting the Christoffel connection to
zero in the above equation.

The standard Noether construction can now be used to derive the supersym-
metry charges associated with the above supersymmetry transformations. We
thus obtain the following (two) supersymmetry charges (where we have repre-

sented the two component real fermion as Ψi =
(
ψi

ψ∗i

)
in a complex basis)

Q ∼ iΨ∗iPi , (1.16)

Q∗ ∼ iΨiPi , (1.17)

where Pi are the momenta conjugate to φi. (Pi = δL
δφ̇i

) We now canonically

quantize the theory. The Poisson brackets are

[φi, Pj] = iδij ,

{ψi, ψ∗j} = gij(φ) ,

{ψi, ψj} = 0 = {ψ∗i, ψ∗j} (1.18)

One can verify (using the above commutation relations) that the supersymmetry
charges satisfy the following commutation relations

{Q,Q} = 0 = {Q∗, Q∗} , {Q,Q∗} = Laplacian on M , (1.19)

where we have identified Pi with δ
δφi

and thus gijPiPj is the Laplacian on M .

Comparing with the supersymmetry algebra (in 0 + 1 dimensions), we see that
the Hamiltonian for this model is the Laplacian on M . The Hilbert space of this
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theory can be constructed as follows. The ψ can be treated as fermion annihi-
lation operators and the ψ∗ as the creation operators. (In writing the Hilbert
space, we work in a mixed representation, where we represent the fermionic part
in the Fock representation while we leave the bosonic part in terms of the fields.)
The Hilbert space can be identified with the following objects

States with no fermions ←→ functions on M
f(φ)|0〉 f(φ)

States with one fermion ←→ one-forms on M
fi(φ)ψ∗i|0〉 fi(φ)dφi

States with two fermions ←→ two-forms on M
fij(φ)ψ∗iψ∗j|0〉 fij(φ)dφidφj

...

The above table shows that the Hilbert space of this theory is in 1-1 correspon-
dence with the exterior algebra Λ∗(M), which is the space of forms on M . What is
the action of Q on Λ∗(M)? Using the representation of Q given in (1.17) and the
canonical commutation relations, one can verify the following correspondences

H ←→ Λ∗(M)

Q ←→ d

Q∗ ←→ δ (1.20)

The Hamiltonian H = dδ+ δd and hence E = 0 states are harmonic forms on M .
The Betti numbers bp give the number of p-forms which are harmonic. Further,
in our model, the p-forms with even p are bosonic and odd p are fermionic states.
Thus, it is easy to see that the Witten index

Tr(−)F =
∑

(−)pbp = χ(M) ,

which gives the Euler characteristic as promised. We can also evaluate the Witten
index for non-zero β using the path integral. Rather than go into the details, we
will list some of the crucial steps. The interested reader can fill in the details. In
our model one has

Tr(−)F e−βH =
∫

[dφdΨ]e−L , (1.21)

where L is as given in (1.14). As we shall see, evaluating the path integral gives
us an alternate representation for the Euler characteristic.

(i) Expand the fields φ(t) and ψ(t) as a Fourier basis with respect to the time
variable. The frequencies are ωn = 2πn/β.

(ii) Choosing β to be small enough, there is a large gap between the zero-mode
states and the other modes (with n > 0).
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(iii) Do the path-integral over the non-zero modes. Perturbation theory will
suffice here due to the large gap.

(iv) Do the zero-mode integration exactly.

In our example, in step (iii) the fermionic determinant exactly cancels the bosonic
determinant. This is due to supersymmetry and can be proved using supersym-
metric Ward identities. In doing step (iv), one obtains the following integration

1

(2π)d/2

∫
M
dnφ

n∏
m=1

dψ∗mdψme−
1
4
Rψ∗ψ∗ψψ ,

which one expanding gives

n∏
m=1

dψ∗mdψm[1− 1

4
Rψ∗ψ∗ψψ +

1

2
(
1

4
Rψ∗ψ∗ψψ)2 + · · ·] . (1.22)

In doing the fermionic integration, only the terms which “soak up” the fermionic
zero-mode integrations need to be considered. (The rules of integration for a
Grassmann variable ψ are

