Faculty Details

Prasanta Kumar Muduli

Prasanta Kumar Muduli

Assistant Professor

HSB 244B

Ph.D. IIT Kanpur

πŸ“ž 044 - 2257 4837

βœ‰οΈ muduli@iitm.ac.in

πŸ‘€ Personal Home Page

Areas of Interest

βœ” Quantum Devices

βœ” Quantum material

βœ” Weyltronics

βœ” Dirac Fermions

βœ” Topological antiferromagnetic spintronics

βœ” Superconducting Devices.

βœ” Designer Quantum Material (2D heterostructures).

Current Research

Our research group is interested in developing new quantum devices using recently discovered topological magnetic, superconducting, and 2D quantum materials. We are a new research group. The group is determined to uncover new quantum technologies by developing micro-and nanoscale quantum devices. Our group is in the process of developing state-of-the-art thin-film growth, nanofabrication, and low-temperature magnetotransport, and magneto-optical techniques. Presently, we are working on an emerging new research area called Weyltronics. Our present focus is to study topological Dirac and Weyl semimetal thin films and explore their exotic electrical, thermal, and optical properties under electric, magnetic, and strain fields.

Students

Current PhD Students

Recent Publications

  • βœ” Local and nonlocal spin Seebeck effect in lateral Pt-Cr2O3-Pt devices at low temperatures. Prasanta Muduli, Richard Schlitz, Tobias Kosub, René Hübner, Artur Erbe, Denys Makarov, Sebastian TB Goennenwein. APL Materials. 9. 021122. DOI: https://doi.org/10.1063/5.0037860. 2021.
  • βœ” Phenomenological model for the direct and inverse Edelstein effects. Hironari Isshiki, Prasanta Muduli, Junyeon Kim, Kouta Kondou, and YoshiChika Otani. Phys. Rev. B . 102. 184411. DOI: https://doi.org/10.1103/PhysRevB.102.184411. 2020.
  • βœ” Evaluation of spin diffusion length and spin Hall angle of antiferromagnetic Weyl semimetal Mn3Sn.. P. K. Muduli, T. Higo, T. Nishikawa, Danru Qu, H. Isshiki, K. Kondou, S. Nakatsuji, and YoshiChika Otani. Phys. Rev. B . 99. 184425. DOI: https://doi.org/10.1103/PhysRevB.99.184425. 2019.
  • βœ” Magnetic spin Hall effect and inverse spin Hall effect in a non-collinear antiferromagnet.. M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K. Muduli, M. Ikhlas, Y. Omori, T. Tomita, A. H. MacDonald, Satoru Nakatsuji, YoshiChika Otani. Nature . 565. 627. DOI: https://doi.org/10.1038/s41586-018-0853-0. 2019.
  • βœ” Detection of interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface with pure spin-current.. P. K. Muduli*, M. Kimata, Y. Omori, T. Wakamura, S. P. Dash, Y. C. Otani. Phys. Rev. B. 98. 024416. DOI: https://doi.org/10.1103/PhysRevB.98.024416. 2018.
  • βœ” Large enhancement of the spin Hall effect in Mn metal by Sn doping.. D. Qu, T. Higo, T. Nishikawa, K. Matsumoto, K. Kondou, D. Nishio-Hamane, R. Ishii, P. K. Muduli, Y. Otani, and S. Nakatsuji. Phys. Rev. Materials . 2. 102001(R). DOI: https://doi.org/10.1103/PhysRevMaterials.2.102001. 2018.
  • βœ” Spin-polarized quasiparticle control in a double spin-filter tunnel junction. . P. K. Muduli. Phys. Rev. B. 96. 024514. DOI: https://doi.org/10.1103/PhysRevB.96.024514. 2017.
  • βœ” Crossover from diffusive to tunneling regime in NbN-DyN-NbN ferromagnetic semiconductor tunnel junctions.. P. K. Muduli*, Avradeep Pal, Mark G. Blamire. Phys. Rev. B. 89. 094414. DOI: https://doi.org/10.1103/PhysRevB.89.094414. 2014.
  • βœ” Large local Hall effect in pin-hole dominated multigraphene spin-valves.. P. K. Muduli*, J. Barzola-Quiquia, S. Dusari, A. Ballestar, F. Bern, W. Bohlmann, P. Esquinazi. Nanotechnology. 24. 015703. DOI: http://iopscience.iop.org/0957-4484/24/1/015703. 2013.
  • βœ” Low-field microwave absorption in epitaxial La0.7Sr0.3MnO3 films that results from the angle-tuned ferromagnetic resonance in the multidomain state. . M. Golosovsky, P. Monod, P. K. Muduli, and R. C. Budhani. Phys. Rev.. B 85. 184418. DOI: http://prb.aps.org/abstract/PRB/v85/i18/e184418. 2012.

Teaching

βœ” 2022 : (Jan - May) - PH1020 Physics II ; (Jul - Nov) - PH1010 Physics I

βœ” 2023 : (Jan - May) - PH1020 Physics II