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Motivation

M-theory compactifications on 7 dim manifolds of G2-holonomy

give rise to a four-dimensional theories with N = 1 supersymmetry.

Joyce has constructed a large class of such manifolds as Z2

orbifolds of CY 3 × S1 by an anti-holomorphic involution of the

CY 3 and inversion of the S1.

Case (i) When there are no fixed points, one obtains a smooth manifold.

Case (ii) When there is a fixed point set Σ, one obtains a singular

manifold. Joyce: The singularity can been smoothed out when

b1(Σ) > 0.

Harvey-Moore; Partouche-Pioline

Do these M-theory compactifications admit type IIA descriptions?

Other possibilities: F-theory on Calabi-Yau fourfolds, Heterotic string on Calabi-Yau threefolds.
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Sen: It is useful to think of M-theory compactifications as type IIA

compactifications with a non-constant dilaton, i.e., with a spatially

varying string coupling.

What does this mean for the case of M-theory compactifications on

Joyce manifolds?

Kachru-McGreevy: For cases for which the Joyce manifold is an

orbifold of the seven-torus, there are special points in the moduli

space where the M-theory compactification is a type IIA orientifold.

Our goal

• Find orientifold duals to M-theory compactifications on Joyce

manifolds (especially, Case (ii)).

X = (M × S1)/Z2 (M = CY 3)

• Obtain an exact CFT description when M admits a Gepner

model description.
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An example of Case (ii): The Fermat quintic is given by the

hypersurface

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0 ,

in CP
4(zi are homogeneous coordinates of CP

4).

Consider the anti-holomorphic involution

σ : zi → z̄i , i = 1, . . . , 5 ,

whose fixed-point Σ is an RP3, which is a special Lagrangian(sL)

submanifold of the Fermat quintic. Becker-Becker-Strominger

Since b1(RP3) = 0, the singularity of X, which is locally of the form

Σ× C2/Z2, cannot be resolved.

Σ is actually one in a family of 54 = 625 sL submanifolds of the

Fermat quintic, all of whom are RP3’s. They are all fixed-points of

the anti-holomorphic involutions:

zi → αni z̄i , α5 = 1 .
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Plan of talk

• Obtain the type IIA orientifold dual.

• Discuss the orientifold projection in CFT

• Constructing Crosscap states

• A surprise and its resolution
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Obtaining the orientifold dual

M-theory compactification on M × S1 is dual to type IIA

compactification on M with the size of the S1 identified with the

string coupling.

The Joyce manifold X is the Z2 orbifold:

X = (M × S1)/σ · I1

σ: anti-holomorphic involution of M

I1: inversion of S1.

If we can identify the action of I1 on the type IIA side, then we can

obtain the required orientifold group for the type IIA dual of

M-theory on X.

But, I1 is not a symmetry of M-theory and thus cannot quite be

identified with a symmetry on the type IIA side
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However, the inversion of an even number of coordinates is a

symmetry of M-theory.

In the example of the quintic that we considered, Σ is the base the

SYZ T 3 fibration of the quintic and σ inverts the fibre. Thus, σ · I1
corresponds to the simultaneous inversion of four circles – three

from the SYZ fibre and one from the S1.

This leads us to two possible actions on the IIA side:

[σ · Ω] or [(−)FL · σ · Ω]

Ω: worldsheet parity, FL: spacetime fermion number.

It turns out only the second choice preserves N = 1

supersymmetry. This is easily understood by studying the action

on the vertex operators involving the Ramond sector. Thus, we

obtain the following picture.
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A pictorial depiction: (Possible heterotic duals not shown)
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Relevant Spectra in M-theory

Let h1,2 and h1,1 be the Dolbeaut numbers of a CY 3 M . The

spectrum of M-theory on M × S1 has N = 2 supersymmetry in

d = 4 and consists of:

F the N = 2 supergravity multiplet,

F h1,1(M) abelian vector multiplets,

F h2,1(M) + 1 hypermultiplets.

The spectrum for a smooth Joyce manifold X with Betti numbers

b3 and b2 has N = 1 supersymmetry in d = 4 and consists of:

F the N = 1 supergravity multiplet,

F b2(X) = h+
1,1(M) abelian vector multiplets,

F b3(X) = h2,1(M) + h−

1,1(M) + 1 chiral multiplets.

Howe-Papadopoulos; Vafa-Witten

h+
1,1(M)[h−

1,1(M)] are the number of Kahler moduli that are

even[odd] under σ.
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Returning to the example

• h2,1 = 101 ; h+
1,1 = 0 ; h−

1,1 = 1

• Two fixed points of the form Σ× R
3,1

• Each singularity is locally of the form R
4/Z2, i.e., it is an A1

singularity – expect U(1)× U(1) enhanced gauge symmetry in

M-theory.

• In the type IIA dual, we expect an O6-plane with the

SO-projection.