∫
dψ = 0 and

∫
dψψ = 1. Thus

∫
dψf(ψ) = f ′(0).) So,

we obtain the following

χ(M) = 0 for odd n ,

χ(M) = − 1

8π

∫
M
R for n = 2,

χ(M) =
1

32π2

∫
M
R ∧R for n = 4. (1.23)

The example can be modified in many ways to obtain other topological ob-
jects. For example, there is a discrete symmetry in the Lagrangian corresponding
to

Q5 : ψ ↔ ψ∗ . (1.24)

One can show that the object TrQ5e
−βH also depends on the zero energy states.

Q5 acts on Λ∗(M) by exchanging p-forms with (n−p)-forms. Thus, it corresponds
to Poincaré duality. The index corresponding to this is called the Hirzebruch
signature of the manifold M .

In order to obtain the index of the Dirac operator, impose the condition
ψi1 = ψi2 = ψi/

√
2 in the Lagrangian (1.14). The Lagrangian then reduces to

L =
1

2
gij(φ)φ̇iφ̇j +

i

2
gij(φ)Ψ̄iγ0DΨj

dt
(1.25)

The number of supersymmetries also reduces from two to one. The generator
of this supersymmetry is Q = iψiPi with Q2 = H. The canonical commutation
relations imply that we can make the following identifications

ψi ↔ γi , iPi ↔ ∂i ,
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from which it follows that Q can be identified with the Dirac operator in the
target manifold M . (−)F can be identified with γ5. Thus the Witten index in
this case can be identified with the index of the Dirac operator. We refer the
reader to [4] for more details on the computation.

Thus, in this lecture, we have demonstrated that in supersymmetric quantum
mechanical models, the Witten index provides us with a topological invariant.
The choice of model determines the invariant. It would however, be nicer if we
could create a theory where all observables are topological, thus providing a richer
set of invariants. This will be the content of the next lecture.

One of the topics we have not discussed here is Morse theory which can be
understood using supersymmetry. We refer the reader here to Witten’s work[2]
and also the some beautiful lectures on Morse theory by Atiyah and Bott[10].

Lecture 2

We summarise some of the salient features of an example that was considered in
the first lecture.

• The problem was essentially in 0 + 1 dimensions (supersymmetric quantum
mechanics).

• Path integrals are infinite dimensional integrals in the conventional mathe-
matical sense. However, for the cases we considered, the calculation reduced
to a finite dimensional integral thus enabling us to make contact with the
standard definitions of topological invariants.

• The zero modes of the fermions ψi behaved like an element of T ∗M , the
cotangent bundle of M .

ψi ↔ dφi ,

with the fermion number being the same as form number.

• The topological invariant we obtained was the Euler characteristic of M
which is the Euler class of the vector bundle T ∗M .

• The finite dimensional integral was over “T ∗M”∫
dφi

∫
dψidψ∗i

There exists a field theoretic generalisation of the above and such theories are
called Topological Quantum Field Theories[6]. Most of the above features occur
in these theories. Typically, the analog of T ∗M is the moduli space (of solutions)
of a set of equations. However, we will see that these theories possess a large class
of observables whose correlation functions are topological invariants and hence
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provide a richer set of invariants than the above example. In addition, the coho-
mology problem becomes an equivariant one which means that the analog of the
supersymmetry charge satisfies Q2 = 0 only upto overall gauge transformation.

We now provide examples of such theories:

Topological Field Theory Analog of T ∗M

1. Donaldson Theory (4D) Moduli space of self-dual Yang-Mills.
2. Donaldson-Seiberg-Witten theory (4D) Moduli space of “monopole” equations
3. Topological Gravity (2D) Moduli space of Riemann surfaces
4. Topological Sigma Models on Space of Holomorphic Maps:

a Riemann surface Σ Map(Σ,M)
5. Topological Yang-Mills (2D) Space of flat connections or

Moduli space of stable vector bundles

2.1 A digression: BRST invariance in gauge theories

In the example considered in lecture 1, we had

[Q, φi] = ψi .

