Faculty Details

Prahallad Padhan

Professor

HSB 213
Ph.D. IIT Kanpur

πŸ“ž 044 - 2257 4884
βœ‰οΈ padhan@iitm.ac.in

Areas of Interest

Interface physics in artificial materials such as thin films, thin film multilayers and superlattices of transition metal oxides materials and corresponding device engineering.

Current Research

My research focuses on interface physics in thin films, thin film multilayers and superlattices. My group is involved in (i) fabrication and study of transition metal oxides materials, (ii) fabrication, processing and measurement of electronic transport of transition metal oxides based junctions, and (iii) corresponding device engineering. We also synthesize and characterize nanostructures of transition metal chalcogenides and oxides materials, i.e., nanoparticles. In addition, we perform theoretical condense matter physics calculations, like band structure and spin texture simulations using first principles density functional theory.

Students

Current PhD Students

βœ” PH16D004 BIBEKANANDA DAS

βœ” PH18D200 VIPIN K E

βœ” PH19D005 SATYASIBAN DASH

βœ” PH20D090 RASMI RANJAN MOHAPATRA

βœ” PH21D015 SANTOSH KUMAR SAHU

βœ” PH21D053 SANDIP KUMAR PADHI

Recent Publications

  • βœ” Suppression of spin-orbit coupling effect by the ZnO layer of the La0.7Sr0.3MnO3/ZnO heterostructures grown on (001) oriented Si - restores the negative magnetoresistance. Bibekananda Das and Prahallad Padhan. Nanoscale. 13. 4871. DOI: https://doi.org/10.1039/D0NR06769E. 2021.
  • βœ” Interfacial reconstruction in La0.7Sr0.3MnO3 thin films : giant low-field magnetoresistance. Umesh Kumar Sinha, Bibekananda Das, and Prahallad Padhan. Nanoscale Advances. 2. 2792. DOI: https://doi.org/10.1039/D0NA00287A. 2020.
  • βœ” Evidence of weak antilocalization in quantum interference effects of (001) oriented La0.7Sr0.3MnO3Γ’β‚¬β€œSrRuO3 superlattices. Roshna S. H., W. Prellier and Prahallad Padhan. Journal of Applied Physics. 128. 033906. DOI: https://doi.org/10.1063/5.0014909. 2020.
  • βœ” Tunable structure and magnetic properties in Fe3-xVxGe alloys. R. Mahat, K. C. Shambhu, S. Regmi, D. Wines, F. Ersan, C. Ataca, Prahallad Padhan, A. Gupta, and P. LeClair. Journal of Alloys Compound.. 830. 154403. DOI: https://doi.org/10.1016/j.jallcom.2020.154403. 2020.
  • βœ” Strain modulated magnetocaloric effect in (111) oriented La0.7Sr0.3MnO3Γ’β‚¬β€œSrRuO3 superlattices. Roshna S. H., W. Prellier and Prahallad Padhan. Nanoscale. 12. 5151. DOI: https://doi.org/10.1039/D0NR00620C. 2020.
  • βœ” Surface-Induced Enhanced Band Gap in the (0001) Surface of Bi2Se3 Nanocrystals: Impacts on Topological effect. Soumendra Kumar Das and Prahallad Padhan. ACS Applied Nano Materials. 3. 274-282. DOI: https://doi.org/10.1021/acsanm.9b01941. 2020.
  • βœ” Asymmetric spin dependent scattering at the interfaces of Si/La0.7Sr0.3MnO3/ZnO heterostructures. Bibekananda Das and Prahallad Padhan. Applied Physics Letters. 115. 222401. DOI: https://doi.org/10.1063/1.5115809. 2019.
  • βœ” Tunable properties and potential half-metallicity in (Co2-xTix)FeGe Heusler alloys: An experimental and theoretical investigation. K. C. Shambhu, R. Mahat, S. Regmi, A. Mukherjee, Prahallad Padhan, R. Datta, W. H. Butler, A. Gupta, and P. LeClair. Physical Review Materials. 3. 114406. DOI: https://doi.org/10.1103/PhysRevMaterials.3.114406. 2019.
  • βœ” Effect of Symmetry Breaking on Interlayer Exchange Coupling and Electrical Conduction in SrRuO3Γ’β‚¬β€œPrMnO3 Superlattices. Antarjami Sahoo, Wilfrid Prellier, and Prahallad Padhan. Advanced Materials Interfaces. 5. 1800913 . 2018.
  • βœ” Apparatus and method for the growth of epitaxial complex oxides on native amorphous SiO2 surface of (001) oriented single crystal silicon. Prahallad Padhan, Umesh Kumar Sinha, and Antarjami Sahoo. Review of Scientific Instruments. 89. 085102 . 2018.

Teaching

βœ” 2017 : (Jan - May) - PH1020 Physics II; (Jul - Nov) - EP2090 Engineering Physics Lab I / PH2050 Physics Lab III / PH5310 Synthesis and Characterization of Functional Materials

βœ” 2018 : (Jan-May) - EP3190 Engineering Physics Lab II / PH2080 Physics Lab IV / PH6012 Fundamentals of Semiconductor Physics and Devices; (Jul - Nov) - EP2090 Engineering Physics Lab I / PH2050 Physics Lab III / PH5011 Science and Technology of Solid state

βœ” 2019 : (Jan-May) - EP3190 Engineering Physics Lab II/ PH2080 Physics Lab IV / PH5360 Project / PH5380 Seminar / PH6012 Fundamentals of Semiconductor Physics and Devices; (Jul - Nov) - EP2090 Engineering Physics Lab I / PH2050 Physics Lab III / PH5011 Science and Technology of Solid state

βœ” 2020 : (Jan-May) - EP3190 Engineering Physics Lab II / PH5360 Project / PH5380 Seminar / PH5720 Numerical Methods and Programming Lab

βœ” 2021 : (Jan-May) - PH6013 Functional Materials Sensors and Transducers ; (Jul - Nov) - PH1010 Physics I

βœ” 2022 : (Jan-May) - EP3190 Engineering Physics Lab II / PH6013 Functional Materials Sensors and Transducers ; (Jul - Nov) - PH1030 Physics Laboratory I / PH5360 Project / PH5690 Applied Magnetics

βœ” 2023 : (Jan-May) - PH1030 Physics Laboratory I / PH5230 Seminar / PH5240 Viva Voce / PH5340 Dielectric,Magnetic &Optical Materials / PH5350 Laboratory for Physical Property Measurement and Transducer / Sensor Element Characteristics of Func / PH5360 Project / PH5380 Seminar / PH6015 Advanced Materials and Nanotechnology Lab