• The RR-charge will be equal the R3/Z2 orientifold plane in flat

space. Based on this, we add 4 D6-branes wrapping Σ× R
3,1

implying a SO(4) gauge symmetry.
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Can these expectations be realised in CFT?
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Imposing the Orientifold Projection

Let Ω̃ = (−)FL · σ · Ω. This the the orientifolding Z2. Under its

action, the states of the original type II theory fall into three

representations:

• Real representations:[ε = +1] These have eigenvalue +1 and

survive orientifold projection.

• Pseudo-real representations:[ε = −1] These have eigenvalue

−1. and are projected out.

• Complex representations:[ε = 0] Under Ω̃, a state gets

mapped to another one. In such cases, one linear combination is

projected out.

In our example, it is easy to see that states that arise from the

(c, c) and (a, a) rings are in the complex representation while those

that arise from the (a, c) and (c, a) have ε = ±1.

12



The orientifold projection = KB projection

The presence of orientifold planes leads to unoriented strings and

hence unoriented surfaces. At ‘one-loop’, this adds a Klein bottle

to the torus.

The Klein bottle amplitude has two “channels” related by the

modular tranformation:

Direct Channel Transverse Channel

K(q) = Tr
(
Ω̃ qHcl

)
K̃(q̃) = 〈C|q̃Hcl |C〉

=
∑

i εi χi(q)
S←→ =

∑
j Γi

2 χi(q̃)

εi = 0,±1 |C〉 = crosscap state

We assume (for simplicity) that all states have multiplicity of one.

Thus, the direct channel amplitude encodes the orientifold

projection.
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Orientifolding in CFT: The PSS Ansatz

In the CFT of unoriented strings, one first constructs a crosscap

state whose direct channel amplitude encodes the required

projection. One general class of solutions has been provided by

Pradisi-Sagnotti-Stanev.

|C〉 =
∑

i

Γi |C : i〉〉 =
∑

i

P0i√
S0i

|C : i〉〉

where |C : i〉〉 are the Ishibashi basis for crosscap states and

P ≡
√

TST 2S
√

T . This plays the analogue of the S-matrix in

Cardy’s ansatz for the boundary states.

The matrices Y k
ij ≡

∑
m

SmiPmjP k
m

Sm0
plays a role analogous to the

fusion matrix for boundary states. They satisfy the fusion algebra

Yi Yj = Nij
k Yk .

Y k
00 = εk determines the KB projection.
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An application: N = 2 minimal models

States are labelled by (L, M, S) with L = 0, . . . , k,

M = 0, . . . (2k + 3) mod (2k + 4), S = 0, 1, 2, 3 mod 4 and

L + M + S = even.

The S-matrix and P-matrix are given by

SL̃M̃S̃
LMS ∝ sin(L, L̃)k e

iπMM̃
k+2 e

−iπSS̃
2

P L̃M̃S̃
LMS ∝

(
sin

1

2
(L, L̃)k e

iπMM̃
(2k+4) e

−iπSS̃
4 δ

(2)

M+M̃+k
δ
(2)

S+S̃

+ sin
1

2
(k − L, L̃)k e

iπ(M+k+2)M̃

(2k+4) e
−iπ(S+2)S̃

4 δ
(2)

M+M̃
δ
(2)

S+S̃

)

(L, L̃)k = π(L + 1)(L̃ + 1)/(k + 2).

• S even: NS-sector and S odd: R-sector

• Delta function in P-matrix implies that only NSNS (or RR)states

alone appear in the PSS crosscap state.
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The Gepner model

• Tensor copies of N = 2 minimal models(MM) such that total

central charge is 9. For the quintic – tensor five copies of k = 3

MM.

• Tensor NS states with NS states and R with R from each

component minimal model.

• Project onto states with total (including spacetime sector) U(1)

charge an odd integer.

Crosscap states in the Gepner model

• Take the tensor product of crosscap states in the individual

minimal model.

• Implement the Gepner projection on this crosscap state.

This is a natural guess for the crosscap state in the Gepner model.

But this cannot be the crosscap that realises the type IIA

orientifold!
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The problem

• The PSS crosscap state has only contributions from the NSNS

sector. This implies that its Ramond charge is zero.

• The direct channel KB amplitude is not supersymmetric.

And its resolution

Consider the two crosscap states in a single MM

|C : NSNS〉 ≡ P LMS
000 |C : LMS〉〉

|C : RR〉 ≡ P LMS
011 |C : LMS〉〉

The first one is the PSS crosscap state while the second one is the

PSS crosscap state associated with the simple current that is

related to spacetime supersymmetry. It contains only RR Ishibashi

states.
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Then, we propose that the correct crosscap state takes the form

|C〉Gepner = P
(

r∏

i=1

|Ci : NSNS〉+
r∏

i=1

|Ci : RR〉
)

P imposes the U(1) charge projection of Gepner.

Some consistency checks

• Now the crosscap state clearly carries RR charge.

• It has all the terms to provide a supersymmetric KB amplitude.

• For the quintic, in fact, we find a full family of 625 distinct

crosscap states in agreement with the 625 anti-holomorphic

involutions.

• More detailed checks[KB projection, tadpole cancellation] being

carried out in specific examples will be discussed in the paper to

appear soon.
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