The operator Q is a scalar operator on the “target” manifold M even though
it is an anti-commuting operator. Does this violate the spin-statistics theorem?
Naively, a theory with such operators is non-unitary and hence the spin-statistics
theorem is not violated. Does this sort of an operator occur elsewhere? The
BRST quantisation of gauge theories provides such an example. We will now
briefly discuss this.

In the path integral quantisation of gauge theories, one typically picks a gauge
(say, DµA

a
µ = 0). Then, one introduces Faddeev-Popov ghosts ca(x) which are

Lie-Algebra valued anti-commuting scalars 2 and the corresponding anti-ghost
ba(x). The Faddeev-Popov determinant is obtained after integrating out the
ghosts. It has been discovered that the the gauge fixed action has a fermionic
symmetry (called BRST after Becchi, Rouet, Stora and Tyutin) generated by a
scalar charge Q given by

Q =
∫ (

caJa(x) +
1

2
fab

ccacbbc

)
, (2.1)

where
∫
Ja(x) is the charge which generates residual gauge transformations (which

preserve the gauge condition).
The BRST tranformation of the fields are

[Q,Aaµ] = −Dµc
a ,

{Q, ca} =
1

2
[c, c] . (2.2)

2This is assigned ghost charge U = +1 with the gauge field having ghost number (charge)
0.
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One can check that
Q2 = 0 . (2.3)

Physical states are given by3

Q|ψ〉 = 0 and |ψ〉 6= Q|ξ〉 . (2.4)

This is the analog of the Gauss law condition imposed in QED (in the A0 = 0
gauge). Ghosts have wrong statistics and the theory which includes the complete
Hilbert space is non-unitary. However, condition (2.4) is powerful enough to show
that the ghosts decouple from physical processes and hence the truncated theory
is unitary. Further, operators of the form {Q, ξ} decouple from all correlation
functions. Thus one has the following correspondence.

GAUGE INVARIANT
OBSERVABLES

←→ COHOMOLOGY OF THE
OPERATOR Q

Thus, operators such as Q occur quite naturally in gauge theories. As is clear,
the occurance of such an operator is not sufficient to obtain a topological theory.

2.2 Ingredients for a topological field theory?

The basic ingredients involved in constructing a topological theory are

(i) The theory has an operator Q such that Q2 = 0.

(ii) The energy-momentum tensor is Q-exact.

δS

δgµν
≡ Tµν = {Q,Λµν} (2.5)

(iii) The physical observables Oi are in the cohomology of Q and their variation
with respect to the variation of the metric is exact.

δgOi = {Q, ρiµν} .

Assuming that the above conditions are satisfied, one can show that such a
theory is topological. Consider the correlation function of n such observables
〈Πn

i=1Oi〉. The variation of such a correlation function with respect to that of the
metric is given by

δg〈Πn
i=1Oi〉 = δg

[∫
[dφ]e−S[φ,g]O1 · · · On

]
(2.6)

=
n∑
i=1

∫
[dφ]e−S[φ,g]O1 · · · δgOi · · · On

+
∫

[dφ]e−S[φ,g]{Q,Λµν}O1 · · · On (2.7)

= 0 (2.8)

3The corresponding condition for operators is {Q,ψ} = 0 and ψ 6= {Q, ξ}.
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where in eqn. (2.7), we have assumed that the measure [dφ] is independent of the
metric. Eqn. (2.8) follows from the decoupling of Q-exact states (which is always
assumed though one needs to prove decoupling as in the case of gauge theories).
Thus, we obtain that all correlation functions (involving operators of the type
described above) are independent of the metric and hence, give rise to topological
invariants. A trivial consequence of this is that the result is independent of the
positions of the operators. Thus all that remains to be done is to construct a
theory which satisfies the three conditions we have described and then the theory
is naturally a topological field theory.

2.3 The Recipe: A Witten Twist

Witten provided a general procedure for constructing such a theory. Again,
supersymmetry will prove to be the underlying reason for the theory being topo-
logical! One starts from a N = 2 theory and “twists” the theory to obtain a
topological theory. We shall see that conditions (i) and (ii) described earlier are
automatically satisfied. Typically, (iii) is trivially satisfied.

In order to understand twisting, we shall consider the N = 2 supersymmetry
algebra in 4 dimensions4

{QI
α, Q

J
α̇} = δIJσµαα̇Pµ , I, J = 1, 2 (2.9)

{QI
α, Qβ}J = 0 = {QI

α̇, Qβ̇} (2.10)

The algebra has a global U(2) = SU(2)I × U(1)U symmetry. This symmetry
mixes the various supersymmetry generators and commutes with the generators
of the usual Poincaré algebra (translations and Lorentz rotations). Explicitly, we
have

[QI
α, Br] = (br)

I
JQ

J
α . (2.11)

This symmetry is referred to as R− invariance. For N = 2 it is easy to see that
U(2) is the largest possible group with a non-trivial action on the supersymmetry
generators. The Lorentz and SU(2)I charges (representations) of the {QI

α, QJ
α̇}

are

(jL, jR, jI)

QI
α: (1

2
, 0, 1

2
)

QI
α̇: (0, 1

2
, 1

2
)

Suppose, the Lorentz SU(2)R is replaced by SU(2)′R which is the diagonal
sum of SU(2)R and SU(2)I . The new Lorentz group is SU(2)L × SU(2)′R. The
new choice of Lorentz group leads to unusual charges for all the supersymmetry
generators. We obtain that the new charges are

4The procedure works in other even dimensions as well.
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Old Label (jL, j
′
R) New Label

QI
α (1

2
, 1

2
) Qµ or Qαα̇

QI
α̇i (0, 0)⊕ (0, 1) Q⊕Q[µν]

Thus all the half-integer spins have been converted to integer spins. Importantly,
one of the supersymmetry generators transforms as a scalar i.e., with Lorentz
charge (0, 0) which we have labelled as Q. A part of the supersymmetry algebra
now becomes

(i) {Q,Q} = 0 , (2.12)

(ii) {Q,Qµ} ∝ Pµ . (2.13)

Thus condition (i) is satisfied by Q. We know that Pµ is part of the stress-tensor
and hence eqn. (2.13) coupled with general covariance suggests that Qµ must
occur as a part of a larger object Λµν . Thus condition (ii) is also satisfied. This
suggests that such a theory will be topological provided we restrict ourselves to
the subset of observables which are in the cohomology of Q.5 We will now move
on to a specific example. The example we will consider is Donaldson theory which
arises as a twisting of N = 2 topological Yang-Mills in 4 dimensions.

2.4 An example: Donaldson Theory

Donaldson studied a class of topological invariants (named after him) associated
with four dimensional manifolds. Witten constructed a topological field theory
by twisting N = 2 supersymmetric Yang-Mills whose invariants are the same as
Donaldson’s[6, 11]. One of his motivations was to obtain a relativistic generali-
sation of Floer theory (which is related to 3 manifolds but makes extensive use
of instantons in 4d).

Let us consider the field/matter content of N = 2 supersymmetric Yang-Mills.
Before twisting, the fields are the gauge field, two complex Weyl Fermions and
a complex scalar field. They all transform in the adjoint representation of the
gauge group G. (It is useful to assume that G=SU(2).) In the table given below,
U refers to the charge of the field under U(1)U .

Field Rep. before twisting Rep. after twisting
(jL, jR)U (jL, j

′
R)U

Aµ (1
2
, 1

2
)0 (1

2
, 1

2
)0

ψµ, η, χ[µν] (1
2
, 0)+1 ⊕ (0, 1

2
)−1 (1

2
, 1

2
)1 ⊕ (0, 0)−1 ⊕ (0, 1)−1

φ, φ∗ (0, 0)±2 (0, 0)±2

5An alternative way of viewing this is to say that there is a topological sub-sector in any
N = 2 theory.
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One can see that the bosonic fields were untouched by the twisting (this is because
they are invariant under SU(2)I). The fermionic part consists of a vector ψµ, a
scalar η and a anti-self-dual 2-form field χµν . The scalar supersymmetry charge
Q carries charge U = 1. This corresponds to the ghost number. This is the analog
of fermion number in the supersymmetric QM example. The tranformation of
the fields under the scalar supersymmetry can be obtained from the usual N = 2
transformations. They are

[Q,Aaµ] = ψaµ (2.14)

{Q,ψaµ] = −(Dµφ)a (2.15)

[Q, φa] = 0 (2.16)

[Q, λ] = 2iη (2.17)

{Q, η} =
1

2
[φ, λ] (2.18)

{Q,χµν} = (Fµν +
1

2
εµνρσF

ρσ) (2.19)

Note that one has to set λ = φ∗ in the above equations to match with N = 2
Yang-Mills. One can see that [Q2, Aaµ] = −(Dµφ)a. Thus Q2 6= 0. However, Dµφ
is a (field-dependent) gauge transformation. Thus we have

Q2 = 0 upto gauge transformations.

This is unlike the BRST charge for gauge transformations. The cohomology of
such a charge is referred to as Equivariant Cohomology.
Note: The supersymmetry algebra we have discussed is on R4. However, gener-
ically curved manifolds do not admit spinors (the obstruction being the second
Stiefel-Whitney class). The twisted version however does not see any such topo-
logical obstruction because all the spinors now transform as bosons. In the La-
grangian which we will study later, one can explicitly verify invariance under the
scalar supersymmetry transformation without ever requiring the vanishing of the
Riemann tensor in any of the variations (as is the case for untwisted supersym-
metry).

The Lagrangian for the supersymmetric Yang-Mills theory is given by

L0 =
∫
M
d4x
√
gTr

{
1

4
FµνF

µν +
1

2
φDµD

µλ− iηDµψ
µ + iDµψνχ

µν

− i
8
φ{χµν , χµν} −

i

2
φ∗{ψµ, ψµ} −

i

2
{η, η} − 1

8
[φ, φ∗]2

}
(2.20)

One can add a term of the form
∫
F ∧F to the action. This term is a purely topo-

logical term and gives the Pontryagin index. Thus the theory remains topological.
The Lagrangian for Donaldson theory is

L =
1

e2

[
L0 +

1

4

∫
M
TrF ∧ F

]
, (2.21)
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where we have introduced a coupling constant e into the Lagrangian. One can
check that the Lagrangian in (2.21) is Q-exact, i.e., it can be written as 1

e2
{Q, V }

where V = 1
4
TrFµνξ

µν + 1
2
TrψµD

µλ − 1
4
Tr(η[φ, λ]). Further, as claimed, the

stress-tensor Tµν is also Q-exact.
This implies that all correlation functions are independent of the metric (fol-

lowing our earlier arguments) as well as on the coupling constant e. For example,
consider the variation of the partition function of the theory with respect to the
coupling constant,

δZ

δ[ 1
e2

]
= −

∫
[DA · · ·]e−L{Q, V }

= −〈{Q, V }〉 = 0 (2.22)

Thus the partition function is independent of the value of e. Thus we can choose
to study the theory in the e → 0 limit where the path integral is dominated by
the minima of the action. Concentrating on the gauge part of the action,

Lgauge =
1

4e2

∫
M

√
gTr(FµνF

µν + Fµν
∗F µν)

=
1

4e2

∫
M

√
gTr(Fµν + ∗Fµν)(F

µν + ∗F µν) , (2.23)

which is minimised when Fµν = −∗Fµν . Thus the minima occurs for anti-self dual
instanton solutions. This is precisely what Donaldson studied in the context of
his theory of four-manifold invariants. This suggests that one is on the right track
in constructing a Topological Field Theory whose observables will be Donaldson’s
invariants.

Instanton solutions may or may not exist depending on the choice of manifold
M and the choice of gauge group G. If they do exist, then the instantons have
a moduli space M which is smooth except for mild singularities. For the case of
G = SU(2), the formal dimension of M is given by the formula

d(M) = 8p1(E)− 3

2
(χ(M) + σ(M)) , (2.24)

where p1(E) is the first Pontryagin number of the vector bundle for G, χ(M) and
σ(M) are the Euler characteristic and Hirzebruch signature of the manifold M .
The moduli space can be thought of as the space

M = {Space of Anti− Self Dual Connections on M} /G ,

where G is the set of gauge transformations.
Suppose, one finds an instanton solution Ā. We can expand the connection

A as Ā+ δA to probe for neighbourhood solutions which also satisfy the anti-self
duality condition. This condition implies the following condition on δA

DµδAν −DνδAµ + εµνρσD
ρδAσ = 0 , (2.25)
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where the covariant derivatives Dµ are taken with respect to the background
gauge field Ā. Among the variations δA, there are some which are nothing but
gauge transforms of Ā. These can be fixed by requiring that δA satisfy the gauge
fixing condition

DµδA
µ = 0 . (2.26)

The equations of motion of the fermions imply the following equations on ψµ

Dµψν −Dνψµ + εµνρσD
ρψσ = 0 , (2.27)

Dµψ
µ = 0 . (2.28)

Thus comparing the two equations given above with equations (2.25) and (2.26)
for δA, we find that ψ satisfies the same equations as δA. Thus we can identify

δAµ ↔ ψµ . (2.29)

Let the number of solutions of the equations for ψµ be m. Then, a version of the
Atiyah-Singer Index theorem can be applied (provided χ and η do not have any
zero-modes) and we obtain that

m = d(M)

Thus, ψµ can be identified with the elements of T ∗M. The fermion number U is
violated by the instanton background by precisely d(M) units. This implies, that
only correlation functions which correspond to processes which cause a change
of U by precisely d(M) units are non-vanishing. From our identification of ψα
with T ∗M, we can see that the non-vanishing path integrals reduce to top forms
on M This is very much like what we had in the case of the supersymmetric
quantum mechanics example we considered in lecture 1.

Case (i): d(M) = 0

When d(M) = 0, the partition function is non-vanishing and gives rise to a topo-
logical invariant. The contributions to Z come from isolated instanton solutions.
Since there are no zero modes in this problem, there is an exact cancellation be-
tween the bosonic and fermionic determinants due to supersymmetry. However,
there is an ambiguity with regard to the sign of the answer. The ratio of the
determinants is

±
∏
i λi√
|λi|2

= ±1 . (2.30)

There is no natural way to fix this sign. So one arbitrarily picks a reference
instanton and fixes its sign to +1. This uniquely fixes the sign of other instantons,
since one can smoothly deform one solution Ā1 to another solution Ā2 by the
following combination

Āt = tĀ1 + (1− t)Ā2
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where 0 ≤ t ≤ 1 and require that sign be flipped everytime Āt has a zero eigen-
value. Donaldson has shown that there is no obstruction to this procedure. Thus
one obtains the partition function to be

Z =
∑
i

(−)ni , (2.31)

where the sum is over all isolated anti-self dual instanton solutions. This is
identical to the result obtained by Donaldson albeit by much simpler arguments.

Case (ii): d(M) > 0

For the case of d(M) > 0, the partition function vanishes and one needs to con-
struct correlation functions (involving Q-closed and gauge invariant observables)
which satisfy the ghost number condition to obtain topological invariants. Thus,
we need to obtain a gauge invariant observable which is Q-closed. Going back to
the commutators of the basic fields in the theory, we see that [Q, φa] = 0. How-
ever, since φa is not gauge invariant, the following operators constructed from φa

are gauge invariant as well as Q-closed.

Ok,0(x) = Trφk , (2.32)

where the operator has ghost number U = 2k. For G = SU(n), one has (n− 1)
independent operators. Consider, the action of the derivative on one of these
operators

∂

∂xµ
Ok,0 = kTrφk−1Dµφ = {Q,−kφk−1ψµ} ≡ {Q,Ok,1} .

Thus, the partial derivative of the operator Ok,0 is Q-exact and thus decouples
from all correlation functions. This is not surprising since correlation functions
are independent of the metric and thus independent of the positions of the oper-
ators. The above sequence leads to the following set of descent equations

0 = [Q,Ok,0] , (2.33)

dOk,0 = {Q,Ok,1} , (2.34)

dOk,1 = [Q,Ok,2] , (2.35)

dOk,2 = {Q,Ok,3} , (2.36)

dOk,3 = [Q,Ok,4] , (2.37)

dOk,4 = 0 , (2.38)

where we have introduced new objects Ok,r which have ghost number (2k−r) and
are r-forms on M . These objects also generate other ways of obtaining topological
observables. For example, consider a loop γ in M . Then

Wk(γ) ≡
∮
γ
Ok,1 , (2.39)
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is Q-closed. This follows by using the descent equation to obtain {Q,Wk(γ)} =∮
γ dOk,0 = 0. Similarly, one can consider 2-cycles (surfaces) Σ, 3-cycles on M to

obtain observables

Wk(Σ) =
∫

Σ
Ok,2 ,

Wk(T ) =
∫
T
Ok,3 ,

Lk =
∫
M
Ok,4 . (2.40)

The last of these observables Lk can be added to the action! The Donaldson
invariants for d(M) > 0 are given as follows. Pick homology cycles γ1, . . . , γr of
dimension k1, . . . , kr respectively. Restricting to the case of SU(2) for simplicity,
one obtains the following invariants

Z(γ1, . . . , γr) = 〈
∏
i=1

∫
γi
Wki〉 , (2.41)

which is non-vanishing if
∑r
i=1(4 − kr) = d(M). Thus we have seen how one

can construct topological invariants corresponding to the Donaldson invariants.
The topological character of the theory is obvious since it satisfied the various
conditions we set up at the beginning of the lecture.

From the mathematical viewpoint, the quantum field theoretic description is
not rigourous since path-integrals are not well defined. The understanding of
Donaldson’s proofs was (and is) formidable even to an accomplished mathemati-
cian. It is amusing to see that a physicist can obtain a glimpse of his work in the
span of two lectures. However, Donaldson’s work preceded the work of Witten
and one can claim that QFT has not predicted anything that was not known
in this case. However, recent advances due to Seiberg and Witten in the con-
text of N=2 supersymmetric Yang-Mills has provided a dramatic reformulation
of Donaldson theory which has provided enormous simplification in a mathemati-
cian’s understanding of Donaldson’s invariants. We shall now briefly describe this
progress.

We have seen that the TFT we constructed was such that all correlation
functions did not depend on the value of the coupling of constant e. In particular,
we chose to take e→ 0 in order to reduce everything to classical computations. Of
course, one could have asked if we could evaluate correlation functions when e was
large. This would lead to a strong coupling problem and we would have naively
guessed that it would not have been possible to do the computations. Seiberg and
Witten have provided a means of doing this calculation. Using a generalisation
of electric-magnetic duality6 for N = 2 case, they mapped this strong coupling

6Electric-magnetic duality refers to the symmetry of source-free Maxwell’s equations under
the exchange of the electric and magnetic fields. This simple symmetry can be generalised to
include sources. There is strong evidence that theories with N = 4 supersymmetry are self-dual
under the action of a discrete group SL(2, Z) of which electric-magnetic duality forms a Z2

subgroup.
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problem to that of a magnetic monopole interacting with a U(1) gauge field (for
the case of G = SU(2). In the weak coupling limit, the appropriate moduli
space was the space of anti-self dual instantons. In the strong coupling limit, the
moduli space is the space of solutions of a monopole equations i.e., the equations
satisfied by a monopole interacting with a U(1) gauge field in a theory with N=2
supersymmetry. The reader is referred to [7, 8] for more details.

The following commutative diagram describes the various relationships.

N = 2   Supersymmetry

duality
e 1/e

Seiberg − Witten

theory

Yang − Mills

Donaldson −

Seiberg − Witten

theory

theory

Donaldson

twisting

twisting

e 1/e
duality

We hope that these two lectures have given the reader a flavour of what goes
into topological field theories. The interested reader can read the review article
by Witten[12] for more details as well as references to subsequent papers on the
topic.
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